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Abstract: The GPCR SUCNR1/GPR91 exerts proangiogenesis upon stimulation with the Krebs cycle
metabolite succinate. GPCR signaling depends on the surrounding environment and intracellular
localization through location bias. Here, we show by microscopy and by cell fractionation that in
neurons, SUCNR1 resides at the endoplasmic reticulum (ER), while being fully functional, as shown
by calcium release and the induction of the expression of the proangiogenic gene for VEGFA. ER
localization was found to depend upon N-glycosylation, particularly at position N8; the nongly-
cosylated mutant receptor localizes at the plasma membrane shuttled by RAB11. This SUCNR1
glycosylation is physiologically regulated, so that during hypoxic conditions, SUCNR1 is deglyco-
sylated and relocates to the plasma membrane. Downstream signal transduction of SUCNR1 was
found to activate the prostaglandin synthesis pathway through direct interaction with COX-2 at
the ER; pharmacologic antagonism of the PGE2 EP4 receptor (localized at the nucleus) was found
to prevent VEGFA expression. Concordantly, restoring the expression of SUCNR1 in the retina of
SUCNR1-null mice renormalized vascularization; this effect is markedly diminished after transfection
of the plasma membrane-localized SUCNR1 N8A mutant, emphasizing that ER localization of the
succinate receptor is necessary for proper vascularization. These findings uncover an unprecedented
physiologic process where GPCR resides at the ER for signaling function.
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1. Introduction

Succinate has long been recognized as a Krebs cycle intermediate in the mitochon-
dria, where it is oxidized by succinate dehydrogenase, providing electrons to the electron
transport chain [1,2]. Although this role is essential to life, succinate and its precursor
succinyl-CoA are also byproducts of several other cellular reactions such as HIF1a stabiliza-
tion and DNA methylation [3,4]. In addition, succinylation is a potent post-translational
modification, although the precise mechanism and effects of such modifications need
further elucidation [5,6]. Cellular succinate levels thus need precise regulation to avoid
uncontrolled downstream effects [7–9]. Notably, circulating succinate increases in patho-
logical conditions such as diabetes, ischemia, and rheumatoid arthritis; it is also elevated
in blood samples from patients with traumatic injuries [10–16]. Succinate levels are in-
creased in hypoxic conditions and under increased metabolic demand, which induces a
switch from oxidative phosphorylation to anaerobic glycolysis, as was shown in vivo and
in vitro [14,17–21]. Thus, it is essential to sense succinate levels to prevent the undesirable
and potentially deleterious effects of its accumulation.

The succinate receptor (SUCNR1) is a G-protein-coupled receptor (GPCR) specific to
succinate. It has an EC50 between 26 and 79 µM, which corresponds to pathophysiologic
succinate concentrations [22,23]. SUCNR1 is coupled to Gi and Gq proteins, which lead
to decreased protein kinase A (PKA) activity and induce intracellular calcium release,
respectively [22–24]. Stimulation of SUCNR1 activates the renin–angiotensin pathway
via prostaglandins synthesis [19,22,25,26]. In macrophages. stimulation of the succinate
receptor increases the inflammatory response mediated by Toll-like receptor (TLR) [15,27].
Importantly, previous studies from our laboratory established the angiogenic properties
of the succinate/SUCNR1 axis in neurons, introducing the notion that succinate can link
metabolic demand to vascular supply, notably by inducing proangiogenic and inflam-
matory responses [14,19,28]. Although several recent pharmacological studies refined
our understanding of the mechanism of SUCNR1 activation, insight into its regulation
and its downstream cellular partners leading to its broader physiological role is lacking.
Notably, in the retina (and brain), SUCNR1 is primarily expressed in the cell body, un-
like in HEK 293T and Canine kidneys cells, where it appears to be located at the plasma
membrane [14,22,26,29].

The concept of an extracellular ligand activating a plasma membrane 83 (PM)-bound
receptor has, for a long time, been the dogma in cell biology. However, examples abound
of intracellular transmembrane receptors that signal via mechanisms that are analogous to,
yet different from those of their cell-surface counterparts. Nuclear localization has been
reported for dozens of GPCR; such localization is either as a steady-state compartmen-
talization, or induced upon stimulation of receptors originally located at the PM [30,31].
Importantly, for a given receptor, nuclear and PM localizations evoke different transcrip-
tional responses, a mechanism notably demonstrated for protease activated receptor 2, the
platelet-activating factor receptor, and metabotropic glutamate receptor 5 [32–34]. This
differential response from a receptor depending on the subcellular context at a given time,
also called location-biased signaling, is increasingly recognized, and is thought to play an
essential role in proper signal transduction [31,35].

Here, we show that SUCNR1 resides at the endoplasmic reticulum (ER), and we
unveil the regulatory mechanism in which glycosylation is essential for this intracellular
location. Intriguingly, a decrease in oxygen levels alters SUCNR1 glycosylation and thus its
subcellular location, in turn altering downstream gene expression.
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2. Material and Methods
2.1. Cells Culture and DNA Transfection

In vitro experiments were performed in retinal ganglion cells (RGC-5) or human em-
bryonic kidney cells (HEK 293T). RGC-5 cells were a gift from Neeraj Agarwal (University
of North Texas Health Science Center, Fort Worth, TX, USA). Typically, 50–60% confluent
cells were transfected using the plasmid vector pcDNA 3.1 (Invitrogen, Carlsbad, CA,
USA) coding for the different constructions of SUCNR1. Point mutations of SUCNR1 were
generated by PCR mutagenesis using Pfu polymerase (Agilent, Santa Clara, CA, USA).
All constructs were verified by automated sequencing. For each well, 2 µg of plasmid
DNA were incubated with the transfection agent PEI (Polysciences #23966), and were
consequently delivered on cells following a 30 min incubation period at RT. Cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) enriched with 10% fetal bovine
serum, and incubated at 37 ◦C in a humidified atmosphere with 5% CO2.

