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ABSTRACT

The quest for evolutionary mechanisms providing
separation between the coding (exons) and non-
coding (introns) parts of genomic DNA remains an
important focus of genetics. This work combines an
analysis of the most recent achievements of geno-
mics and fundamental concepts of random pro-
cesses to provide a novel point of view on genome
evolution. Exon sizes in sequenced genomes show
a lognormal distribution typical of a random Kolmo-
goroff fractioning process. This implies that the
process of intron incretion may be independent of
exon size, and therefore could be dependent on
intron–exon boundaries. All genomes examined
have two distinctive classes of exons, each with
different evolutionary histories. In the framework
proposed in this article, these two classes of exons
can be derived from a hypothetical ancestral
genome by (spontaneous) symmetry breaking.
We note that one of these exon classes comprises
mostly alternatively spliced exons.

INTRODUCTION

A substantial fraction of the genomic DNA sequence does
not directly encode the primary structure of any cellular
protein, or any other cellular product (1). This is largely
due, in eukaryotes, to the division of genes into introns
(noncoding parts of DNA) and exons (coding parts of
DNA), each of which have pronounced size distributions
(2). The actual mechanism (or mechanisms) of intron
insertion is the subject of intense discussion and a cur-
rently popular working hypothesis suggests that introns
may be largely produced by insertion of transposons—
DNA elements that can move around to different
positions within the genome (3). Very frequently, this
point of view implicitly assumes that there is a higher

probability of splitting longer exons since they are larger
targets for transposons. Here, we show that the distribu-
tions of exon sizes for different organisms have a general
property: the presence of two distinguishable classes of
exons with different size distributions. We present an
idealized scheme that explains how the observed distribu-
tion of exon sizes can be derived from a common ancestral
genome by a random (quasi)-evolutionary process. This
formal model makes it possible to investigate the evolu-
tion of the genomes of particular organisms, and to
estimate the number of evolutionary steps that separate
them from the hypothetical ancestral genome. Concep-
tually, our results support the opinion that at the initial
stages of evolution, simple genomes had a lower fraction
of introns (introns late hypothesis). The model we propose
explains the observed lognormal distribution of exon sizes,
and suggests that introns may be inserted by a process that
is independent of exon size. Our findings also can be
rationalized in relation to the phenomenon of alternative
splicing (4).

MATERIALS AND METHODS

In our study, we used genome data for 12 animal species
provided by Ensembl (5) (http://www.ensembl.org/), the
joint project of the European Molecular Biology
Laboratory—European Bioinformatics Institute and the
Sanger Institute, and a plant genome sequence from
The Arabidopsis Information Resource (TAIR, http://
www.arabidopsis.org/) (6). All the entries annotated as
‘exon’ were retrieved for each complete genome. All
duplicates of exons (which originate primarily from
multiple accessions) starting and ending at the same
points were excluded from the analysis. The natural
logarithms of exon sizes were divided into bins of width
� ln(exon size)=0.2 to obtain the exon size distributions
presented in Figure 1 and in Supplementary data. The
distributions were fit using the unweighted �2-measure
normalized over the number of degrees of freedom (7)
as the criterion of fitting quality. The values of fitted
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parameters are presented in Table 1. Table 2 shows the
corresponding values of �2 and the Pearson correlation
coefficient, r, which characterize the agreement between
original data and the fitted model.

Three classes of fitting models were used:

(I) A model based on the assumption that an exon can
be split at any position with equal and constant
probability; this model leads to an exponential
distribution of exon sizes:

dN ¼ N�elnE��elnEd lnE,

where E is exon size, dN is the number of exons in
a bin, N is the amplitude of the peak and � is
the probability of splitting an exon at a particular
place.

(II) Two models that produce lognormal distributions
of exon sizes. These models are based on a
Kolmogoroff process, which does not assume any
relationship between exon size and probability of
splitting an exon. Particularly, to fit the data we
used a model of single lognormal peak

dN ¼
N

�
ffiffiffiffiffiffiffiffi
�=2

p e�2 ðln E�MÞ=�ð Þ
2

d ln E,

and a mixture of two lognormal distributions,

dN ¼
Na

�a
ffiffiffiffiffiffiffiffi
�=2

p e�2 ðln E�MaÞ=�að Þ
2

þ
Nb

�b
ffiffiffiffiffiffiffiffi
�=2

p e�2 ðln E�MbÞ=�bð Þ
2

d ln E,

where, N, Na and Nb are the amplitudes, M, Ma and
Mb the mean positions, and �, �a and �b the vari-
ances of lognormal peaks observed in the data.

