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To overcome the difficulty of automating and intelligently classifying the ground features in remote-sensing hyperspectral images,
machine learning methods are gradually introduced into the process of remote-sensing imaging. First, the PaviaU, Botswana, and
Cuprite hyperspectral datasets are selected as research subjects in this study, and the objective is to process remote-sensing
hyperspectral images via machine learning to realize the automatic and intelligent classification of features. ,en, the basic
principles of the support vector machine (SVM) and extreme learning machine (ELM) classification algorithms are introduced,
and they are applied to the datasets. Next, by adjusting the parameter estimates using a restricted Boltzmann machine (RBM), a
new terrain classification model of hyperspectral images that is based on a deep belief network (DBN) is constructed. Next, the
SVM, ELM, and DBN classification algorithms for hyperspectral image terrain classification are analysed and compared in terms
of accuracy and consistency. ,e results demonstrate that the average detection accuracies of ELM on the three datasets are
89.54%, 96.14%, and 96.28%, and the Kappa coefficient values are 0.832, 0.963, and 0.924; the average detection accuracies of SVM
are 88.90%, 92.11%, and 91.68%, and the Kappa coefficient values are 0.768, 0.913, and 0.944; the average detection accuracies of
the DBN classification model are 92.36%, 97.31%, and 98.84%, and the Kappa coefficient values are 0.883, 0.944, and 0.972. ,e
results also demonstrate that the classification accuracy of the DBN algorithm exceeds those of the previous two methods because
it fully utilizes the spatial and spectral information of hyperspectral remote-sensing images. In summary, the DBN algorithm that
is proposed in this study has high application value in object classification for remote-sensing hyperspectral images.

1. Introduction

Remote-sensing hyperspectral technology is a comprehen-
sive new technology. Remote-sensing hyperspectral images
can effectively retain the spatial and spectral information of
ground objects. Object detection has important application
value in remote sensing, and the analysis of terrain changes
can provide timely information regarding changes in large-
scale ground objects on the Earth surface [1, 2]. Remote-
sensing hyperspectral technology has been widely applied in
agriculture, geology, and ecology [3]. Mastering the surface
object information is of substantial significance for im-
proving the surrounding environment. ,erefore, the

classification of remote-sensing hyperspectral images has
important theoretical value and practical significance.

However, a hyperspectral image has high resolution and
large data volume; hence, hyperspectral data should be
detected using a more detailed method than those that are
applied to traditional multispectral images. Traditional
machine learning methods, such as SVM, are commonly
used in the classification of hyperspectral remote-sensing
images [4]. Traditional machine learning methods often
require model training on a large amount of data, and the
data that are used for the training must have similar dis-
tribution characteristics; hence, it is difficult to obtain
training sample data for some machine learning methods
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[5, 6]. Deep learning is often applied in multiple fields. ,is
method can be used in the recognition of objects, behav-
iours, and images, for example. Studies have shown that
deep learning algorithms can be used in the feature ex-
traction of remote-sensing image blocks [7]. However,
relatively few applications of deep learning algorithms in the
classification of hyperspectral remote-sensing images have
been demonstrated.

2. Literature Review

2.1. Application of Machine Learning in Image Classification.
Machine learning technology can learn through training data,
then finds the development trend of data from the diversified
database, and realizes the automatic processing of data
analysis [8]. Machine learning has achieved excellent results
in the processing of nonlinear data, such as image, text, and
voice, while deep learning technology inmachine learning has
a stronger advantage in image recognition. Garcia-Floriano
et al. proposed a method for classification and recognition of
medical images that were based on support vector machines,
and the results presented that the method could be effectively
used in the diagnosis and classification of diseases [9].
Sudharshan et al. conducted a classification of breast tumor
biopsy images based on deep learning and found that this
method has high classification accuracy and does not require
image labeling [10]. Now machine learning method is widely
used in medical image recognition, but it is also studied in
hyperspectral image processing. Li et al. constructed a clas-
sification model of hyperspectral images that was based on
deep learning method to solve the shortcomings of traditional
machine learning method [11]. Lv and Han proposed a
method that was based on the multiple reduced kernel ex-
treme learning machine, applied it to the efficient classifi-
cation of hyperspectral images, verified it with PaviaU and
other databases, and found that the model has a high clas-
sification effect [12]. Murphy and Maggioni proposed an
unsupervised learning method for hyperspectral image
clustering based on spatial regularized random walk, which
was found to have lower computational complexity by
marking [13]. At present, more experts and scholars have
studied the application of machine learning and deep learning
methods in hyperspectral image classification, but there is no
precision assessment of object classification with different
recognition algorithms.