2.2. Chemicals

Chemicals purchased were: succinate (Sigma Saint Louis, MO, USA; #S3674), L-161,982
(Cayman Chemical, Ann Arbor, MI, USA; #10011565), and prostaglandin E2 (Cayman
Chemical; #14010).

2.3. Immunohistochemistry

Localization of endogenous SUCNR1 was determined by fluorescence microscopy
using anti-SUCNR1 (Novus Biologicals, Centennial, CO, USA; #NBP-00861, 1:300). Colocal-
ization was achieved with organelle-specific markers such as BiP (Abcam, Cambridge, MA,
USA; 1:300), KDEL receptor (Abcam; 1:300), and calnexin (Millipore #MAB31261:300).
Briefly, 30–40% confluent RGC-5 cells were cultured on cover slips and fixed in 2%
paraformaldehyde. Next, cells were permeabilized or not in 0.1% Triton X-100 diluted
in PBS and blocked with 5% goat serum. Cover slips were incubated overnight with an
appropriate combination of primary antibodies. Subsequently, suitable secondary antibod-
ies conjugated to ); Alexa Fluor 488 (Invitrogen #A11070), conc. 1:1000; and Alexa Fluor
594 (Invitrogen #A11012), conc. 1:1000 were prepared and delivered on cover slips for
1 h at RT; washes were carried out with PBS. Nuclei were stained with DAPI (Invitrogen;
1:5000). Images were taken with a laser scanning confocal microscope (Olympus FV1000,
Olympus Corp., Tokyo, Japan). In transfected cells, HEK 293T cells were seeded onto a
6-well culture dish containing coverslips, and transfected with the appropriate plasmid,
SUCNR1, SUCNR1 N8A, or SUCNR1 N168A, as required. The final confluency rate was
kept below 30%. N-terminal FLAG-tagged SUCNR1 was visualized as described above
using a FLAG-specific antibody (Sigma; 1/500), and was co-stained with either ER markers
calnexin or pan-Cadherin (anti-pan-Cadherin; Cell Signaling Technology [CST], Danvers,
MA, USA; 1:300).

2.4. Electron Microscopy

Specimens for electron microscopy were prepared as previously described [36]. Briefly,
50 µm vibratome sections of cortex from male Sprague-Dawley rats were incubated with
rabbit anti-SUCNR1 antibody (1:50) overnight at 4 ◦C, followed by another overnight
incubation with goat antirabbit gold (10 nm)-conjugated IgG (1:50) (British Biocell Interna-
tional, Cardiff, UK). Specimens were then postfixed in 1% osmium tetroxide, dehydrated
in graded ethanol, and embedded in Epon according to the standard technique. Ultrathin
sections were cut using a Reichert Ultracut ultramicrotome (Reichert-Jung, Vienna, Austria),
mounted on Formvar-coated copper grids, stained with uranyl acetate and lead nitrate,
and examined with a Philips 410LS transmission electron microscope (Philips, Amsterdam,
The Netherlands).
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2.5. Fraction Purification/Preparation

Subcellular fractions of RGC-5 cells were obtained as previously described [36]. Briefly,
cells were resuspended in ice-cold HEPES buffer using a prechilled Dounce homogenizer
for 40 min on ice. Fractions were obtained by discontinuous sucrose gradient ultracentrifu-
gation. Briefly, crude nuclear fractions were resuspended in buffer containing 1.2 M sucrose
and layered on top of a buffer solution containing 1.8 M sucrose prior to centrifugation
at 60,000× g for 60 min at 4 ◦C. The purity of each subcellular fraction was validated by
assessing the presence of Na+/K+ ATPase, calnexin, and lamin A/C proteins. Reactions
were subsequently performed for 30 min at 37 ◦C prior to extracting RNA from nuclei for
gene expression analysis.

2.6. Gene Expression Quantification

RGC-5 or HEK 293T cells were seeded in 6-well plates and treated the next day or
36 h post transfection with or without 100 µM succinate for 4 h in serum-depleted DMEM.
Cells were rapidly preserved in TRIzol (Invitrogen). RNA was extracted according to the
manufacturer instructions, and cDNA was synthesized using qScript cDNA SuperMix
(Quanta Biosciences, Beverly, MA, USA). Primers were designed using NCBI Primer Blast.
Quantitative gene expression analysis was performed on an MX3000P (Agilent) with
SYBR Green Master Mix (BioRad, Hercules, CA, USA). Expression was normalized to 18S
universal primer (Invitrogen; #AM1718). Expression of SUCNR1 in HEK 293T cells was
determined by PCR using TAQ polymerase (Thermo Scientific #EP0405).

2.7. Calcium Release Kinetic

Cellular Ca2+ signals were measured using the fura-2-AM technique, as previously
described [36]. Briefly, RGC-5 or shGFP/shSUCNR1 stably expressing RGC-5 cells were
loaded with fura-2-AM and stimulated with 100 µM of succinate. In another experiment,
RGC-5 isolated nuclei or nuclei+ER or whole cells were treated with 100 µM of succinate.
Intracellular calcium signals were measured by spectrofluorometry (LS50B, PerkinElmer,
Beaconsfield, UK) and the fluorescent signal appropriately calibrated. The calcium concen-
trations were calculated according to Grynkiewicz et al. [37].

2.8. Western Blot

To determine protein levels, Western blot analysis was carried out in RGC-5 cells
or by transfecting 293T cells with myc-tagged SUCNR1 or mutants SUCNR1 N8A or
SUCNR1 N168A. ERK and AKT phosphorylation were examined after treatment with
100 µM succinic acid in serum-starved DMEM at several time points. Cells were harvested
using RIPA buffer. Immunoblotting was performed using specific antibodies: anti-SUCNR1
(Novus Biologicals; #NBP1-00861), Myc-tag (CST; #2276), p42/p44 (CST; #4376S), and
phospho-p42/p44 (CST; # 4695S). Signals were revealed by chemiluminescence using
appropriate horseradish peroxidase-conjugated secondary antibodies, and observed with
an Image Quant LAS 500 (GE healthcare, Boston, MA, USA). Total protein content was
normalized using an anti-β-actin antibody (Santa Cruz Biotechnology, Dallas, TX, USA,
[SCBT]) where appropriate.