(III) A combination of a Weibull distribution and
exponential distribution

dN ¼ N�eln E��eln E

þNwe
cln E��we

cln E
� �

d ln E,

where Nw, �w and c are the amplitude, frequency
parameter and shape parameter of the Weibull
distribution, respectively.

Sequences of pseudorandom numbers were obtained
using the Mersenne Twister algorithm (8) implemented in
the standard MATLAB 7.1 installation. The sequences
of pseudorandom numbers were seeded with the values 14
(sequence A) and 16 (sequence B), and were used to
generate the multiplicative processes presented in Figure 2.
Each pseudorandom sequence consists of 107 random
numbers, i.e., 107 exon splitting events. The ratio between
the initial lengths of the two ancestral exons used to
generate the exon size distributions presented in Figure 2
was 1:1000.
The confidence intervals shown for the fitted parameters

in Figure 1, error bars in Figure 3, Tables 1 and 3, and in
the Supplementary data are 95% confidence intervals
estimated from the covariance matrix (7).
For Homo sapiens and Mus musculus genomes, we also

analyzed distributions of alternatively spliced exons.
These data were received from the third release of the
Alternative Splicing Database (ASD), (http://www.ebi.
ac.uk/asd/altsplice/). This resource provides manually
curated data on alternative splicing with all exons
confirmed by EST/mRNA alignments (9,10). These data
were also divided into bins of width i ln (exon size)=0.2
and fitted using the unweighted �2-measure to models of
single exponential peak, single Weibull peak, and single
lognormal distribution (Figure 4 and Table 3).
In the case of fitting the model with two lognormal

peaks, the fractions of exons contributing to each peak

Figure 1. Distributions of the natural logarithms of exon sizes for the Homo sapiens and Drosophila melanogaster genomes. Both data sets can be
approximated by a sum of two Gaussian peaks with very high correlation between the data and the best-fit distributions: Pearson correlation
coefficients r=0.997 and r=0.998 for Homo sapiens and Drosophila melanogaster genomes, respectively. Data are shown as gray bars; thick lines
represent the best fit approximation, while thin lines depict individual locations and shapes of two Gaussian peaks.
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(Table 4) were estimated by formal integration of the peak
areas, which, for a standard Gaussian distribution, are
proportional to the peak amplitudes.
F-test critical values, F0.05 presented in Table S1 in

Supplementary data, were calculated for significance level
of 5% and number of degrees of freedom, df, given in
Table S1 and Table 3. For each pair of models under
consideration, we compared the ratio, �2

I=�
2
II, to the cal-

culated F0.05. When �2
I=�

2
II4F0:05, the hypothesis that the

variance �I associated with �2
I is greater than variance �II

associated with �2
II, i.e. the assumption that Model II is a

better description of the data than Model I (11), is verified
at the P <0.05 level.

RESULTS

The Homo sapiens (12) and Drosophila melanogaster (13)
genomes show (Figure 1) a striking similarity in the
distributions of exon sizes; in both, the distribution of the
logarithm of exon size forms two distinctive peaks. Other
genomes [see Supplementary data in which we analyze
all complete genome data provided by Ensembl (5) and
TAIR (6)] show similar patterns. A simplistic model of
intron insertion assumes that the probability of inserting
an intron is equal at all positions of an exon (making it
more likely that a longer exon will be split). This type of
process would lead to an exponential distribution of exon

Table 1. Parameters of fitting for different models of exon size distribution

Species
names

Caenorhabditis
elegans

Arabidopsis
thaliana

Anopheles
gambiae

Tetraodon
nigroviridis

Bos taurus Drosophila
melanogaster

Canis
familiaris

Gallus
gallus

Danio
rerio

Macaca
mulatta

Mus
musculus

Homo
sapiens

Pan
troglodytes

Exponential peak
N� 0�3 28� 1.5 33� 1.7 12� 0.5 48� 3.5 52� 3.3 13� 0.5 52� 3.4 44� 2.9 64� 4.0 56� 3.6 52� 3.9 67� 4.8 55� 3.9
�� 103 5.3� 0.4 5.1� 0.4 3.6� 0.2 6.7� 0.7 7.7� 0.7 2.8� 0.2 7.5� 0.7 7.6� 0.7 7.7� 0.7 7.3� 0.7 7.0� 0.7 6.9� 0.7 7.2� 0.7

