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Abstract: Microbial nitrogen (N) removal capability can be significantly enhanced in a horizontal
subsurface flow constructed wetland (HSCW) amended by Fe-modified biochar (FeB). To further
explore the microbiological mechanism of FeB enhancing N removal, nirS- and nirK-denitrifier
community diversities, as well as spatial distributions of denitrifiers and anaerobic ammonium
oxidation (anammox) bacteria, were investigated in HSCWs (C-HSCW: without biochar and FeB;
B-HSCW: amended by biochar; FeB-HSCW: amended by FeB) treating tailwater from a wastewater
treatment plant, with C-HSCW without biochar and FeB and B-HSCW amended by biochar as control.
The community structures of nirS- and nirK-denitrifiers in FeB-HSCW were significantly optimized
for improved N removal compared with the two other HSCWs, although no significant differences
in their richness and diversity were detected among the HSCWs. The spatial distributions of the
relative abundance of genes involved in denitrification and anammox were more heterogeneous
and complex in FeB-HSCW than those in other HSCWs. More and larger high-value patches were
observed in FeB-HSCW. These revealed that FeB provides more appropriate habitats for N-removing
microorganisms, which can prompt the bacteria to use the habitats more differentially, without
competitive exclusion. Overall, the Fe-modified biochar enhancement of the microbial N-removal
capability of HSCWs was a result of optimized microbial community structures, higher functional
gene abundance, and improved spatial distribution of N-removing microorganisms.

Keywords: Fe-modified biochar; constructed wetland; denitrification; anammox; denitrifier community

1. Introduction

The uncontrolled discharge of nitrate (NO3
−-N) in water has triggered a series of

serious environmental problems and health threats [1,2]. The dominant nitrogen (N) form
in the tailwater from wastewater treatment plants (WWTPs) is NO3

−-N, a primary cause
of increased N levels in receptor waterbodies [3]. Compared with traditional methods,
constructed wetlands (CWs) are highly economical and efficient in removing nutrients, or-
ganics, and heavy metals from polluted water (especially from tailwater from WWTPs) [4,5].
Biochar, as a carbon-rich material, is produced by pyrolyzed plants and animals at high
temperatures with limited O2 supply [6]. Due to its strong physical stability, high micro-
pore volume, and specific surface area, biochar has been used successfully to improve
pollutant removal in CWs by enhancing pollutant adsorption and biofilm formation [7,8].
The functions of biochar can be further enhanced after modification [9]. Notably, iron (Fe),
as a reactive element, plays a critical role in N biochemical cycles [10]. N-removal processes
such as nitrification, denitrification, and anaerobic ammonium oxidation (anammox) can
be facilitated by different valence and chemical forms of Fe, increasing the wastewater
N-removal rate [11–13]. Previous studies have shown that Fe-modified biochar can increase
microbial abundance and enhance N removal (especially for NO3

−-N) in various wastew-
ater treatment systems [14–16]. Li et al. [17] found that FeCl3-modified biochar could
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significantly enhance NO3
−-N removal from water because of an increased adsorption

capacity. Thus, the Fe-modified biochar could act as a promising amendment to CWs to
further reduce the N concentration of wastewater (especially NO3

—N-dominant wastew-
aters). However, information on the mechanism of N removal enhanced by Fe-modified
biochar in CWs is still lacking.

N transformation and removal pathways in CWs mainly include plant uptake, sub-
strate adsorption, and microbial activities [18]. Among them, microorganisms are con-
sidered to be major contributors to N transformation and removal [19,20]. In a variety of
classical and newly discovered microbial processes, denitrification and anammox are the
only two permanent N-removal pathways. The denitrification process is mediated by a
large number of phylogenetically unrelated physiological groups [21]. Previous studies
have shown that the abundance and composition of the CW denitrifier community can be
influenced by environmental factors, including substrate type, dissolved organic carbon
content, and NO3

−-N level [22–25]. Thus, comprehensively investigating the associations
between environmental factors and denitrifier abundance/composition is incredibly impor-
tant. However, information on the spatial distribution of denitrifier community abundance
and composition is rather limited in CWs. Moreover, little is known about the influence
that environmental factors have on the spatial distribution of anammox bacteria in CWs,
although this ecosystem type is extremely conducive to anammox [26].

Previous studies on the composition and diversity of CW microorganisms (especially
denitrifiers) were mainly based on traditional molecular biology approaches, such as termi-
nal restriction fragment length polymorphism (TRFLP) [27], clone library analysis [28,29],
and denaturing gradient gel electrophoresis (DGGE) [30]. These approaches can cause
an underestimation of microbial diversity and diminish our understanding of functional
microbial communities. Fortunately, a high-throughput sequencing (HTS) approach can
provide a more accurate analysis of the denitrifier community in complex ecosystems. To
date, this analysis has been widely used to investigate denitrifier communities in various
ecosystems, such as lake water and sediment, soil, and river periphytic biofilms [31–34].
However, there is still a lack of studies on applying the HTS approach to investigate the
denitrifier community in CWs. Furthermore, nirS and nirK genes are the two commonly
used molecular markers to detect the denitrifier community in ecosystems [28,35]. In our
previous study, we indicated that FeCl3-modified biochar (FeB) was an effective amend-
ment to horizontal subsurface flow constructed wetlands (HSCWs); it can enhance their
microbial N-removal capability, resulting in a significant reduction of N concentration in
WWTP effluent. The abundance of functional genes involved in denitrification and anam-
mox significantly increased in FeB-HSCW [36]. However, the effect of FeB on the spatial
distribution and community composition of microorganisms involved in denitrification
and anammox remains unclear.