For ERK or AKT activation, the membranes were stripped and reblotted with an
antibody against total ERK or AKT. The activation was estimated by comparing the signal
between the phosphorylated and total forms of ERK/AKT using ImageJ (NIH, Bethesda,
MD, USA) from at least three independent experiments. For Western blot analysis, cells
were treated as described above.

2.9. Retinal Flatmounts

Eyes were enucleated and fixed in 4% paraformaldehyde (PFA) for 90 min at 4 ◦C, and
then stored in PBS at 4 ◦C. For each eye, the cornea and lens were removed, and the retina
was gently separated from the underlying choroid and sclera under a dissecting microscope.
Subsequently, retinas were incubated for 10 min in 100% cold methanol (−20 ◦C), then
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incubated overnight at 4 ◦C in 1% Triton X-100/1 mM CaCl2/1× PBS with the TRITC-
conjugated lectin endothelial cell marker Bandeiraea simplicifolia (1:100; Sigma-Aldrich,
St-Louis, MO, USA). Lectin-stained retinas were whole-mounted onto Superfrost/Plus
microscope slides (Thermo Fisher Scientific, Waltham, MA, USA) with the photoreceptor
side down, imbedded in Fluoro-gel, and imaged at 10× using a Zeiss AxioObserver.Z1
(Zeiss, Jena, Germany). Images were merged into a single file using the MosaiX option in
AxioVision software version 4.6.5 (Zeiss). The density of the capillary network was assayed
by quantification of FITC-stained vessels using ImageJ, as previously reported [38].

2.10. Intraocular Succinate Injections and Retinal Vascular Density Quantification

Mouse pups were injected at postnatal day 4 (P4) with succinate (final concentration
100 µM) with or without probenecid (final concentration 1 mM) using a 10 µL Hamilton
syringe (1.0 µL final volume of injection). Animals were sacrificed and perfused with 4%
PFA at P8. The density of the capillary network was assayed by quantification of Bandeiraea
simplicifolia (1:100, Sigma) stained flat-mounted using ImageJ, as previously reported [38].

2.11. Immunoprecipitation

Coimmunoprecipitation analysis was performed on lysates from cells transfected
with wild-type or mutated SUCNR1 (myc-tagged). Cell lysates were precleared before
incubation with an anti-SUCNR1 antibody (Novus) and protein A/G-Sepharose beads at
4 ◦C. Precipitates were washed in lysis buffer, except the NaCl concentration was raised to
0.7 M and no SDS was added to the lysis buffer. Samples were resolved by SDS-PAGE, and
analyzed by Western blotting using the indicated antibody: RAB2 (SCBT), RAB11 (SCBT),
COX-2 (CST), cPLA2 (SCBT), and HIF-1α (Novus). Membranes were also probed with an
anti-SUCNR1 antibody as a recovery control.

2.12. Aortic Explants

Aortae from adult Sprague-Dawley rats were cut into 1 mm thick sections. Rings
embedded in growth-factor-reduced Matrigel (BD Biosciences Billerica, MA, USA; #354230)
in 24-well plates were cultured for 3 days in conditioned media obtained from HEK 293T
transfected with either SUCNR1 or SUCNR1-N8A construction or left untransfected and
stimulated with 100 µM succinate or not for 24 h. Photomicrographs of individual explants
were taken each day, and vascular sprouting was measured by the area covered by the
outgrowth of the aortic ring using ImageJ.

2.13. PGE2 Dosage

PGE2 was extracted with SPE purification tC18 columns (Waters, Milford, MA, USA)
from cultured media of RGC-5 stimulated or not with 100 µM succinate. Quantification was
performed with a PGE2 EIA Kit (Cayman Chemical). The amount of PGE2 was normalized
to the protein content.

2.14. Lentivirus Production and Intravitreal Injections

Lentiviral vectors (pLenti-X1-puro) were prepared as we previously reported by trans-
fecting HEK 293T cells with a vector plasmid containing either SUCNR1-wt or SUCNR1-
N8A, together with the third-generation packaging plasmids pV-SVG, pMDL, and pREV
(Open BioSytems, Huntsville, AL, USA). Secreted viruses were filtered (0.22 µm) and ultra-
centrifuged at 50,000× g (2 h, 10 ◦C; L8-70M, Beckman). The viruses were then resuspended
in PBS, aliquoted with consistent amounts of particles, and stored at −80 ◦C.

2.15. Intraocular Lentiviral infection of SUCNR1-wt and SUCNR1-N8A in Mice

P2 mouse pups were anesthetized with 3.0% isoflurane in oxygen and injected intrav-
itreally with 1.0 µL of LV particles containing either SUCNR1-wt or SUCNR1-N8A using a
10 µL Hamilton syringe fitted with a 50-gauge glass capillary tip. Animals were sacrificed
at P7, and vascular surface area was measured on retinal flatmounts.
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2.16. Statistical Analysis

We performed between-group comparisons using one-way analysis of variance, fol-
lowed by Bonferroni’s test to compare means. Data are presented as means ± s.e.m.

3. Results
3.1. SUCNR1 Is Located at the Endoplasmic Reticulum

Prior immunofluorescence (IF) observations from our laboratory and others have
revealed that the succinate receptor localizes throughout the whole cell body in different
organisms, tissues, and cell types [14,28,39]. To refine the subcellular location of the receptor,
we performed colocalization analyses with known intracellular markers, relying on mouse
retinal ganglion neurons as a model. The SUCNR1 IF signal strikingly colocalized with that
of ER-specific markers KDEL and GRP78/BiP (Figure 1A). To ascertain this intracellular
staining pattern of SUCNR1 in neurons, we performed in vivo investigations through
high-resolution immunogold electron microscopy on rat cortical brain sections. Confirming
the aforementioned results, SUCNR1 expression was largely confined to the ER at the
ultrastructural level (Figure 1(BI,BII)); essentially, no signal could be detected at the nuclear
envelope, which is in continuum with the ER [40] (Figure 1(BI,BII)). Although SUCNR1
immunogold staining was found at the plasma membrane, this was considerably less
than at the ER (Figure 1(BII)). The immunogold signal was also detected in the vicinity of
mitochondria (Figure 1(BIII,BIV)), which physically interacts with the ER. Of note, succinate
treatment did not affect this intracellular localization (Supplementary Figure S1A).