Lognormal peak
N� 10�3 23� 1 30� 1 11� 1 36� 1 38� 1 13� 1 38� 1 33� 1 47� 1 42� 1 39� 1 50� 1 41� 1
� 1.3� 0.1 1.8� 0.1 1.7� 0.1 1.0� 0.1 1.1� 0.1 2.0� 0.1 1.0� 0.1 1.0� 0.1 1.0�0.1 1.1� 0.1 1.0� 0.1 1.0� 0.1 1.0� 0.1
M 5.0� 0.1 5.0� 0.1 5.4� 0.1 4.9� 0.1 4.8� 0.1 5.6� 0.1 4.8� 0.1 4.8� 0.1 4.8� 0.1 4.8� 0.1 4.8� 0.1 4.8� 0.1 4.8� 0.1

Exponential peak plus Weibull peak
N� 10�3 13� 2 25� 1 9.3� 0.3 18� 1 12� 1 11� 0.3 14� 1 11� 1 22� 2 14� 1 13� 1 18� 1 13� 1
�� 103 3.5� 0.5 3.7� 0.2 2.7� 0.1 4.3� 0.3 4.1� 0.3 2.1� 0.1 4.7� 0.3 4.2� 0.3 5.7� 0.4 3.0� 0.2 2.2� 0.2 2.1� 0.2 2.5� 0.2
Nw� 102 32� 44 0.8� 2.2 0.1� 0.2 3.5� 2.7 62� 16 0.1� 0.1 33� 10 46� 11 23� 12 73� 19 31� 12 59� 24 53� 17
c 2.3� 0.3 3.2� 0.6 3.1� 0.3 2.9� 0.2 2.4� 0.1 3.1� 0.4 2.5� 0.1 2.4� 0.1 2.6� 0.1 2.4� 0.1 2.5� 0.1 2.5� 0.1 2.4� 0.1
�w� 106 10� 20 0.3� 0.9 0.1� 0.2 0.5� 0.4 8.6� 2.3 0.1� 0.2 4.5� 1.3 7.3� 1.7 2.8� 1.5 9.2� 2.5 3.8� 1.5 5.7� 2.4 6.3� 2.1

Two lognormal peaks
Na� 10�3 5� 0.8 9� 0.9 1.3� 0.1 21� 1.3 21� 1.5 1.5� 0.1 20� 1.4 17� 1.2 26�1.2 28�1.1 29� 0.9 37� 0.9 30� 0.9
Nb� 10�3 18� 0.9 21� 1.0 10� 0.1 18� 1.3 22� 1.5 11� 0.1 23� 1.4 20� 1.2 29�1.1 21�1.2 16� 1.1 23� 1.1 19� 1.0
�a 0.7� 0.1 0.8� 0.1 0.6� 0.1 0.8� 0.1 2.1� 0.1 0.5� 0.1 2.1� 0.1 2.2� 0.1 2.5�0.1 0.8�0.1 0.8� 0.1 0.9� 0.1 0.8� 0.1
�b 1.5� 0.1 1.8� 0.1 1.9� 0.1 1.9� 0.1 0.8� 0.1 2.1� 0.1 0.8� 0.1 0.8� 0.1 0.8�0.1 2.7�0.2 3.1� 0.2 3.1� 0.1 3.1� 0.2
Ma 4.7� 0.1 4.5� 0.1 5.1� 0.1 4.9� 0.1 4.6� 0.1 5.1� 0.1 4.6� 0.1 4.6� 0.1 4.5�0.1 4.8�0.1 4.8� 0.1 4.8� 0.1 4.8� 0.1
Mb 5.2� 0.0 5.4� 0.0 5.5� 0.0 5.0� 0.0 4.8� 0.0 5.8� 0.0 4.8� 0.0 4.8� 0.0 4.8�0.0 4.9�0.1 5.4� 0.1 5.5� 0.1 5.1� 0.1