2.2. Processing of Remote-Sensing Hyperspectral Image.
Remote-sensing hyperspectral images have been widely used
in military, medical, and agricultural monitoring fields. In
the process of acquisition and transmission of hyperspectral
images, they will be affected by illumination, atmosphere,
and radiation; hence, there will be a lot of noise in hyper-
spectral images, which will affect the credibility of image
data and bring inconvenience to subsequent processing and
analysis [14, 15]. ,erefore, much research is focused on the
feature extraction of noise in hyperspectral images. Duan
et al. proposed a multiscale total variation method, which
was applied to the extraction of structural features in

hyperspectral images, and the fusion of multiscale structural
features insensitive to image noise was conducted by kernel
principal component analysis. ,e results present that the
method also has high robustness in the extraction of image
structure features with intense noise [16]. Mishra et al.
proposed a two-dimensional nonsecondary sampling
wavelet transform method and applied it to the noise re-
duction of hyperspectral images. ,e results illustrate that
even images with continuous noise of high wavelength can
achieve automatic noise reduction [17]. Machine learning
can remove the noise effectively in hyperspectral images, but
the object detection in hyperspectral images has important
significance for the application of remote-sensing technol-
ogy. Zhou et al. proposed a method for hyperspectral image
classification that is based on the compact and discrimi-
native stacked autoencoder framework. After applying it to
data classification, it is found that the method can effectively
classify ground objects in hyperspectral images [18]. Hang
et al. proposed a discrimination model, which is based on
recurrent neural networks, and applied it to the discrimi-
nation of hyperspectral image learning features. ,e results
illustrate that the model can extract spectral-spatial image
features [19].

Machine learning algorithms can realize high classifi-
cation accuracy in image classification and recognition, but
relatively few studies have been conducted on the classifi-
cation of ground objects in hyperspectral images. ,erefore,
a classification model that is based on SVM, ELM, DBN, and
the spectrum-space characteristics of remote-sensing
hyperspectral images is proposed. It is applied to three
hyperspectral datasets, namely, PaviaU, Botswana, and
Cuprite, and its accuracy is compared with those of various
classification models in the terrain classification of hyper-
spectral image features. ,is study aims at providing a
theoretical basis for increasing the efficiency of object rec-
ognition in remote-sensing hyperspectral images for real-
izing intelligent object recognition.

3. Methodology

3.1. Remote-Sensing Hyperspectral Image Segmentation Based
on Spectral-Spatial Characteristics. Different ground objects
show different spectral characteristics and spatial distribu-
tion characteristics; hence, it is necessary to identify and
judge image categories according to the information char-
acteristics and spatial distribution characteristics of terrain
spectral images [20]. Assuming that hyperspectral image
data ϖM×N×L constitute a cube (whereM, N, and L represent
the length, width, and band, respectively, of the data), the
classification performance of the data depends mainly on the
image category, the dimension of the spectral data, the
number of samples that are used during training, the
classifier, and the classification method. Since the classifi-
cation of hyperspectral data is similar tometaclassification, it
can be followed from the whole variable space. A class of
mean vectors is used to represent the coordinates in the
eigenspace. ,e data are classified by using a classification
function to divide the region. ,e classification process of
hyperspectral images is illustrated in Figure 1.
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As illustrated in Figure 1, the classification process of
remote-sensing hyperspectral images can be divided into the
following steps: (I) Image acquisition: the data from remote-
sensing hyperspectral image databases being mainly used,
namely, the University of Pavia (PaviaU) dataset, Botswana
dataset, and Cuprite dataset; (II) image preprocessing, such
as geometric calibration and atmospheric correction; (III)
sample selection; (IV) recognition of features in an image;
(V) feature extraction in image; (VI) classical disposal: in
this study, SVM, ELM, and the deep learning algorithm
being used to classify hyperspectral images; (VII) classifi-
cation results; and (VIII) classification accuracy. ,e com-
monly used classification accuracy evaluation methods
include overall classification accuracy, average classification
accuracy, and Kappa value.