The presence of GPCR at the ER could be attributed to specific motifs that affect
protein folding or transport. To confirm that SUCNR1 location to the ER is not merely
due to a synthesis process, we investigated whether this localization is associated with a
functional role in a cell-free system. To assess this, we relied on subcellular fractionation
procedures yielding either cell nuclei with a preserved ER network (Nucl + ER) or nuclei
devoid of ER (Nucl) (Supplementary Figure S1B) [36]. As stimulation of SUCNR1 with
succinate was previously shown to trigger the expression of proangiogenic genes, we used
Vegfa expression as a readout of functional SUCNR1 signaling [14]. Upon stimulation
of these cell-free systems, we found increased Vegfa expression from whole-cell extracts
(WC) or in nuclei in the presence of the ER (Figure 1C). Remarkably, the nuclear fraction
alone, devoid of SUCNR1, did not lead to increased expression of Vegfa (Figure 1C). We
also verified that calcium release, another known feature of SUCNR1 activation [22,24],
was effectively triggered by the ER-resident receptor. Relying on the same ER-containing
cellular fractions, we measured Ca2+ release using the ratiometric fluorescent dye FURA-
2 (Figures 1D and S1C). Compared with the calcium released upon treatment with the
calcium ionophore ionomycin, stimulation of WC and Nucl + ER with succinate triggered
a notable and expected calcium release (Figure 1D). In contrast, isolated nuclei devoid of
ER showed little release of the calcium stored in their envelope compared with ionomycin
(Figure 1D). To confirm our observations that succinate treatment, leading to calcium release
and Vegfa gene expression, are mediated by SUCNR1, we knocked down the expression of
the receptor in RGC cells, which notably impaired ERK phosphorylation upon succinate
stimulation (Supplementary Figure S1D,E). Succinate treatment of the Nucl + ER fractions
from SUCNR1 knocked-down cells showed blunted Vegfa expression and reduced calcium
release (Figures 1E,F and S1F). These results suggest that ER-resident SUCNR1 is functional
and fully able to signal upon succinate stimulation.
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Figure 1. ER-localized SUCNR1 is functional. (A) Endogenous SUCNR1 in RGC cells colocalized
with ER markers,: KDEL receptor and BiP; arrows point to the regions of highest colocalization. Scale
bars: 20 µm. (B) In situ ultrastructural ER localization of SUCNR1 in rat parietal cortex tissue sections
by electron microscopy, where immunogold-labeled antibodies against SUCNR1 could be found in
ER folds. PM: plasma membrane; Nu: nuclei; ER: endoplasmic reticulum; Mit: mitochondria. Scale
bars: (I,II): 1 µm; (III,IV): 400 nm. (C) RT-qPCR on isolated fractions of RGC-5 cells reveals that a
4 h stimulation with 100 µM succinate induced Vegfa expression. Absence of the ER impaired this
induction upon succinate stimulation (filled bars) compared with unstimulated samples (Unt.: empty
bar). WC: whole cells; Nucl + ER: fraction; Nucl: nuclear fraction only. (D) Ca2+ release on isolated
RGC fractions containing ER or not. Calcium release was measured for 30 min, and is represented as
fold change compared with the ionomycin-treated sample. Ca2+ release was not observed in absence
of the ER. (E) Isolated Nucl + ER fractions of RGC cells expressing a shRNA against SUCNR1 did not
express Vegfa after 100 µM succinate stimulation for 4 h. NT: nontransfected. (F) In isolated Nucl + ER
fractions, Ca2+ release upon succinate treatment was lower in shSUCNR1 cells than in shGFP control
cells. Calcium release was measured as in (D). *, **, p < 0.05, 0.01compared with corresponding
controls, respectively.
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3.2. SUCNR1 Motifs Responsible for ER Localization: Glycosylation

To elucidate the potential mechanisms that drive the retention of a functional succinate
receptor at the ER, we examined the amino acid sequences of mouse, rat, and human
SUCNR1 for clues of intracellular retention signals. No consensus regarding ER retention
signals was found in SUCNR1 (Supplementary Figure S2A), suggesting that ER localization
is likely dependent on alternative mechanisms.

The SUCNR1 receptor contains two phylogenetically conserved N-glycosylation
(NxS/T) consensus sequences in extracellular domains [26] (Supplementary Figure S2A).
Post-translational glycosylation regulates protein subcellular localization, usually by target-
ing transmembrane proteins to the plasma membrane [41–43]. Glycosylation sites were
found to be located on the N-terminal extracellular tail and the second extracellular loop,
at positions N8 and N168 of SUCNR1, respectively (Figure 2A). To investigate the role
of these glycosylation sites in SUCNR1 localization, we generated N-terminally FLAG-
tagged SUCNR1 expression vectors carrying missense mutations for either site, substituting
glycosylation-incompetent alanine for the wild-type asparagine (N8A and N168A); these
plasmids were used to transfect HEK 293T cells. By SDS-PAGE, the overexpressed wild-
type SUCNR1 yielded a signal appearing as a smear with a higher molecular weight (MW)
than was predicted by the sole protein sequence (Figure 2B). As expected for glycosylation-
deficient mutants, both N8A and N168A proteins migrated at a lower molecular weight
than the wt SUCNR1. Yet, mutant receptors migrated to approximately 40 to 45 kDa, higher
than expected for unmodified SUCNR1, suggesting that glycosylation-deficient mutants
were still post-translationally modified (Figure 2B). To confirm that this remarkable mi-
gration pattern is due to the receptor being glycosylated, cell extracts were treated with
peptide-N-glycosidase F (PNGase F), which cleaves off glycosyl residues from Asn. As
expected, SUCNR1 from PNGase-treated extracts migrated to its theoretical size of 37 KDa
(Figure 2C). Of note, both N8A and N168A receptors also migrated to their theoretical size
after PNGase treatment, suggesting that these mutations do not affect glycosylation of the
other consensus N-glycosylation site (Figures 2C and S2B).