Table 2. Fitting quality, �2 and r, together with the number of data points and number of degrees of freedom, df

Species
names

Caenorhabditis
elegans

Arabidopsis
thaliana

Anopheles
gambiae

Tetraodon
nigroviridis

Bos
taurus

Drosophila
melanogaster

Canis
familiaris

Gallus
gallus

Danio
rerio

Macaca
mulatta

Mus
musculus

Homo
sapiens

Pan
troglodytes

Number of
data points

50 45 51 50 51 51 51 50 51 51 51 51 51

Exponential peak
�2� 10�3 3081 3577 259 14 947 13 991 316 14 876 10 874 19 826 16 196 18 559 29 373 18 882
r 0.831 0.847 0.910 0.748 0.777 0.902 0.771 0.770 0.786 0.773 0.725 0.731 0.743
df 48 43 49 48 49 49 49 48 49 49 49 49 49

Lognormal peak
�2� 10�3 301 1324 69 1071 1579 113 1540 1400 3400 2014 1995 3749 2148
r 0.984 0.945 0.977 0.982 0.975 0.966 0.977 0.971 0.964 0.972 0.971 0.966 0.971
df 47 42 48 47 48 48 48 47 48 48 48 48 48

Exponential peak plus Weibull peak
�2� 10�3 757 1043 42 612 161 53 145 93 459 280 548 1135 476
r 0.961 0.958 0.986 0.990 0.998 0.985 0.998 0.998 0.995 0.996 0.992 0.990 0.994
df 45 40 46 45 46 46 46 45 46 46 46 46 46

Two lognormal peaks
�2� 10�3 53 48 8 162 308 6 256 244 341 277 322 342 264
r 0.997 0.998 0.998 0.997 0.996 0.998 0.996 0.995 0.997 0.996 0.996 0.997 0.997
df 44 39 45 44 45 45 45 44 45 45 45 45 45
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sizes showing a single peak on a logarithmic scale (14,15).
Recently, the simplistic exponential model of exon size
distribution was reconsidered by Gudlaugsdottir and
co-authors (15) who suggested treating distributions of
exon sizes as a combination of Weibull (16) and exponen-
tial distributions. However, they did not provide a model
for an evolutionary process, which could lead to the
Weibull distribution but rather consider this distribution
to be only an empirical approximation of the observed
exon size data.
Our analysis of thirteen genomes (Table 2), shows that

the exponential distribution model always produces the
largest �2-values, which signifies that it is the least
adequate fit to the observed exon size distributions. The
model of a single lognormal peak is a closer fit to the data.
The mixture of Weibull and exponential distributions
suggested by Gudlaugsdottir and co-authors is a better
approximation, but for most genomes (except Bos taurus,
Canis familiaris and Gallus gallus) a combination of two
lognormal distributions produces the best agreement
between the real data and a fitted model. The length dis-
tributions of alternatively spliced exons in Homo sapiens
andMus musculus, drawn from ASD (9,10), reveal a single

Figure 2. Distributions of the natural logarithm of exon sizes for two different realizations of a random multiplicative process starting from an
ancestral genome comprising two exons. The diagrams at the top of the figure illustrate two different splitting patterns for sequences A and B (see
Methods section). The solid line represents the sum of the two peaks. The peaks shown with gray bars in the plot originated from the short exon in
ancestral genome (also gray in diagram); those shown in black bars originated from the long exon in ancestral genome (also black in diagram). The
probability, P, of a splitting event for a single exon at each step of the process is also indicated. The figure illustrates symmetry breaking between the
two parts of model genome. For the three first steps of the pseudorandom number sequence shown in (A), all splitting events happened to occur for
the exons that originated from the short part of the model ancestral genome. Thus, by the third step of the process, four out of five exons originated
from this part of model ancestral genome. This subset of exons has largest cumulative probability (P=4/5) for the next splitting event. For the
sequence in (B), at the third step of the process the largest cumulative probability for the next splitting event (P=3/5) belongs to the subset of exons
that originated from the long part of ancestral exon. This initial break of symmetry between the two subsets of exons in the model genome persists
and produces the two different peak dispositions shown in panels (A) and (B).