In this study, we investigate the effect of FeB on the spatial distribution and community
composition of N-removing microorganisms in CWs. The overall aim is to further explore
the microbiological mechanism of enhanced N removal, influenced by FeB, in CWs. The
two primary objectives of this study are (1) to investigate the compositions and diversities of
nirS- and nirK- denitrifier communities using Illumina MiSeq HTS in order to gain a broader
understanding of FeB influence on denitrifier communities; (2) to determine the relative
abundance of genes involved in denitrification and anammox by quantitative polymerase
chain reaction (q-PCR), and analyze the influence of FeB on the spatial distributions of
denitrifier and anammox bacteria in FeB-HSCW.

2. Materials and Methods
2.1. The Preparations and Characteristics of Biochar and Fe-Modified Biochar

Biochar was derived from bamboo (Hangzhou Linan Yaoshi Charcoal Industry Co.
Ltd., Hangzhou, Zhejiang, China) by pyrolysis at 600 ◦C. Its average diameter was 5 mm,
its bulk density was 0.75 g/cm3, and the specific surface area was 2.5 × 108 m2/m3. To
make more activated sites available, biochar was immersed in HCl solution for 2 h, then
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washed repeatedly with distilled water [37]. A part of washed biochar was then immersed
in FeCl3 solution for 2 h and also washed repeatedly to obtain Fe-modified biochar. Finally,
the biochar and Fe-modified biochar were dried to a constant weight. More details on the
preparations and characteristics of biochar and Fe-modified biochar are described in our
previous study [36].

2.2. Construction and Operation of HSCWs

Three HSCW mesocosms (working zone: 160 cm length× 30 cm width× 60 cm depth)
were successfully built indoors, with Iris hexagonus (density: 13 plants/m2) planted on their
surfaces (Figure 1). Each system was filled with different substrates. The control mesocosm
(C-HSCW) was packed with soil and quartz sand (1:1, w/w); the biochar mesocosm (B-
HSCW) was packed with soil, quartz sand, and 10% (w/w) unmodified biochar; FeB-HSCW
was packed with soil, quartz sand, and 10% (w/w) Fe-modified biochar. Considering
dissimilatory nitrate reduction to ammonium (DNRA), Fe-modified biochar was only
added into the front half of the system [38]. To facilitate the collection of microbial samples,
several mesh bags (3 cm in diameter, 60 cm in height, with a 0.1-cm mesh), filled with the
corresponding substrate, were evenly embedded in each HSCW during the construction
of systems.
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Figure 1. The schematic diagram of constructed wetlands (HSCWs) with different substrates. C-
HSCW, without biochar and FeB-modified biochar; B-HSCW, with biochar; FeB-HSCW, with FeB-
modified biochar.

Before starting this study, the HSCWs were operated consistently for 8 months under
different combinations of influent N loading and hydraulic retention time (HRT) to purify
the effluent from Wunan WWTP (Changzhou, Jiangsu, China). The influent characteristics
of HSCWs in each operated stage are summarized in Table S1. FeB-HSCW exhibited
significantly more effective N-removal capability (Table S2), and its highest removal effi-
ciency was approximately 6.0- and 2.0-fold higher than those of C-HSCW and B-HSCW,
respectively. More details on the construction and operation of the HSCWs can be found in
our previous study [36].

2.3. Microorganism Sample Collection and DNA Extration

Mesh bags, in triplicate, were collected from six equidistant points in each HSCW. The
microorganism samples in each bag were divided into four equal portions based on the
vertical depth (0–15, 15–30, 30–45, and 45–60 cm). The total genomic DNA of each sample
(0.5 g) was extracted with the Fast DNA® SPIN Kit (MP Biomedicals, Santa Ana, CA, USA).
Its quantity and quality were also determined before the follow-up experiments.

2.4. High-Throughput Sequencing of nirS and nirK Genes

For the denitrifier community analysis, all microbial samples obtained from the same
HCSW were combined into one sample. Each mixed sample (0.5 g), in duplicate, was used
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to extract the total genomic DNA, and the quality and quantity of the extracted DNA were
subsequently evaluated. The nirS and nirK genes were amplified for HTS analysis by using
the primers cd3aF/R3cd and F1aCu/R3Cu, respectively [35]. PCR products were purified
and pooled in equimolar amounts and were then measured on a MiSeq Illumia platform
(Majorbio, Shanghai, China). More information on sequence processing is described
in previous work [35,39]. Using UPARSE (version 7.1, http://drive5.com/uparse/ (15
December, 2020)), sequences were clustered into operational taxonomic units (OTUs) at
a sequence identity of 97%. At a 3% distance level, ACE richness, Sobs richness, Chao
richness, Shannon diversity, and Simpson diversity were calculated and analyzed through
the use of Mothur (http://www.mothur.org (15 December, 2020)), based on the OTUs. The
sequences were grouped into different taxonomy levels using the Ribosomal Database
Project (RDP) Classifier (version 2.2, http://sourceforge.net/projects/rdp-classifier/ (15
December, 2020)) via the functional gene database (http://fungene.cme.msu.edu/ (15
December, 2020)), with a threshold of 70%.