We proceeded to examine if glycosylation of SUCNR1 can regulate its subcellular
location. In SUCNR1-expressing HEK 293T cells, the IF signal revealed the wt SUCNR1 at
its expected perinuclear localization, colocalizing with the ER marker calnexin (Figure 2D).
Under the same conditions, the N8A mutant showed an IF signal exclusive of the calnexin
marker, suggesting a mislocalization of the mutant SUCNR1 (Figure 2D); in contrast, the
N168A mutant receptor is ER-localized (Figure 2D), inferring the critical role of N8 gly-
cosylation in this process. In other cell types, such as MDCK cells, SUCNR1 is expressed
on the PM; this process often involves receptor glycosylation. To ascertain whether the
glycosylation status of SUCNR1 plays a role in localization, we performed IF on nonperme-
abilized cells, which only allowed immuno-detection of PM-localized proteins. In these
conditions, FLAG-tagged native SUCNR1 failed to be detected, consistent with its intracel-
lular location (Figures S2C and 2D). However, the PM surface localized FLAG-tagged N8A
mutant was detected in nonpermeabilized cells, and consequently colocalized specifically
with the PM marker cadherin (Supplementary Figure S2C, right panel). In contrast, the
FLAG-tagged N168A mutant receptor was undetectable in nonpermeabilized cells (Supple-
mentary Figure S2C). Overall, these results suggest a mechanism where SUCNR1 Asn 8
and 168 are both independently glycosylated, whereas only the former is required for the
ER retention of the receptor.
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Figure 2. SUCNR1 N−glycosylation is necessary for ER retention. (A) Snake plot representa-
tion of theoretical mouse SUCNR1 topology, with potential N-glycosylation signals marked in red.
(B) Steady-state levels of SUCNR1 and glycosylation-deficient mutants N8A and N168A in HEK 293T
cells transfected with pcDNA-SUCNR1. Wild-type and mutant SUCNR1 proteins migrate as a smear
characteristic of N-glycosylated proteins, albeit with a different molecular weight (wt and mutants
indicated by grey and black arrows, respectively). (C) Transfected HEK 293T whole-cell lysates were
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treated or not with PNGaseF to fully deglycosylate proteins. After treatment, SUCNR1 migrated
to its theoretical molecular weight of 37 KDa (*). Fully glycosylated and partially glycosylated
receptors are indicated by grey and black arrows, respectively. (D) Cellular localization of SUCNR1
by confocal microscopy. HEK 293T cells were transfected with FLAG-tagged wild-type or mutant
SUCNR1 constructs. Calnexin was used as an ER marker, and nuclei were stained with DAPI. NT:
nontransfected. Scale bars: 20 µm. (E) Immunoprecipitation of myc-tagged SUCNR1 from HEK 293T
expressing wild-type or mutant SUCNR1 constructs. SUCNR1-myc, RAB11, and RAB2 presence in
the IP fraction was revealed with specific antibodies as indicated in the figure.

To assess the molecular partners involved in the trafficking of SUCNR1 and mutants,
we focused on rab GTPases, which are responsible for the proper shuttling of proteins
between organelles, vesicle budding, and uncoating [33,44]. In this context, RAB2 is
specifically involved in shuttling from the Golgi to the ER and RAB11 in delivering proteins
to the PM [45–47]. Co-immunoprecipitation (coIP) experiments revealed that wild-type
SUCNR1 and SUCNR1 N168A interact with RAB2 but not with RAB11, whereas SUCNR1
N8A interacts with RAB11 and interacts little with RAB2 (Figure 2E). This suggests that
the glycosylation state of SUCNR1 determines its interaction with shuttling partners, thus
affecting its subcellular location.

3.3. Subcellular Localization of SUCNR1 Affects Downstream Signaling

For a given receptor, signaling and function differ depending on its cellular location.
We thus determined if this principle also applies to SUCNR1, and investigated whether
the N8A mutant located at the cell membrane triggers downstream signaling pathways
differently than the ER-resident receptor. Notably, SUCNR1 stimulation with succinate
has been reported to activate the MAPK pathway and pro-survival signals in kidney and
neurons [19,22,25]. We assessed ERK and AKT phosphorylation upon stimulation of wild-
type and mutant SUCNR1 isoforms expressed in HEK 293T cells. The wild-type and
N168A receptors, but not the PM-localized N8A mutant, elicited prolonged AKT activation
(Figure 3A). However, ERK phosphorylation was triggered to similar levels with all three
isoforms of the receptor (Figure 3B). We then examined if gene expression differs according
to SUCNR1 subcellular location and altered signaling. We measured the expression of
angiogenic genes previously reported to be regulated by SUCNR1 [14,39]. Succinate
stimulation of the wild-type SUCNR1 in HEK 293T cells, but not of the PM-localized N8A
mutant, induced strong VEGFA expression (Figure 3C). Concordantly, intravitreal injection
of succinate at P4 in mice triggered increased vascular density, which was prevented
upon organic anion transporter inhibition by probenecid, suggesting that succinate requires
access to its intracellular receptor site (Supplementary Figure S3B). Of note, in cultured RGC-
5 cells, the succinate-driven VEGFA expression was reversed by probenecid (Supplementary
Figure S3C). In contrast, succinate stimulation of PM-localized SUCNR1 N8A elicited a
more robust induction of FGF2, ANGPT1, and ANGPT2 than in cells expressing the ER-
localized wild-type receptor (Figure 3D–F). These results point to a location bias of SUCNR1
depending on its glycosylation state, where an altered glycosylated receptor localizes to
the PM and triggers different signaling pathways, which, in turn, lead to different gene
expressions.
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Figure 3. Impaired signaling downstream of N-glycosylation mutant SUCNR1. (A) Signal ratio of
phospho- to total AKT level was measured in HEK 293T cells transiently transfected with the wild-
type or glycosylation mutants SUCNR1 and treated or not with 100 µM succinate for the indicated
times. NT: nontransfected. N = 4; * p < 0.05; ** p < 0.01 vs. comparative values. (B) Similar to (A),
except that phosphorylation of ERK1/2 was measured. (C–F) Expression of proangiogenic genes
VEGFA, FGF2, ANGPT1, and ANGPT2 in HEK 293T cells transiently transfected with wild-type or
mutant SUCNR1, treated or not with 100 µM succinate for 4 h. NT: nontransfected. N = 4; ** p < 0.01;
*** p < 0.001 vs. comparative values.