Figure 3. Widths, �, of exon size distributions for several complete
genomes (see Table 1 and in Supplementary data). Open symbols
correspond to the narrow peaks; full symbols to the wide peaks. All the
species were ordered according to the width of wider peak in the exon
distributions. Error bars indicate 95% CI.
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peak pattern (Figure 4). In this case, analysis of �2-values
also shows that an exponential distribution is poorest fit to
the data, and the lognormal distribution is the best
(Table 3). More sophisticated comparison between differ-
ent models used in this work involves F-test criterion (11)
and suggests similar hierarchy of the models (see Methods
section and Table S1 in Supplementary data).

DISCUSSION

The lognormal distribution is a normal (Gaussian)
distribution of the logarithm of some quantity. This
kind of distribution commonly originates from a
Kolmogoroff random multiplicative process (17), which
was originally introduced to describe the distribution of
ore particle sizes observed in geological samples (18,19),
and later was found to be useful as a paradigm for a whole
universe of different breakage and splitting processes.
A modified version of this process, in the context of our
problem, can be described as follows. Let us consider a
single exon, which is split by a random mutational process
into two parts (equal in size, for the sake of illustration).
Then, in the next step of the process, let us assume that
one randomly selected part of the ancestral exon under-
goes the same splitting. Subsequently, this process repeats
for a large number of splitting events. The key assumption
for this process, which is the same as the assumption of
Kolmogoroff, is independence of the probability of
undergoing a splitting event from exon size. This version
of a random multiplicative process is slightly different
from that discussed by Kolmogoroff, which assumes a
constant frequency of splitting events for all parts of the
fractionating set (exons in a genome in our case) at every
time, while the process considered here assumes a single
exon splitting event at each step of the process. Thus, the
probability of breaking a particular exon at the next step
of the process is not constant, but constantly decreases

with the increase in the number of exons. When started
from a single ancestral exon, this model of the multi-
plicative process, similarly to Kolmogoroff’s version,
produces a lognormal distribution of exon sizes. The
resulting distribution of exon sizes obtained in this manner
is independent of the actual sequence of random splitting
events. After a sufficiently large number of steps, the mean
position of the peak in the distribution of ln (exon size),
M, shows an asymptotic linear shift with the logarithm of
the number of splitting events, Nspl (for the process
introduced here) or on time, t (for the Kolmogoroff
process), ln E0�M� ln Nspl� t, where E0 is the length of
the ancestral exon. Similarly, the peak width, �, is related
to the same quantities, � �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnNspl

p
�

ffiffi
t

p
. The particular

values of the coefficients for these proportionalities
depend on the details of the process and can be ignored
for our current purposes. However, we assume that the
details of the splitting processes, i.e. the coefficients of
proportionality, are the same for all species.

The assumption that the splitting probability is
independent of exon size is essential for a lognormal
distribution. A similar hypothesis, that selection of exons
from open reading frames is independent of exon size
for large exons (larger than a certain threshold of 105–
110 bp), was discussed earlier (20). Our model assumes
that the probability of exon splitting is independent of
exon size for all exons, irrespective of any threshold. We
note, in this regard, that the currently most common point
of view is that the evolutionary process splits exons
by intron insertions. As mentioned in the Introduction
section, this generally acknowledged hypothesis of exon
splitting by transposon insertion implicitly assumes a
larger probability of splitting longer exons because they
are larger targets for transposons.

In contrast to this, the lognormal distribution of exon
sizes suggests that themechanism of intron insertion should
be independent of exon size. Obvious candidates for such
a process would be mechanisms involving exon–intron
boundaries, of which are always two for each exon.

A Kolmogoroff process provides a conceptual back-
ground for understanding the lognormal nature of exon
size distribution. However, the distribution of exon length
in real genomes is somewhat more complicated and
generally reveals two lognormal peaks (Figure 1 and
Supplementary data). To demonstrate how this two-peak
pattern can be obtained for a random exon splitting
process, let us consider a random process, similar to the
one described before, initiated for a model ancestral
genome that comprises two exons of unequal lengths. In
this case, the two parts of the ancestral genome generate
two distinct peaks in the exon size distribution. However,
unlike previously, the resulting distribution of exon sizes
is heavily dependent on the actual splitting pathway.
Figure 2 demonstrates this fact for two splitting patterns
generated from two sequences of pseudorandom numbers
(see Methods section). This figure reveals a (spontaneous)
symmetry breaking between the two peaks in the exon size
distribution. In a certain sense, this phenomenon is similar
to bifurcation, but, in contrast to an instant bifurcation
event, this type of behavior can be regarded as a kind of
‘soft’ breaking of symmetry. The initial steps of the