2.5. Quantitative Analysis of Genes Involved in Denitrification and Anammox

A quantitative analysis of the genes mediating denitrification and anammox was
performed using q-PCR assays, including the bacterial 16S rRNA gene, the anammox
bacterial 16S rRNA gene (amx), and functional genes narG, napA, nirS, nirK, qnorB, cnorB,
nosZ-I, nosZ-II, and hzsA. More information on the primers is summarized in Table S3, and
the protocols and parameters used for each gene amplification are listed in Table S4. Each
amplifying reaction was performed in triplicate. More details of the qPCR operations are
described in our previous study [36].

2.6. Statistical Analysis

Data analysis and visualization were performed using Origin 9.0 software. All data
are presented as mean ± SD. Statistical checks were performed at a significance level of
0.05 using one-way ANOVA in SPSS 17.0 (SPSS Inc., Chicago, IL, USA). The differences in
denitrifier community richness and diversity were tested using Student’s t-test. To compare
the differences in nirS- and nirK-denitrifier community compositions among HSCWs, a
weighted UniFrac distance was obtained and then hierarchical clustering was carried out
based on the weighted pair group method using R (version i386, 3.3.0) (John Fox, Hamilton,
Canada). The abundances of functional genes were analyzed as relative abundances (gene
copy numbers/bacterial 16S rRNA gene for narG, napA, nirS, nirK, qnorB, cnorB, nosZ-I,
and nosZ-II; gene copy numbers/amx for hzsA).

3. Results
3.1. The Richness and Diversity of Denitrifiers in the Three HSCWs

Here, the HTS approach was applied to estimate the effects of Fe-modified biochar
on nirS- and nirK-denitrifier richness and diversity in HSCWs treating the effluent from
WWTPs (Table 1). In total, 94,707 and 101,452 valid reads of the nirS and nirK genes,
respectively, were retrieved from the MiSeq Illumina sequencing platform. The average
lengths of these two genes were ~392 and ~452 bp, respectively. Good’s coverage estimator
(~ 99%) suggested that the OTUs of the nirS and nirK gene libraries in each HSCW were
well-captured. The OTU numbers of nirS and nirK genes in FeB-HSCW were 795 and 802,
respectively, which were both significantly higher than those in C-HSCW and B-HSCW.
The richness and diversity of nirS- and nirK-denitrifiers varied among the HSCWs. In
FeB-HSCW, the richness and diversity indices of Sobs, Chao 1, ACE, Shannon, and Simpson
were 451, 523.60, 523.76, 4.68, and 0.022, respectively, for the nirS gene and 444.5, 480.05,
487.15, 4.80, and 0.019, respectively, for the nirK gene. Moreover, no significant differences
(p > 0.05) in these indices, among the HSCWs, were detected by Student’s t-test.

http://drive5.com/uparse/
http://www.mothur.org
http://sourceforge.net/projects/rdp-classifier/
http://fungene.cme.msu.edu/
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Table 1. The richness and diversity of nirS- and nirK-denitrifier communities in the three constructed wetlands (HSCWs); n = 6.

Estimators
nirS-Denitrifier nirK-Denitrifier

C-HSCW B-HSCW FeB-HSCW C-HSCW B-HSCW FeB-HSCW

Reads 94707 101452
Average Length 392.39 452.089

OTUs 586 674 795 550 630 802
Sobs 394 ± 76.37 494 ± 103.24 451 ± 49.50 376 ± 21.21 436.5 ± 2.12 444.5 ± 58.69

Shannon 4.58 ± 0.57 4.80 ± 0.54 4.68 ± 0.07 4.60 ± 0.20 4.46 ± 0.31 4.80 ± 0.21
Simpson 0.032 ± 0.016 0.024 ± 0.019 0.022 ± 0.000 0.022± 0.004 0.036 ± 0.019 0.019 ± 0.006

ACE 440.29 ± 35.12 582.12 ± 115.77 523.76 ± 60.54 418.83 ± 48.63 496.53 ± 13.94 487.15 ± 81.17
Chao 1 436.49 ± 44.66 587.13 ± 131.43 523.60 ± 59.32 422.62 ± 61.09 501.58 ± 10.85 480.05 ± 80.34

Coverage 99.19 ± 0.375% 98.51 ± 0.304% 98.74 ± 0.170% 99.27 ± 0.35% 99.00 ± 0.12% 99.21 ± 0.30%

Abbreviations: OTUs, operational taxonomic units; C-HSCW, without biochar and FeB-modified biochar; B-HSCW, with biochar; FeB-
HSCW, with FeB-modified biochar.