3.4. SUCNR1 Glycosylation and Localization Are Regulated during Hypoxia

Glycosylation is a major post-translational modification that impacts receptor function,
and is thus tightly regulated. Pathophysiologic conditions such as hypoxia alter glucose
metabolic pathways and modify glycosylation processes [48]. For instance, in an anaerobic
tumor environment, specific glycosylation patterns favor angiogenesis [49]. Accordingly,
we evaluated whether hypoxia affects the glycosylation status of SUCNR1 and its cellular
localization. We first confirmed that SUCNR1 is glycosylated in retinal ganglion cells;
accordingly, the treatment of RGC extracts with PNGase F generated a 37 KDa SUCNR1
signal (Supplementary Figure S4A). Exposing the RGC to hypoxia (2% O2) led to the grad-
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ual appearance of a lower molecular weight, while the higher-molecular-weight SUCNR1
concomitantly disappeared (Figure 4A). This suggests that the receptor is differentially
N-glycosylated upon hypoxic challenge. We then assessed whether localization of SUCNR1
is affected by hypoxia-related post-translational modifications. Under hypoxic conditions,
SUCNR1 (detected by IF) relocated time-dependently from the ER to a more diffuse lo-
calization, largely at the PM (Figure 4B). Consistent with the purported role of RAB11 in
SUCNR1 localization, suppression of RAB11 in RGC retained SUCNR1 at the ER colocal-
ized with calnexin during hypoxia (Figure 4C). Furthermore, exposure of cells to hypoxia
led to increased expression of three genes that were upregulated by the PM-localized N8A
SUCNR1 (i.e., Angpt1, Angpt2, and Fgf2). This increased expression of angiogenic genes
was abrogated upon SUCNR1 knock down (Supplementary Figure S4B). This suggests that
the deglycosylated SUCNR1, not contained at the ER during hypoxia, is necessary to drive
the expression of these proangiogenic genes.
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and deglycosylated (*) proteins are indicated by the grey and black arrows, respectively. Actin beta
was used as the loading control. Signal quantification is shown at the bottom. (B) RGC-5 cells were
incubated in hypoxic conditions for the indicated times before fixation and immunofluorescence
analysis of endogenous SUCNR1 localization. DAPI and DIC images depict the nucleus and the
cell shape, respectively. Scale bars: 20 µm. (C) SUCNR1 immunofluorescence photomicrographs of
RGC-5 cells knocked down for Rab11 or not and incubated in hypoxic conditions or not. Calnexin
signal (shown in red) delineates the ER. Scale bars: 20 µm. (D) SUCNR1 immunofluorescence
pictures of retina cross-sections from mouse subjected to OIR (hypoxia) or normoxia show the
receptor expression increases in the ganglion cell layer (GCL) in the hypoxic retina. Arrowheads on
merged images indicate areas of low and high colocalization of SUCNR1 with (cell surface) cadherin,
respectively, in normoxic and hypoxic conditions. Scale bars: 40 µm.

To confirm that the physiological regulation of the receptor by O2 concentration occurs
in vivo, we verified the localization of SUCNR1 in the retina of mice sequentially exposed
to hyperoxia followed by normoxia, which subjects the retina to a hypoxic environment, as
seen in oxygen-induced retinopathy (OIR). In the intact mouse, the SUCNR1 IF signal (as
seen in the ganglion cell layer) exhibits sparse colocalization with the PM-specific cadherin
signal (Figure 4D). However, during the hypoxic period of OIR, SUCNR1 staining clearly
colocalizes with cadherin (Figure 4D). These in vivo results reproduced our observations in
cultured cells (Figure 4C), and indicate that SUCNR1 glycosylation and, in turn, subcellular
localization is physiologically regulated.

3.5. Mechanism of Gene Induction by ER-Localized SUCNR1

Succinate-receptor-triggered VEGFA expression occurs via the COX-2/PGE2/EP4
axis [19,25]. We explored if this effect is specifically mediated by ER-resident SUCNR1. The
results of our immunofluorescence experiments revealed that cPLA2 and COX-2 colocalized
with calnexin in RGC (Supplementary Figure S5A). The interaction of these enzymes with
SUCNR1 was biochemically confirmed by co-immunoprecipitation (co-IP) on whole cell
extracts and microsomal fractions of RGC (Figure 5A). The succinate stimulation of cells
increased the interaction between COX-2 and, to a lesser extent, cPLA2 with SUCNR1; the
rate-limiting enzyme COX-2 specifically interacted with ER-localized wild-type SUCNR1
(and N168A mutant) in HEK 293T cells, but not with PM-localized N8A mutant (Figure 5B).
Accordingly, succinate treatment increased PGE2 generation in whole RGC as well as
in the ER fractions of these cells (Figures S5B and 5C), clarifying that SUCNR1 at the ER
compartment displays the enzyme machinery to trigger prostaglandin synthesis. Consistent
with PGE2 receptor (EP1, EP3, and EP4) localization at the nuclear envelope where they
trigger gene transcription [50–52], we observed that ER pretreated with succinate and
subsequently combined with the cell nuclear fraction led to Vegfa expression, which was
abolished by EP4 -specific antagonist L-161,982 (Figure 5D). Overall, this suggests that
glycosylation of SUCNR1, which permits retention of the receptor at the ER, is essential
for proper interaction with the PG synthesis pathway, and subsequent activation of the
nucleus-localized EP4 receptor, to elicit Vegfa expression upon succinate stimulation.
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Figure 5. ER−localized SUCNR1 interacts with the PGE synthesis pathway. (A) Co-
immunoprecipitation of cPLA2 or COX-2 with the endogenous SUCNR1 in whole-cell or ER fraction
from RGC-5 treated (+) or not (−) with 100 µM succinate. Immunoprecipitation was performed with
an antibody specific to SUCNR1, and is shown as IP loading control. COX-2 and cPLA2 coIP signals
increased upon succinate stimulation. (B) Co-immunoprecipitation of COX-2 with SUCNR1-myc
expressed in HEK 293T cells. IP was conducted with an anti-myc antibody, and the presence of
SUCNR1 and COX-2 in precipitates was assessed using the corresponding antibodies. Signal from
wild-type and mutant SUCNR1 are indicated by grey and black arrows, respectively. COX-2 signal
was strongest in lysates from cells expressing the fully glycosylated, wild-type SUCNR1. (C) Succi-
nate stimulation of isolated ER from RGC-5 led to the production of PGE2. N = 6 * p < 0.05. (D) RGC-5
ER fractions were treated or not with 100 µM succinate for 30 min at 37 ◦C. Subsequently, isolated
nuclei from RGC-5 cells were incubated for 30 min at 37 ◦C with the corresponding ER fractions in
the presence or absence of EP4 antagonist L-161,982, after which Vegfa expression was quantified
by RT-qPCR. N = 4 (* p < 0.05, ** p < 0.01). (C,D) * and ** p < 0.05 and p < 0.01, respectively, vs.
comparative values.