During the pretreatment of remote-sensing hyper-
spectral images, a method that is based on watershed and
spatial regularization is mainly used to segment images. ,e
spectral-spatial model classification framework is illustrated
in Figure 2.

3.2. Brief Introduction to SVM and ELM. When using SVM
to solve nonlinear problems, it is necessary to select a
suitable kernel function and to map the samples in a low-
dimensional space to a special space in a high-dimensional
space.,e optimal solution of the hyperplane is calculated in
this space [21]. When nonlinear problem is solved by SVM,
the expression of the nonlinear mapping is as follows:

x⟶ φ(x). (1)

,e above equation can be converted into the following
equation:

Q(α) � 􏽘
n

i�1
αi +

1
2

􏽘

n

i,j�1
αiαjyiyjφ xi( 􏼁φ xj􏼐 􏼑. (2)

Among them, φ(xi)φ(xj) is the inner computing.
Nonlinear mapping can be used to solve nonlinear

problems, but it increases the difficulty.,erefore, instead of
kernel computation in a particular space, the space function
K can be input:

K xi, xj􏼐 􏼑 � φ xi( 􏼁φ xj􏼐 􏼑. (3)

Among them, K(xi, xj) is the kernel function.

Commonly used kernel functions include polynomial
functions [(xi, xj) + a]q, Sigmoid function tanh[v(xi,

xj) + c], redial basis kernel function exp(− (|x − xi|
2)/σ2),

B-spline kernel function B2N+1[v|x − xi|], and Fourier
function ((sin(N + (1/2))(xi − xj))/sin(1/2)(xi − xj)).

In order to address the problem of generalization,
penalty coefficient and relaxation factor are introduced to
correct the SVM classification results.

ELM is widely used to solve various nonlinear problems
due to its specific characteristics. Based on the ELM
structure, ELM is mainly a feedforward neural network with
a single hidden layer composed of an input layer, hidden
layer, and output layer [22]. Assuming the random sample
size is N, then the following equation can be obtained:

Xi � xi1, xi2, . . . , xin􏼂 􏼃
T ∈ R

n
,

ti � ti1, ti2, . . . , tim􏼂 􏼃
T ∈ R

m
.

⎧⎨

⎩ (4)

,en, the expression of neural network with a single
hidden layer is as follows:

oj � 􏽘

L

i�1
βig WiXj + bi􏼐 􏼑, j � 1, 2, . . . , N. (5)

Among them, g(x) is an activation function; β is the
output weight of each component of the hidden layer; bi is
the bias of each component of the ith hidden layer; and Wi is
the input weight of each component of the ith hidden layer.

3.3. ImageClassification Based onDBN. In the case of a great
number of samples, unsupervised learning method gradually
becomes an operational approach to machine learning. RBM
is an unsupervised mapping learning method, which in-
cludes the input layer and hidden layer, and the connection
between them is a full connection [23].,ere is a connection
weight between any two nodes in RBM. If the number of the
hidden layer nodes in RBM is N and the number of input
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Figure 1: Classification process of remote-sensing hyperspectral
images.
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Figure 2: Spectral-spatial classification of remote-sensing hyper-
spectral images.
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layer nodes is M, then the probability of activation of the
hidden layer node nj is as follows:

p nj | m􏼐 􏼑 � σ bj + 􏽘
i

Wi,jmi
⎛⎝ ⎞⎠, i � 1, 2, . . . , M, j � 1, 2, . . . , N.