3.2. The Community Structures of Denitrifiers in the Three HSCWs

Proteobacteria and unclassified_k_norank_d_Bacteria were the dominant groups for
both nirS- and nirK-denitrifiers in the three HSCWs at the phylum level (Figure 2A,B).
Notably, the relative proportions of Proteobacteria for these two types of denitrifiers in FeB-
HSCW were 52.42% and 43.59%, respectively, which were higher than those in C-HSCW and
B-HSCW. The relative proportion of unclassified_k_norank_d_Bacteria ranged from 32.44%
to 51.80%, followed by B-HSCW > FeB-HSCW > C-HSCW for nirS-denitrifiers and B-HSCW
> C-HSCW > FeB-HSCW for nirK-denitrifiers. Compared with the other two HSCWs, there
was another group of nirS-denitrifiers in FeB-HSCW (sequences not classified into any
known group). For the nirK-denitrifiers, environmental_samples_k_norank_d_Bacteria
(4.06–11.27%) and unclassified_d_Unclassified (1.16–6.63%) were the subdominant groups,
but their relative proportions varied among the three systems.
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At the class level (Figure 2C,D), unclassified_k_norank_d_Bacteria was the domi-
nant group for both nirS- and nirK-denitrifiers in the three HSCWs, and their relative
proportions (nirS-: 34.57%; nirK-: 41.66%) were lower in FeB-HSCW than those in B-HSCW
(nirS-: 48.38%; nirK-: 51.80%). β-Proteobacteria was another dominant group for nirS-
denitrifiers, and the highest relative proportion was detected in FeB-HSCW (32.55%). In
addition, α-Proteobacteria were more abundant in FeB-HSCW (1.16%) than in the other
two HSCWs, whereas γ-Proteobacteria content was relatively low (0.44%). In contrast
to nirS-denitrifiers, α-Proteobacteria was the subdominant group for nirK-denitrifiers in
HSCWs, with a relatively high abundance observed in FeB-HSCW (31.77%).

To obtain more comprehensive insights into similarities and differences in the com-
munity structures for nirS- and nirK-denitrifiers, a heat map of hierarchical clustering for
the 50 most abundant genera is shown in Figure 3A,B, respectively. For nirS-denitrifiers,
significantly higher abundances of unclassified_c_β-Proteobacteria (19.98%), Herbaspirillum
(6.27%), Dechloromonas (0.75%), Magnetospirillum (0.66%), Bradyrhizobium (0.48%), unclassi-
fied_Comamonadaceae (0.20%), Thauera (0.18%), Azospira (0.04%), unclassified_o_Rhodocyclales
(0.04%), Vogesella (0.04%), unclassified_c_α-Proteobacteria (0.03%), and unclassified_d_Unclassified
(0.01%) were observed in FeB-HSCW compared to the other two systems. Meanwhile
for nirK-denitrifiers, unclassified_f_Bradyrhizobiaceae (11.72%), unclassified_d_Unclassified
(6.63%), Afipia (2.46%), Rhizobium (1.69%), Nitrosospira (0.86%), Chelativorans (0.27%), unclas-
sified_Rhizobiaceae (0.14%), Sinorhizobium (0.05%), unclassified_f_Phyllobacteriaceae (0.01%),
and Halopiger (0.01%) were observed.

However, the enrichment of genera Pseudomonas (0.001%), Azospirillum (0.001%), Zoogloea
(0.001%), Pseudogulbenkiania (0.001%), norank_f_unclassified_Rhodocyclales (0.001%), and Aro-
matoleum (0.001%) were lowest for nirS-denitrifiers in FeB-HSCW. For nirK-denitrifiers, the
lowest genera were unclassified_k_norank_d_Bacteria (41.63%), unclassified_Bradyrhizobiaceae
(11.72%), Achromobacter (0.01%), Paracoccus (0.001%), Starkeya (0.001%), Citrobacter (0.001%),
and Maritimibacter (0.001%).

3.3. The Spatial Distribution of Denitrifying Functional Genes in the Three HSCWs

To more accurately investigate the effects of FeB on the spatial distribution of denitrifier
communities, the copy numbers of the bacterial 16S rRNA gene, narG, napA, nirS, nirK,
qnorB, cnorB, nosZ-I, and nosZ-II were first detected in HSCWs. Their average abundances
were significantly higher in FeB-HSCW than in C-HSCW (2.30- to 27.84-fold) and B-HSCW
(1.11- to 7.53-fold).