Table 3. Parameters of fitting for different models approximating size

distributions of alternatively spliced exons (see Methods Sections)

Species names Mus musculus
28 data points

Homo sapiens
35 data points

Exponential peak df=26 df=33
N� 10�3 33.3� 3.7 39.5� 3.9
�� 103 8.1� 1.3 7.9� 1.1
�2� 10�3 16 880 18 313
r 0.648 0.677

Weibull peak df=25 df=32
Nw� 102 40� 22 51� 22
c 2.4� 0.1 2.4� 0.1
�w� 106 6.9� 3.2 7.4� 3.5
�2� 10�3 522 756
r 0.990 0.987

Lognormal peak df=25 df=32
N� 10�3 23.5� 0.4 28.2� 0.1
� 0.9� 0.1 0.9� 0.1
M 4.8� 0.1 4.8� 0.1
�2� 10�3 378 329
r 0.992 0.994
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splitting process have a major impact on this phenom-
enon. Every subsequent splitting event has progressively
less effect, and after �5000 steps, the ratio between num-
bers of exons contributing to the two different peaks
remains nearly constant. We believe that this phenomenon
of symmetry breaking plays a major role in the diversity of
patterns of exon size distributions.

The idealized model presented above can be reformu-
lated in a different way where, instead of splitting exons on
every step of the process, one randomly selected exon
produces a descendant of larger size (a doublet, for
example). From a formal point of view, these two variants
of the process correspond to two possible directions for the
time variable. From a biological prospective, they can be
viewed as processes producing orthologous and paralogous

gene families: the exons produced by duplications could be
considered as paralogs, while exons derived from splitting
as orthologs. Both variants of the model assume that the
process starts from an ancestral genome with few exons,
which are later split into smaller parts (or duplicated to
produce longer parts). Thus, the proposed model, based on
Kolmogoroff’s ideas, supports the opinion that, at the
initial stages of evolution, simple genomes had a lower
fraction of introns (introns late hypothesis).
Figure 3 shows the parameters fit to the exon size

distributions for 13 different genomes, using a two
component lognormal model. All genomes show the
presence of a narrow and a wide peak. Since peak
width, �, is a direct measure of the number of exon
splitting events, our model suggests that exons in all of

Figure 4. Top row presents comparison between statistical distributions of all exons (gray bars) with the distributions of alternatively spliced exons
(black bars) from ASD. The data for Homo sapiens are in left panes; for Drosophila melanogaster in right panels. Panels in bottom row show the fit
of the alternatively spliced exon length distribution to a single lognormal peak (full lines) as well as indicate locations of narrow (dashed lines) and
wide (dotted lines) peaks obtained for the statistical distributions of all exons. Large dots indicate the observed distribution of alternatively spliced
exon lengths. Inserts in bottom panels show values of correlations coefficients between the statistical distributions of alternatively spliced exons (AE)
and fitted curve (Fit); narrow peak (NP) and wide peak (WP).
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these genomes are distributed between two groups having
different evolutionary histories. The width of the narrow
peak is approximately equal for all species. The width of
wider peak varies among species. For simple organisms,
like Caenorhabditis elegans, its width is close to the width
of narrow peak while for higher organisms, such as Homo
sapiens and Pan troglodytes, it is about three times
wider than the width of narrow peak. This may suggest
both: that exons in this wider peak are older or are
evolving more rapidly.
We argue that the biological origins of the exons