3.6. ER Localization Is Essential for Angiogenesis Mediated by SUCNR1

Finally, to ascertain functional VEGFA regulation by wild-type SUCNR1, we first stud-
ied the ex vivo vascular sprouting of rat aortic explants exposed to culture media from HEK
293T cells expressing wild-type or N8A SUCNR1 mutant. Explant sprouting was signifi-
cantly increased by conditioned media from SUCNR1- but not the N8A mutant-expressing
HEK 293T cells stimulated with succinate (Figure 6A), consistent with the increased ex-
pression and effects of ANGPT1 without those of VEGFA [32,53]. This angiogenic effect of
SUCNR1 was also tested in vivo. We noticed that Sucnr1−/− pups presented a temporally
restricted defect in retinal vascularization from P3 to P17 (Figure 6B,C). The brevity of
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this defect is concordant with the notion that the succinate receptor, although transiently
important for normal vascularization, is not essential for the final proper development of
the retina in rodents [14,28,54]. Lentivirus expressing wt or N4A versions of the mouse
SUCNR1 (Supplementary Figure S2A) were injected in Sucnr1−/− pups at P2, and retinas
were collected at P7 to assess vascularization. Infection with the wild-type SUCNR1 ef-
fectively rescued the defective vascularization, whereas infection with the N4A mutant
showed a significantly smaller vascular area (Figure 6D). Overall, glycosylated ER-localized
SUCNR1 is essential for mediating the proangiogenic effect of succinate.
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SUCNR1 constructs, and stimulated or not with succinate (succ.). Aortic sprouting was quantified as
the relative vascularized areas. Representative pictures (left) and corresponding histogram (right).
n = 10; *** p < 0.001 vs. comparative values. (B) Representative images of lectin-stained flatmounts
from Sucnr1+/+ or Sucnr1−/− mice. Scale bars: 1 mm. (C) Quantification of images shown in (B).
Retinal vascular surface area (upper panel) and vascular density (lower panel) in Sucnr1+/+ (white
bars; wt) and Sucnr1−/− (black bars) mice. P3 and P7 KO pups exhibited significantly reduced retinal
vascular area and vascular density compared with wt pups. The reduced vascular density lasted
until P17. ** p < 0.01, *** p < 0.001 compared with wt. (D) Representative pictures (left panel) and
quantification (right panel) of the revascularized surface area in whole retinas following rescue of
SUCNR1 expression in Sucnr1−/− mice with a lentiviral plasmid overexpressing wt or N4A SUCNR1.
The N4A mutant SUCNR1 showed reduced retinal revascularization (≈25%) compared with the
wild type. The y-axis represents the ratio of retinal revascularization relative to the revascularization
induced by the wild-type SUCNR1. Scale bars: 300 µm. Statistical analyses (n = 4): ** p < 0.01 vs.
comparative values.

4. Discussion

ER localization is often associated with protein folding and processing, a maturation
process usually not compatible with functional proteins. Yet, we hereby present unprece-
dented evidence that a post-translationally modified ER-resident GPCR, namely SUCNR1,
elicits a potent proangiogenic response upon stimulation with succinate. Its ER local-
ization was corroborated by microscopy and biochemical methods, and is permitted by
N-glycosylation of its first extracellular domain. Concordant with previous reports, its
proangiogenic activity correlates with the activation of the MAPK/ERK and PI3K/AKT
signaling pathways [19,22,26,39]; the PGE2 pathway was also activated by succinate, as
anticipated [19]. Correspondingly, the mutation of the N-glycosylation site at position 8 (hu-
man) fails to activate AKT, does not trigger VEGFA expression, and does not exhibit a robust
proangiogenic response. Our findings also revealed that pathophysiologic conditions, no-
tably hypoxia, mitigate the glycosylation state, in turn dampening the angiogenic response.
The location of SUCNR1 at the ER, in close proximity to mitochondria where succinate is
produced, allows for a rapid response to succinate imbalance, triggering downstream gene
expression before other stress pathways are activated. In this context, therapeutic targeting
of SUCNR1 needs to consider the subcellular localization that defines the signaling and
induction of specific genes. A schematic diagram depicting the actions of SUCNR1 at the
ER, through the PGE2 pathway, leading to VEGFA induction and angiogenesis, is presented
in Figure 7.