3.3.1. Spatial Distributions of narG and napA in HSCWs

In this study, the relative abundances of narG and napA in three HSCWs treating
WWTP effluent were found to vary among the sampling sites (Figures 4 and 5). Compared
with C-HSCW and B-HSCW, significant differences in spatial distributions of narG and
napA relative abundances were found in FeB-HSCW. Higher values of narG and napA
relative abundances were detected in FeB-HSCW (narG: 0.026–0.438%, napA: 0.008–0.533%).
Notably, the relative abundances of narG and napA were negatively correlated in FeB-
HSCW. The high values for the relative abundance of narG were mainly concentrated in the
latter part of the system, while the napA was more abundant at the front part. Moreover,
the relative abundance of these two genes exhibited higher value patches for napA and
larger patches for narG in FeB-HSCW.
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3.3.2. Spatial Distributions of nirS and nirK in HSCWs

Different spatial distributions of the relative abundance of nirS (Figure 6) and nirK
genes (Figure 7) were detected in three HSCWs. The relative abundance of nirS and
nirK genes in FeB-HSCW was 0.146–2.397% and 0.012–0.268%, respectively. Compared
with C-HSCW and B-HSCW, more and larger high-value patches of nirS and nirK relative
abundances were observed in FeB-HSCW (Figures 6C and 7C). Distinct from narG and napA,
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similar distributions of nirS and nirK relative abundances were observed in FeB-HSCW,
and the high values of both were mainly concentrated in the front and middle-upper parts.
However, nirS and nirK were mainly concentrated on the surface of C-HSCW and the rear
part of B-HSCW. Moreover, nirS was more abundant than nirK in FeB-HSCW, and the
highest value of nirS relative abundance was an order of magnitude more abundant than
that of nirK.
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3.3.3. Spatial Distributions of qnorB and cnorB in HSCWs

Among the three HSCWs, the spatial distributions of qnorB relative abundance were
significantly different (Figure 8). qnorB was widely present in FeB-HSCW but was mainly
present at the bottom of the front part in C-HSCW and the middle part in B-HSCW. How-
ever, the spatial distributions of cnorB relative abundance exhibited similar characteristics
of high in the front and low at the back (Figure 9). Their relative abundances in FeB-
HSCW ranged from 0.126–0.242% (qnorB, Figure 8C) and 0.080–0.851% (cnorB, Figure 9C),
respectively. The patch with relatively high values in FeB-HSCW was larger than those
in C-HSCW and B-HSCW, which were mainly concentrated in the first half of the sys-
tem. Consistent with the nirS-nirK pair, similar distributions of qnorB and cnorB relative
abundances were also found in FeB-HSCW, where qnorB was an order of magnitude more
abundant than cnorB.
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3.3.4. Spatial Distributions of nosZ-I and nosZ-II in HSCWs

The spatial distributions of nosZ-I and nosZ-II relative abundances were more hetero-
geneous and complex in FeB-HSCW than in C-HSCW and B-HSCW (Figures 10 and 11).
Higher-value patches of nosZ-I relative abundance (>0.07%, Figure 10C) and nosZ-II relative
abundance (>0.29%, Figure 11C) were only detected in FeB-HSCW by the interpolated
maps. Moreover, higher-value patches of nosZ-I relative abundance were mainly concen-
trated in the front and center parts of FeB-HSCW, while the higher-value patches of nosZ-II
relative abundance were observed in the front and back ends. Similar to the gene pairs of
nirS-nirK and qnorB-cnorB, the relative abundance of nosZ-II was generally higher (by an
order of magnitude) than that of nosZ-I.
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3.4. Spatial Distribution of Anammox Genes in HSCWs

The spatial distributions of hzsA relative abundance differed significantly among
the HSCWs (Figure 12). A more heterogeneous and complex spatial distribution of hzsA
relative abundance was detected in FeB-HSCW, with the high-value patches mainly existing
at the front half of the system. However, the high-value patches were only observed at the
bottom of the front part in C-HSCW and the front end of B-HSCW. Notably, in contrast to
those in C-HSCW and B-HSCW, higher hzsA enrichment (relative abundance ranging from
0.021% to 2.081%) was observed in the vast majority of the sites in FeB-HSCW.
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4. Discussion
4.1. Effect of Fe-Modified Biochar on Denitrifier Richness and Diversity

Direct information on denitrifier richness and diversity in CWs, based on HTS analysis,
is still very limited, although this method has been widely used to investigate bacterial
community structure. Wu et al. [35] revealed that the distribution patterns of heterotrophic
denitrifiers could be influenced by root exudates in micropolluted CWs. In this study,
the effects of Fe-modified biochar on nirS- and nirK-denitrifier richness and diversity in
HSCWs were estimated by the HTS approach. A relatively large amount of nirS and nirK
gene OTUs in FeB-HSCW indicated that Fe-modified biochar could increase the microbial
communities in HSCWs. However, no significant differences (p > 0.05) in the richness and
diversity indices were observed among HSCWs, demonstrating that Fe-modified biochar
had no significant influence on the richness and diversity of the denitrifier community.
This was consistent with a previous study on biochar produced by rice straw [40].