(6)

Among them, σ is the activation function. ,en, the
probability of the hidden layer, the input layer, and nodemi,
which are activated, is as follows:

p(n | m) � 􏽑
N

j�1
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i
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(7)

RBM training process is mainly divided into the fol-
lowing steps: (I) the data are input into the input layer, and
the probability that the hidden layer and the input layer are
activated is calculated by using equation (7). (II) After
obtaining the distribution of each node in the hidden layer,
Gibbs sampling method is used to extract the sample nj in
the hidden layer. (III) ,e sample nj is used to reconstruct
the input layer, and equation (7) is used to calculate the
probability of the input layer being activated. (IV) After
obtaining the different conditions of the reconstructed input
layer nodes, Gibbs sampling method is used to extract mj

from the input layer samples. (V) After the reverse calcu-
lation, the activation probability and distribution probability
of the hidden layer are obtained again. (VI) w + λ(p

(nj | mi)mi − p(nj
′ | mi
′))⟶W is used to update the net-

work weight, where λ represents the learning rate.
In this study, a single layer RBM that contains 50, 100,

150, 200, 250, and 300 hidden layer nodes is constructed, and
the effects of the number of nodes on the spectral recon-
struction performance and the classification accuracy are
compared. ,en, the number of unsupervised iterations is
set as 50, 100, 200, 300, and 400 to evaluate the impact of the
number of iterations on the classification accuracy. ,e
learning rate in RBM is set as 0.01, 0.05, 0.1, 0.15, 0.3, and
0.45, and the performances at these learning rates are
compared in terms of the classification accuracy.

,e optimal RBMparameter is selected and DBN is built.
DBN is composed of a multilayer RBM structure, and the
training method of DBN is layer-by-layer training of RBM
[24]. ,e basic structure of the DBN constructed based on
RBM in this study is presented in Figure 3.

As illustrated in Figure 3, the classic DBN contains an
input layer, a hidden layer, and an output layer. ,e
structure contains four hidden layers and four RBM
structures. In this study, the training methods for DBN are
mainly divided into the following steps: (I) ,e data that
must be trained are input into RBM1, and the training of
DBN that is based on RBM is conducted using the RBM
trainingmethod. (II) After the RBM training, the parameters

of RBM1 are obtained, and RBM1 is used as the visible layer
to train RBM2 via the same approach. (III) Similarly, all
RBMs in DBN are obtained, and the initial parameter value
of DBN is obtained after completion. ,en, the network
parameters are optimized. (IV) ,e contrastive wake-sleep
algorithm is used to optimize and generate DBN, and the BP
algorithm is used to optimize and discriminate DBN. (V)
When the parameters are optimized by the BP algorithm, if
the error between the actual value and the expected value of
the output does not satisfy the requirements, back-
propagation is conducted. ,e stochastic gradient descent
method is used to correct the reverse parameters. When the
number of iterations reaches the maximum and the target
data have been obtained, the training is complete.

,e basic framework of DBN-based terrain classification
method for remote-sensing hyperspectral images, which is
constructed in this study, is illustrated in Figure 4.

It is concluded from Figure 4 that the DBN-based terrain
classification framework for remote-sensing hyperspectral
images that is constructed in this study contains two layers of
DBN, and the outermost layer of DBN is connected with a
Softmax classifier. ,e Softmax classification layer optimizes
the parameters in DBN via the BP method, and it can fa-
cilitate the direct output of the image category label.

4. Experiments and Results

,e total number of samples that are used for model training
in the PaviaU, Botswana, and Cuprite databases is 3000, and
the number of samples for testing is 1000. When evaluating
the model classification performance, the CPU is Intel
i5− 3470, dual-core, and 4GB of memory. ELM classification
is realized in LibELM open interface. ,e SVM classification
is C++ version. And DBN is MATLAB version. In order to
better evaluate the effects of different methods on the
classification of hyperspectral remote-sensing images,
qualitative and quantitative evaluation methods are selected
to evaluate the classification results. ,e quantitative
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Figure 3: ,e basic structure of DBN.
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evaluation indices include the time of classification use, the
overall accuracy of classification, the average accuracy of
classification, and Kappa coefficient.