contributing to the narrow and wide peaks are related to
the appearance of new splicing mechanisms, such as
alternative splicing (4). There recently has been great
progress in the development of probabilistic methods for
determination of exon boundaries (21–25). However,
computational prediction of alternative splicing bound-
aries is still imperfect. Thus, to test the hypothesis that the
observed distribution of exons between the two classes
correlates with alternative splicing, we used the sets of
alternatively spliced exons, which were manually curated
and confirmed by EST/mRNA aligning (9,10). Unfortu-
nately, curated datasets are available only for human and
mouse, but there is a remarkable correlation between these
data and the narrow peaks in Homo sapiens and Mus
musculus (see data in Tables 1 and 3 and Figure 4). This
strongly suggests that alternatively spliced exons are major
contributors to the narrow peaks in all of the species
examined here. This observation favors the hypothesis
that the narrow peak is younger, since alternative splicing
is a comparatively advanced evolutionarily mechanism. If
one assumes that the evolutionary process modifies all
exons in all the species with the same rate, the observation
of nearly equal width narrow peaks in all species leads one
to conclude that those peaks appeared at approximately
the same and quite recent time. At least hypothetically,
one may conclude that existence of the narrow peak in all
discussed genomes is a manifestation of a spontaneous
symmetry break in genome evolution, which is correlated
with the evolution of alternative splicing.
The assumption that narrow peak is more recent does

not completely eliminate the hypothesis that that this peak

is more conserved. Indeed, one may assume is that exons
contributing in narrow peaks are simultaneously more
recent, and more conserved (with respect to the exon size
distributions) than those contributing to the wide peak. In
support of this point of view, one may note that the
fraction of exons contributing to the narrow peak, in
general, correlates with the width of wide peak (see data in
Table 4). With two exceptions for genomes of Anopheles
gambiae and Drosophila melanogaster, the increases in the
fraction of exons in the narrow peak parallel the increases
of width, �, of the wider peak. In other words, its looks
like the exons in the narrow peak are less frequently split
by evolutionary processes (narrow peak width), but more
frequently duplicated (larger fraction of exons) than are
exons in the wide peak. This point of view is in agreement
with the general pattern of alternative splicing in which a
single copy of an exon is replaced by two (or several)
isoforms of similar lengths.

CONCLUSIONS

The model presented here does not directly implicate a
specific biological mechanism. However, we have shown
that a very simple process, length independent splitting of
exons, can produce the observed lognormal distribution of
exon sizes. This suggests that it would be profitable to
focus more attention on biological processes that are
length independent, or on processes that could constrain
the length of exons independently of exon length.
Processes involved in mRNA splicing or associated with
intron–exon boundaries are obvious candidates.

Furthermore, the observation that all eukaryotic
organisms possess two exon length classes, one in
common among all eukaryotes and one variable, suggests
that exon splitting has played a key role in the evolution of
eukaryotes. The difference in the peak widths of these two
length classes suggests that the wider peak is older, or
undergoes more rapid splitting, and mostly comprises
nonalternatively spliced exons. The narrow peaks mostly
comprise alternatively spliced exons, which are rather
conserved in length but multiplied in number in more
rapidly evolving genomes. The presence of a narrow peak

Table 4. Distributions of exons between narrow and wide peaks together with peak positions, exp M, and peak widths, exp �

Species Narrow peak Wide peak

exp M (bp) exp � (bp) Fraction (%) exp M (bp) exp � (bp) Fraction (%)

Caenorhabditis elegans 115 2.03 22 185 4.32 78
Arabidopsis thaliana 90 2.21 30 233 5.76 70
Anopheles gambiae 159 1.73 12 252 6.63 88
Tetraodon nigroviridis 128 2.15 53 149 7.00 47
Bos taurus 125 2.16 52 99 7.82 48
Drosophila melanogaster 160 1.71 12 326 8.18 88
Canis familiaris 126 2.15 54 101 8.20 46
Gallus gallus 126 2.14 54 96 9.13 46
Danio rerio 126 2.15 53 90 12.05 47
Macaca mulatta 123 2.28 57 129 15.34 43
Mus musculus 124 2.31 64 217 21.98 36
Homo sapiens 122 2.33 63 245 22.06 37
Pan troglodytes 123 2.28 61 161 22.84 39
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in all genomes examined could be explained as a mani-
festation of a ‘spontaneous’ symmetry break in genome
evolution associated with the appearance of the mRNA
splicing mechanism.

More detailed investigations, including characterization
of conservation of exons in narrow and wide peaks
between different species and between different subclasses
within a particular genome, are extremely intriguing but
beyond the scope of this article. The main goals of this
work are to draw attention to statistical properties of exon
size distribution and to highlight the utility of Kolmogor-
off process model in understanding of genome evolution
background.
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