4.2. Fe-Modified Biochar Optimizes Denitrifier Community Structures in FeB-SHCW

Microbial communities are the main promoter of the CW nutrient biogeochemical
cycle, and their activities are crucial to the functioning of wetlands because they can
determine energy flow and nutrient transformation. Several factors (i.e., nutrient levels,
feeding pattern, and root exudates) have been reported to influence the CW denitrifiers’
community structure [25,35,39]. In this study, the community structures of nirS- and nirK-
denitrifiers in HSCWs were altered by Fe-modified biochar, although Fe-modified biochar
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had no significant influence on their richness and diversity. The phyla Proteobacteria, the
main denitrifying bacteria in CWs, have been observed in several studies [25,41]. Thus,
the relatively high abundances of Proteobacteria for nirS- and nirK-denitrifiers in FeB-
HSCW indicate that Fe-modified biochar can effectively increase the enrichment of the
main denitrification actor, enhancing N removal. In addition, a more complex community
structure of nirS-denitrifiers existed in FeB-HSCW as an unknown group that was only
detected in this system. It was also revealed that Fe-modified biochar could promote the
enrichment of new denitrifier phyla in CWs to contribute to excellent N removal, which
requires extensive investigation in future studies.

Lu et al. [42] reported that sub-Proteobacteria (mainly α-, β- and γ-Proteobacteria)
have an excellent denitrification capability to facilitate N removal in biological wastewater
treatments. In this study, there were more abundant β-Proteobacteria and α-Proteobacteria
for nirS-denitrifiers enriched in FeB-HSCW at the class level, whereas γ-Proteobacteria
content was the lowest. These results suggest that Fe-modified biochar exhibits significant
selective enrichment for nirS-denitrifiers, which is more conducive to the growth and repro-
duction of α- and β-Proteobacteria. Moreover, the relative abundance of α-Proteobacteria
for nirK-denitrifiers was the highest in FeB-HSCW among HSCWs and was much higher
than that for nirS-denitrifiers. Therefore, different community structures, between nirS-
and nirK-denitrifiers, were formed in FeB-HSCW, probably resulting from the competitive
exclusion between them [43].

At the genera level, nearly all of the detected microorganisms were heterotrophic bac-
teria; several of them have been observed in previous studies [44]. For instance, Herbaspir-
illum, Magnetospirillum, Bradyrhizobium, Thauera, Azospira, and Vogesella are known nirS-
denitrifiers in micropolluted CWs, whereas Rhizobium and Sinorhizobium have been previ-
ously observed as nirK-denitrifiers [35]. Moreover, Dechloromonas is the dominant group
in denitrifying reactors and anaerobic sludge [45–47]. This genus has been demonstrated
to oxidize organic matter, with nitrate as the electron acceptor, and may prefer complete
denitrification [48]. The relative abundance of Dechloromonas was higher in FeB-HSCW,
indicating that Fe-modified biochar was more conducive to N transformation and N2O
reduction. Moreover, Thauera, as a type of aerobic denitrifier, could effectively reduce
the accumulation of NO2

−-N and moderate N2O emissions [49]. Wang and Chu [50]
pointed out that Comamonadaceae was the primary group for solid-phase denitrifica-
tion. The unclassified_Comamonadaceae has been found in denitrifying reactors as well as
electrolysis-augmented CWs [41,51]. Afipia is the dominant species responsible for au-
totrophic denitrification in the cathode of microbial fuel cells [52]. Thus, the many types
of denitrifiers observed at higher abundances in FeB-HSCW indicate that Fe-modified
biochar can significantly optimize denitrifier community construction as well as enhance
the coexistence of various denitrifying pathways (i.e., aerobic and anaerobic, autotrophic,
and heterotrophic) in the system. Biochar and Fe ions have been shown to alter the mi-
crobial community structure, respectively, to enhance N transformation and removal due
to their unique physical and chemical properties [8,53]. Therefore, owing to its higher
porous structure, larger surface area, and stronger adsorption capacity and the “iron wheel”
effect between Fe3+ and Fe2+ transformation, Fe-modified biochar has an excellent capabil-
ity to optimize denitrifier community structures and increase the enrichment of various
denitrifiers in CWs for further enhancing N removal in wastewater [36].

Furthermore, Pseudomonas species are widely found in various environments, and
some are capable of autotrophic and heterotrophic denitrification [54,55]. Notably, N
loading might have a substantial impact on the abundance of this denitrifier type in various
environments. In a bioelectrochemically assisted CW, dominated by genus Pseudomonas,
the influent N concentration was greater than 130 mg/L, over 10 times higher than in
this study [56]. He et al. [57] revealed that high N loadings (from 20 to 50 mg/L) could
reduce the abundance of denitrifying bacteria Zoogloea in biochar-packed reactors. Thus,
6 genera for nirS-denitrifiers and 7 genera for nirK-denitrifiers in FeB-HSCW, with the
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lowest abundance among HSCWs, might be ascribed to the interaction between FeB and
influent N loading.

4.3. Fe-Modified Biochar Influences Spatial Distribution of Denitrifying Functional Genes
in FeB-HSCW

Several studies have demonstrated that denitrifier abundances in CW medium possess
high spatial heterogeneity [23,58]. In this study, the spatial distributions of denitrifier
abundances varied substantially among the HSCWs, according to the relative abundance
distributions of narG, napA, nirS, nirK, qnorB, cnorB, nosZ-I, and nosZ-II. Among HSCWs,
relative abundances of those denitrification genes were higher in FeB-HSCW, indicating
that Fe-modified biochar could significantly increase the components of various denitrifiers
in the bacterial community and was more beneficial to complete denitrification in FeB-
HSCW. Notably, Fe-modified biochar had a significant impact on the spatial distribution of
denitrifying functional genes in HSCWs. The spatial distributions of denitrifier abundances
in FeB-HSCW were significantly different from those in C-HSCW and B-HSCW and showed
a more heterogeneous and patchy pattern.