4.1.Data Processing and Spectral CurveAnalysis. ,e PaviaU
dataset is a remote-sensing hyperspectral image dataset that
was collected by the university of Pavia in Italy in 2002 based
on ROSIS sensor, which contains 115 spectral bands with a
wavelength range of 0.43∼ 0.86 μm.,e size of the dataset is
610 ∗ 340 pixels, and according to Figure 5, the image data
contain mainly information on 9 land types: asphalt road
(15.50%), grassland (43.60%), sand grain (4.91%), trees
(7.16%), sheet metal (3.14%), bare soil (11.76%), asphalt roof
(3.11%), floor tile (8.61%), and shadow (2.21%). ,e spatial
resolution of the information is approximately 1.3m.

,e spectral characteristics of ground objects are com-
pared, and the reflectance is output once for every 5 bands.
According to Figure 6, metal sheets, trees, grassland, and
sand grain in the remote-sensing image data set of PaviaU
show large differences in the reflectance spectra of ground
objects in the visible and near-infrared bands. ,e reflec-
tance patterns of the bare soil and sand grain categories are
highly similar. Only a small difference is observed in the red-
near-infrared band.

,e concentration dataset consists of image data of the
Botswana delta that were collected in 2001 using a Hyperion
EO-1 sensor, which senses 145 spectral bands with a
wavelength range of 0.4∼ 2.5 μm. ,e size of the dataset is
1476 ∗ 256 pixels. Figure 7 shows that the dataset consists
mainly of 14 types of terrain information: water (8.31%),
nettle grass (3.09%), flood plain grassland 1(7.74%), flood
plain grassland 2(6.63%), reed (8.27%), riverside (8.27%),
cliff (7.98%), island (6.26%), Robinia pseudoacacia forest
(9.67%), Robinia shrub (7.65%), Robinia pseudoacacia
(9.38%), Brassica oleifera (5.56%), mixed bean wood

(8.27%), and bare soil (2.92%). In addition, the spatial
resolution of the information is 30m.

,e spectral characteristics of features are compared, and
the reflectance is output once every 5 bands. According to
Figure 8, features of ground objects such as water, nettle
grass, and bare soil in the Botswana remote-sensing image
data vary substantially in the visible-light shortwave infrared
region, while the spectral curves of Robinia pseudoacacia
forest, Robinia shrub, and Robinia pseudoacacia are not
easily distinguished nor are the ground object categories,
such as Brassica oleifera and Robinia shrub.

,e Cuprite dataset consists of AVIRIS hyperspectral
image data that were obtained by the United States Geo-
logical Survey in 1995. ,ere are 50 spectral bands in the
wavelength range of 1.99∼ 2.48 μm in the image data. ,e
size of the dataset is 350 ∗ 400 pixels. As shown in Figure 9,
there are 8 main types of land information in this dataset:
muscovite (8.04%), muscovite + chlorite (11.87%), tuff
(4.21%), opal (31.97%), dickite (7.60%), kaolinite (22.43%),
alunite (3.39%), feldspar (10.49%), muscovite (8.04%),
muscovite + chlorite (11.87%), tuff (4.21%), opal (31.97%),
dickite (7.60%), kaolinite (22.43%), alunite (3.39%), and
feldspar (10.49%). ,e space rate of the information is ap-
proximately 20m.

,e spectral characteristics of features are compared, and
the reflectance is output once for every 5 bands. According
to Figure 10, the spectral characteristics of ground objects
such as opal and alunite in the dataset differ significantly in
the range of the shortwave infrared region, whereas the
spectral characteristics of kaolinite, tuff, and other ground
objects are highly similar.

4.2. Influence of the Parameter Settings on the Classification
Accuracy of the DBN Model. In this study, the constructed
DBN model is used for spectral reconstruction of interior
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Figure 4: Classification framework of hyperspectral remote-sensing image based on DBN.
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and boundary points of remote-sensing images. When the
number of hidden layer nodes in DBN model is 200, the
image in the PaviaU database is identified. According to

Figure 11, the spectral reconstruction performance of DBN
model on interior points of ground objects is higher than
that on boundary points of ground objects. ,erefore, the

Asphalt (6631, 15.50%) 
Grassland (18649, 43.60%) 

Bare soil (5029, 11.76%)
Floor tile (3682, 8.61%) 
Trees (3064, 7.16%) 

Sand grain (2099, 4.91%) 
Metal sheets (1345, 3.14%) 
Asphalt roof (1330, 3.11%) 
Shadows (947, 2.21%) 

Original Ground truth

Figure 5: PaviaU data image and real ground objects map.
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Figure 6: ,e spectral curve of each category of ground object in the PaviaU data image.
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interior feature points of ground objects in remote-sensing
hyperspectral images are selected for the final experiments.