Previous studies have suggested that the microbial groups harboring different genes,
implicated in similar paths of the denitrification process, have a differential utilization of
the sediment habitat [58]. narG and napA genes encode membrane-bound and periplasmic
enzymes, respectively, and exist in the same or different bacteria involved in the first step of
denitrification (NO3

−-N→ NO2
−-N) [59]. Thus, denitrifier groups harboring narG or napA

occupy differential habitat locations in FeB-HSCW, probably reflecting past competitive
exclusion between these two kinds of denitrifiers, and the Fe-modified biochar was more
conducive to the enrichment of napA-denitrifiers. Moreover, the relative abundance of
these two genes exhibited higher value patches for napA and larger patches for narG in the
interpolated maps. Thus, the growth and reproduction of both narG- and napA-denitrifiers
were effectively promoted in FeB-HSCW, simultaneously enhancing anaerobic and aerobic
denitrification [60].

The nirS and nirK genes have been commonly used to investigate CW denitrifier com-
munities [28,61]. They encode cytochrome cd1 and copper nitrite reductase, respectively,
and are carried by different bacteria [62]. Two nitric oxide reductases (Nor), which catalyze
the reduction of NO to N2O, are encoded by qnorB and cnorB, respectively [63]. Moreover,
the nosZ gene often acts as a marker for complete denitrification [64]. Simultaneous analysis
of both nosZ-I and nosZ-II genes are more conducive to more accurate and comprehensive
investigations of N2O-reducing communities [65]. Distinct from narG and napA, similar
distributions of the functionally redundant pairs (nirS–nirK, qnorB–cnorB, and nosZ-I–nosZ-
II) were observed in FeB-HSCW, and patches with high values of those relative abundances
were mainly concentrated in the front half of the system. Thus, Fe-modified biochar could
significantly enhance the enrichment of denitrifiers harboring those functional genes in
HSCWs and effectively reduce or even eliminate the competitive exclusion between denitri-
fiers with the same function by improving their differential utilization of habitats [66]. This
could result from their very different relative abundance ranges, as nirS, qnorB, and nosZ-II
were an order of magnitude more abundant than nirK, cnorB, and nosZ-I, respectively. Sim-
ilar results for nirS and nirK genes were also found by Correa-Galeote et al. [58,67]. These
further implied that the Fe-modified biochar could significantly promote the enrichment of
nirS-, qnorB-, and nosZ-II-denitrifiers, which were extremely important for the excellent
transformation and removal of N in FeB-HSCW. Moreover, the reduction of NO to N2O
is considered the primary source of N2O produced in a wetland [68]. However, the poor
stability of Nor, combined with the cytotoxic effects of NO, resulted in less focus on the NO
reduction process [69]. Thus, Fe-modified biochar could significantly increase the diversity
of NO-reducing bacteria and enhance the capability for NO reduction in FeB-HSCW with
the primary contribution of qnorB-denitrifiers [63,70].
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4.4. FeB-Modified Biochar Improved the Spatial Distribution of Anammox Genes in FeB-HSCW

The amx gene has been widely used as a marker for anammox bacteria [71]. The
hzsA gene, encoding hydrazine synthase (a subunit of the specific anammox enzyme),
is considered the most valuable molecular marker for anammox bacteria [72]. Humbert
et al. [73] pointed out that the hzsA primers have an advantage over amx primers because
the latter may amplify other Planctomycetes genes in addition to those of the anammox
group. Therefore, the relative abundance of hzsA to amx was used in this study to more
precisely investigate the spatial distribution of anammox bacteria. The spatial distribution
of hzsA relative abundance in FeB-HSCW was the most heterogeneous and complex among
HSCWs; this was similar to the distribution patterns of those denitrification functional
genes. Higher hzsA enrichments were observed in the vast majority of the sites in this
system compared to those in the other two HSCWs, suggesting that Fe-modified biochar
could create more suitable microenvironments in FeB-HSCW to increase the enrichment of
anammox bacteria [74]. In addition, high-value patches mainly existed at the front part of
FeB-HSCW, indicating that the front part of FeB-HSCW was the main location for anammox.
In general, anammox bacteria are less energetically active, with lower growth rates and
biomass yields than heterotrophic denitrifiers. Considering that the front part of FeB-
HSCW was also the primary habitat for most denitrifiers, Fe-modified biochar provided
more diverse habitats to effectively reduce competitive exclusion between denitrifiers and
anammox bacteria. The coexistence of these two microbial communities, involved in N
removal, was effectively promoted in FeB-HSCW, which was more beneficial for enhancing
the deep removal of N (especially for NO3

−-N).

4.5. Strengthening Mechanism of Fe-Modified Biochar on Microbial N Removal in HSCW

Several previous studies have revealed the spatial dynamics of denitrifier abundance
in natural wetlands and CWs [28,39]. However, information on the spatial distributions of
denitrifiers and anammox bacteria in the new Fe-modified biochar-augmented CW, treat-
ing micropolluted effluent from WWTPs, is still lacking. Fe is one of the most abundant
metal elements on Earth, and its oxidation–reduction process is very important in the
biogeochemical cycle of N. The growth, reproduction, and metabolic activity of denitrifier
and anammox bacteria can be promoted by Fe to achieve satisfactory N removal in various
wastewater treatment systems [53,75–78]. Meanwhile, because of its large surface area
and highly porous structure, biochar can provide enough habitats for microbial growth.
The functional genes involved in denitrification and anammox can be efficiently enriched
in biochar-amended systems [40,79,80]. In this study, Fe-modified biochar significantly
increased the relative abundances of functional genes involved in denitrification and anam-
mox, rendering their spatial distributions more heterogeneous and complex in FeB-HSCW.
This can be ascribed to the following reasons: (1) Fe-modified biochar has a larger surface
area and higher porous structure to provide more suitable habitats for the growth of various
N-removing microorganisms in CWs, which significantly increase the abundances of genes
involved in denitrification and anammox [36]. (2) Fe-modified biochar has a stronger ad-
sorption capacity for organic matter, N, and phosphorus from wastewater via electrostatic
attraction and intermolecular hydrogen bonding, with π–π bonds, which could effectively
improve the “in situ enrichment” of these substances and then facilitate the microbial
N-removal process [79,81–83]. (3) Fe-modified biochar might alter the microenvironment
in CWs and create more favorable conditions for denitrification and anammox [36,74].
Meanwhile, Fe-modified biochar could also act as an “electron shuttle” to facilitate electron
transfer in N-removal processes [84]. 4) The “iron wheel” effect between Fe3+ and Fe2+

transformation could further enhance enzyme synthesis and activities, promote microbial
reproduction and enrichment, and directly and/or indirectly accelerate electron transfer in
the denitrification and anammox processes of CWs [53,75,85–87]. These further promote
more and higher-value patches of relative abundances for these functional genes, which
were observed in FeB-HSCW compared with those in the two other systems. Notably, most
of them (except for narG) were mainly concentrated in the front and middle-upper parts of
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the system, indicating that Fe-modified biochar could supply more appropriate habitats for
N-removing microorganisms and prompt them to use the habitats more differentially (and
not exert competitive exclusion). This further suggests that a novel N-removing process,
coupled with denitrification, anammox, Feammox (NH4

+-N oxidation with Fe3+ reduction),
and NAFO (nitrate-dependent anaerobic ferrous oxidizing) in FeB-HSCW, might be the
promotor of excellent N removal [88]. Moreover, the relative abundance of nirS was higher
than those of other functional genes in FeB-HSCW, indicating that Fe-modified biochar
was most conducive to nirS-denitrifier enrichment. The nirS-denitrifier assemblage was an
important component in the bacterial community and the primary contributor to efficient
N removal in FeB-HSCW [39]. Moreover, Pan et al. [40] suggested that applying biochar
to paddy soil could enhance denitrification, which was mainly related to functional gene
abundance rather than microbial community structure. However, this study reveals that
stronger enhancements of Fe-modified biochar on N removal in CWs are mainly linked to
optimized microbial community structures, higher functional gene abundance, and better
spatial distribution of N-removing microorganisms.

5. Conclusions

To further explore the microbiological mechanism of enhanced N removal in CWs,
the influence of Fe-modified biochar on community structures and spatial distributions of
N-removing microorganisms in HSCWs was investigated using Illumina MiSeq HTS and
q-PCR approaches, respectively. The community structures of nirS- and nirK-denitrifiers
in FeB-HSCW were significantly optimized compared to the two other HSCWs, although
no significant difference in their richness and diversity were detected among the HSCWs.
Many types of denitrifiers were observed in FeB-HSCW, indicating that Fe-modified biochar
could effectively enhance the coexistence of various denitrifying pathways (aerobic and
anaerobic, autotrophic, and heterotrophic) for improved N removal. More heterogeneous
and complex spatial distributions of denitrifiers and anammox bacteria were observed in
FeB-HSCW, according to the relative abundance distributions of narG, napA, nirS, nirK,
qnorB, cnorB, nosZ-I, nosZ-II, and hzsA. More and higher-value patches of relative abun-
dances for these functional genes were observed in FeB-HSCW, and most of them were
mainly concentrated in the front and middle–upper parts of the system. Thus, Fe-modified
biochar can supply more appropriate habitats for N-removing microorganisms to prompt
them to use the habitats more differentially while reducing or even eliminating competition
exclusion. Therefore, the enhancement by Fe-modified biochar of the microbial N-removal
capability in CWs is attributed to optimized microbial community structures, higher func-
tional gene abundance, and better spatial distribution of N-removing microorganisms.
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