,e learning rate is set at 0.01, and the number of un-
supervised training iterations is 400. ,e effects of the
number of nodes in hidden layers (50, 100, 150, 200, 250, and
300) in the PaviaU, Botswana, and Cuprite databases on the
accuracy of DBN model recognition are compared. It is

concluded from Figure 12 that when the number of the
hidden layer nodes in the network is 200, the recognition
accuracy is the highest. ,e recognition accuracies for im-
ages in the PaviaU, Botswana, and Cuprite databases are
91.93%, 97.59%, and 98.73%, respectively. ,erefore, in this
study, the number of the hidden layer nodes in the DBN
model is set to 200 for subsequent experiments.

,e effect of the number of unsupervised training it-
erations on the accuracy of DBN model recognition is
evaluated. As shown in Figure 13, when the number of
unsupervised training iterations is 100, the recognition
accuracies of images in the PaviaU, Botswana, and Cuprite
databases are the lowest, namely, 90.14%, 92.87%, and
91.37%, respectively. When the number of unsupervised
training iterations is 300, the recognition accuracies of
images in the PaviaU, Botswana, and Cuprite databases are
the highest, namely, 91.99%, 96.88%, and 98.41%, respec-
tively. ,erefore, in this study, the number of unsupervised
training iterations of the DBN model is set at 300 for
subsequent experiments.

,en, the influence of the learning rate on the recog-
nition accuracy of the DBNmodel is evaluated. As presented
in Figure 14, when the learning rate is 0.01, the recognition
accuracies of images in the PaviaU, Botswana, and Cuprite
databases are the lowest, namely, 89.97%, 94.80%, and
94.75%, respectively. When the learning rate is 0.15, the
recognition accuracies of images in the PaviaU, Botswana,
and Cuprite databases are the highest, namely, 91.33%,
96.69%, and 98.15%, respectively. ,erefore, the learning
rate of the DBN model is set as 0.15 for subsequent
experiments.

Original
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Figure 7: Botswana data images and the real ground object map.
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4.3. Comparison of Image Classification Results Based on the
@ree Classification Algorithms. ,e results of SVM, ELM,
and DBN in the classification of PaviaU images are evalu-
ated. Table 1 illustrates that the classification time of ELM
model is the shortest (32.17 s) while the classification time of
SVM is the longest (605.36 s). ,e DBN model has the
highest overall classification accuracy and average classifi-
cation accuracy (90.54%, 92.36%) while the SVM model has
the lowest overall classification accuracy and average clas-
sification accuracy (86.17%, 88.90%). ,e Kappa coefficients
of ELM, SVM, and DBN are 0.832, 0.768, and 0.883, re-
spectively. It can be concluded from Figure 15 that SVM,
ELM, and DBN can effectively complete the classification of
ground objects in PaviaU data images, but DBN has higher
classification accuracy.

,e effect of ELM, SVM, and DBN on the feature
classification in the Botswana data image is compared. It can
be found from Table 2 that the classification time of ELM is
the shortest (34.55 s) and the SVM classification time is the
longest (330.91 s). After comparing the classification accu-
racy, the overall classification accuracy and average classi-
fication accuracy of DBN are the highest (98.17%, 97.31%).
,e Kappa coefficients of ELM, SVM, and DBN models are
0.963, 0.913, and 0.944, respectively. As shown in Figure 16,
the accuracy of DBN model and ELM model in the clas-
sification of image features is significantly higher than that of
SVM model.

,e effect of ELM, SVM, and DBN on the terrain
classification in Cuprite data image is compared. It can be
concluded from Table 3 that the classification time of ELM is

Original Ground truth

Opal (509, 31.97%)
Kaolinite (357, 22.43%)
Muscovite + chlorite (189, 11.87%)
Feldspar (167, 10.49%)

Muscovite (128, 8.04%)
Dickite (121, 7.60%)
Tuff (67, 4.21%)
Alunite (54, 3.39%)

Figure 9: Cuprite data images and the real ground object map.
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Reconstructed_inside
Raw_inside
Error_inside
Error_edge
Raw_edge
Reconstructed_edge

–0.1

0.0

0.1

0.2

0.3

0.4

0.5
Re

fle
ct

an
ce

_i
ns

id
e

50 100 150 200 250 3000
Spectral bland number

0.0

0.2

0.4

0.6

0.8

1.0

Re
fle

ct
an

ce
_e

dg
e

Figure 11: Image spectral reconstruction based on DBN model.
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Figure 12: ,e influence of the number of hidden layer nodes on the recognition accuracy.
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Figure 13: ,e influence of unsupervised training on recognition accuracy.
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Figure 14: ,e influence of learning rate on recognition accuracy.
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the shortest (24.83 s) and the classification time of SVM is
the longest (35.22 s). After comparing the classification
accuracy, the overall classification accuracy and average
classification accuracy of DBN are the highest (99.06%,
98.84%). ,e Kappa coefficients of ELM, SVM, and DBN
models are 0.924, 0.944, and 0.972, respectively. As shown in
Figure 17, the classification accuracy of image features of
DBN model is obviously better than that of SVM model and
ELM model.

5. Discussion

,e spectral feature of a ground object is its electro-
magnetic radiation, which includes reflection, and the
band characteristic is determined by measuring the visible
or invisible light absorption. Ground objects differ in
terms of reflectivity, and reflectivity is often used for
analysis. After analysing the spectral characteristics of
objects in each dataset, it is found that the spectral
morphologies of bare soil and sand grains in the PaviaU
dataset are highly similar, and only a small difference is
observed in the red-near-infrared band. Ground object
categories such as Robinia pseudoacacia forest, Robinia
shrub, and Robinia pseudoacacia in the Botswana dataset
are affected by factors such as mixed pixels; hence, the
spectral curves of these ground object categories are
difficult to distinguish [25]. In addition, plants such as
Brassica oleifera and Robinia shrubs also exhibit symbiosis
in the concentrations of the Botswana data, which can lead
to similar spectral curves of these ground objects. ,e
spectral characteristics of ground object categories such as
Kaolinite and Tuff in the Cuprite dataset are highly similar
[26]. Analysis of the spectral characteristics of various
types of objects is of substantial significance for increasing
the classification accuracy and evaluating the classifica-
tion performance of a ground object classification model.

Table 1: ,e results of classification evaluation indices of PaviaU data.

Indices ELM SVM DBN
Classification time (s) 32.17 605.36 336.19
Overall classification accuracy (%) 86.32 86.17 90.54
Average classification accuracy (%) 89.54 88.90 92.36
Kappa coefficient 0.832 0.768 0.883

Original SVM ELM DBN

Figure 15: ,e classification results of PaviaU data.

Table 2: ,e results of classification and evaluation indices of
Botswana data.

Indices ELM SVM DBN
Classification time (s) 34.55 330.91 127.64
Overall classification accuracy (%) 96.39 93.26 98.17
Average classification accuracy (%) 96.14 92.11 97.31
Kappa coefficient 0.963 0.913 0.944

Original

SVM

ELM

DBN

Figure 16: ,e classification results of Botswana data.

Table 3: ,e results of classification and evaluation indices of
Cuprite data.

Indices ELM SVM DBN
Classification time (s) 24.83 35.22 25.39
Overall classification accuracy (%) 97.74 95.27 99.06
Average classification accuracy (%) 96.28 91.68 98.84
Kappa coefficient 0.924 0.944 0.972
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DBN is a probabilistic generation model, and it is
composed of multiple RBM layers.,e DBNmodel is widely
used in image recognition, and it has produced excellent
results. Based on the DBN framework, Samadi et al. pro-
posed a method for change detection in SAR images, and it
was demonstrated that the method realizes high accuracy
and detection performance [27]. Ahmad et al. proposed an
algorithm for the automatic segmentation of liver CT image
features that is based on DBN, and they found that the
accuracy of this method was up to 94.80% [28]. ,erefore, in
this study, DBN is used to evaluate the spectral recon-
struction of interior and boundary points of terrain images.
,e results demonstrate that the errors of spectral recon-
struction of terrain images based on interior points are
significantly lower than those based on boundary points;
hence, in terrain classification, the spectral reconstruction
performance of the classification network that selects the
internal equinox of the image is higher than that of the
network that selects the boundary points, which may be why
there is much spectral confusion at the boundary points [29].
,e classification time of a model is affected by many factors,
such as the tools that are used in the calculation, the
complexity of the model, and the quality of the data [30]. In
this study, it is found that when ELM, SVM, and DBN
models are used for hyperspectral image classification, the
ELM model has the shortest classification time. However,
the classification time of the DBN model that is proposed in
this study is between those of the ELM model and the SVM
model. ,is is because the DBN model that is constructed in
this study contains 4 layers of RBMs; hence, the complexity
of this model is high [31]. Subsequently, the Kappa coeffi-
cient is used to compare the accuracies of classification and
identification of the models. ,e closer the Kappa coefficient
is to 1, the higher the consistency of classification [32]. In
this study, it is found that the Kappa coefficients of the DBN-
based hyperspectral image feature classification model in
PaviaU, Botswana, and Cuprite database image recognition
are 0.883, 0.944, and 0.972, respectively, and the Kappa
coefficients all exceed 0.75; hence, the classification model of
hyperspectral image features that is based on DBN has high
classification accuracy. ,is is consistent with the research
results of Li et al. [33]. In addition, the Kappa coefficients of
the SVM and ELM models exceed 0.75; thus, these two
methods can also effectively classify ground objects, but their
classification accuracies are lower than that of DBN.
,erefore, DBN has higher robustness for spectral feature

recognition and classification in hyperspectral images, which
is consistent with the findings of Maggu et al. that the image
classification model that is based on DBN has high ro-
bustness [34]. Previous studies on the classification and
recognition of remote-sensing hyperspectral images focus
mainly on the spectral dimension characteristics of image
elements [35]. However, due to the complexity and the
presence of mixed pixels in natural images, it is not sufficient
to analyse the spectral characteristics of pixels.,erefore, the
spectral characteristics and spatial characteristics of ground
objects are analysed in the study. ,e study aims at in-
creasing the classification accuracies of various types of
ground objects in remote-sensing hyperspectral images.
Understanding the natural variations of ground objects is of
substantial significance. In the future, machine learning
algorithms can be further investigated from various aspects,
such as their loss function curves, to increase the accuracy
and performance in ground object classification of remote-
sensing hyperspectral images.

6. Conclusions

To study the performance of machine learning on terrain
recognition and classification of remote-sensing hyper-
spectral images, an image classification model that is based
on DBN is constructed. It is applied to the classification of
real hyperspectral image data, and its classification perfor-
mance is compared with those of SVM and ELM models.
,e results are as follows:

(i) Spectral curves that differ in terms of the types of
ground object information have higher similarity,
which increases the difficulty of classification of
large datasets and affects the accuracy of classifi-
cation of different types of ground objects.

(ii) Based on the spectral characteristics and spatial
characteristics of ground objects, the ground objects
in remote-sensing hyperspectral images are classi-
fied, which lays a foundation for increasing the
classification accuracies of various algorithms.

(iii) ,e DBNmodel that is constructed in this study can
effectively extract features from hyperspectral im-
ages and classify various types of ground objects.

(iv) ,e DBN model that is constructed in this study
outperforms the SVM and ELM models in terms of
classification performance in the classification of

Original SVM ELM DBN

Figure 17: ,e classification results of Cuprite data.
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ground objects in remote-sensing hyperspectral
images.

However, strong spatial dimensional texture informa-
tion andmore noise are present in hyperspectral images, and
the impacts of these factors on the classification performance
have not been considered. ,erefore, it is necessary to
combine filtering and texture enhancement to increase the
classification accuracy of the model. ,e results of this study
can provide a theoretical basis for increasing the efficiency of
terrain classification in remote-sensing hyperspectral
images.
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[9] A. Garćıa-Floriano, Á. Ferreira-Santiago, O. Camacho-Nieto,
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