SUCNR1 is considered a prominent sensor of oxygen, which reinstates its supply
through angiogenesis [14,55]. In OIR, transient hyperoxia induces the vaso-obliteration
of retinal vessels; upon resuming a normoxic environment, the relative hypoxic retina
triggers an exaggerated vaso-proliferation. In this context, our observations that hypoxic
conditions lead to a relocalization of SUCNR1 out of the ER, correlating to impaired
downstream signaling and reduced angiogenesis of the PM-located N8A SUCNR1 mutant,
allow us to propose a new model for the subcellular localization of SUCNR1 in OIR.
After vaso-obliteration of the retinal vessels occurring during the hyperoxic phase of
OIR, re-establishment of normal ambient O2 concentrations creates hypoxia, resulting
in the PM relocation of SUCNR1. Upon the initial metabolic changes that occur when
succinate rapidly increases with hypoxia, SUCNR1 at the ER is activated to induce VEGFA
expression. Sustained hypoxia relocates SUCNR1 to the cell surface, from where it senses
increased extracellular succinate to elicit vascular factors that regulate vessel sprouting and
maturation, notably ANGPT1, ANGPT2, and, to a lesser extent, FGF2. Whereas ANGPT1
and ANGPT2 are generally thought to have antagonistic action on their cognate receptor
TIE2, the effect of their mutual increased expression on the retina vasculature is not defined
and context-dependent [56–60]. This deduction should be considered in the context that
VEGFA is not homogeneously distributed between hypoxic and normoxic areas, partly
due to the effects of repulsive and antiangiogenic factors such as semaphorins released
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from hypoxic neurons triggering nonuniform pathological neovascular tufts [32]. We
speculate that an increase in both angiopoietins together with FGF2 in the avascular retina
may drive the aberrant vascularization that results in pathological tufts. Together, our
findings regarding SUCNR1 localization expand upon our understanding of the regulation
of (retinal) neovascularization.

Cells 2022, 11, x FOR PEER REVIEW 19 of 26 
 

 

 

Figure 7. Schematic depiction of the angiogenesis mechanism induced by SUCNR1 stimulation. The 

top depicts the OIR model. When the retina is exposed to high O2 concentrations during develop-

ment, a remarkable vaso-obliteration occurs, which, upon return to normoxic conditions, provokes 

local hypoxia. In this context, our proposed model of SUCNR1 signaling is: (a) SUCNR1 proper 

folding begins during translation at the ER, with glycosylation taking place along the ER-to-Golgi 

axis. (b) Upon proper glycosylation, RAB2-mediated SUCNR1 retrograde transport targets the re-

ceptor to the ER. (c) Upon increased energetic demands (hypoxia, intense exercise), succinate accu-

mulates in the cytoplasm and stimulates SUCNR1. (d) SUCNR1 signals downstream through an 

interaction with COX-2, in turn leading to PGE2 production. (e) PGE2 stimulates the EP4 receptor, 

which subsequently triggers transcription of proangiogenic genes. (f) Higher proangiogenic gene 

expression leads to neovascularization; in prolonged hypoxic conditions where SUCNR1 localizes 

to the plasma membrane, disturbed expression of proangiogenic genes, notably lesser VEGFA ex-

pression, may be a factor driving the pathological “tufts” apparition. 

SUCNR1 is considered a prominent sensor of oxygen, which reinstates its supply 

through angiogenesis [14,55]. In OIR, transient hyperoxia induces the vaso-obliteration of 

retinal vessels; upon resuming a normoxic environment, the relative hypoxic retina trig-

gers an exaggerated vaso-proliferation. In this context, our observations that hypoxic con-

ditions lead to a relocalization of SUCNR1 out of the ER, correlating to impaired down-

stream signaling and reduced angiogenesis of the PM-located N8A SUCNR1 mutant, al-

low us to propose a new model for the subcellular localization of SUCNR1 in OIR. After 

vaso-obliteration of the retinal vessels occurring during the hyperoxic phase of OIR, re-

establishment of normal ambient O2 concentrations creates hypoxia, resulting in the PM 

relocation of SUCNR1. Upon the initial metabolic changes that occur when succinate rap-

idly increases with hypoxia, SUCNR1 at the ER is activated to induce VEGFA expression. 

Sustained hypoxia relocates SUCNR1 to the cell surface, from where it senses increased 

Figure 7. Schematic depiction of the angiogenesis mechanism induced by SUCNR1 stimulation. The
top depicts the OIR model. When the retina is exposed to high O2 concentrations during development,
a remarkable vaso-obliteration occurs, which, upon return to normoxic conditions, provokes local
hypoxia. In this context, our proposed model of SUCNR1 signaling is: (a) SUCNR1 proper folding
begins during translation at the ER, with glycosylation taking place along the ER-to-Golgi axis.
(b) Upon proper glycosylation, RAB2-mediated SUCNR1 retrograde transport targets the receptor
to the ER. (c) Upon increased energetic demands (hypoxia, intense exercise), succinate accumulates
in the cytoplasm and stimulates SUCNR1. (d) SUCNR1 signals downstream through an interaction
with COX-2, in turn leading to PGE2 production. (e) PGE2 stimulates the EP4 receptor, which
subsequently triggers transcription of proangiogenic genes. (f) Higher proangiogenic gene expression
leads to neovascularization; in prolonged hypoxic conditions where SUCNR1 localizes to the plasma
membrane, disturbed expression of proangiogenic genes, notably lesser VEGFA expression, may be a
factor driving the pathological “tufts” apparition.

GPCRs are widely considered to be directed toward the PM; many have been shown
to signal from intracellular locations such as the endosomes, nuclear membrane, or nucleo-
plasm [30,31,35]. To the best of our knowledge, localization to the ER was only proposed for
two other GPCRs: GPR30 and mGluR5 [34,61]. However, in the present example applied to
SUCNR1, we provide the first evidence showing a functional GPCR at the ER. A motif ex-



Cells 2022, 11, 2185 18 of 23

plaining ER localization applies to the canonical ER-retention sequence RXR in the ICL2 of
human SUCNR1 (R217NR). This sequence can be recognized by coatomer protein I (COPI),
which mediates retrograde transport from the Golgi to the ER [62–64]. However, the N8A
SUCNR1 mutant that localizes to the PM carries an intact RNR sequence, suggesting that
this recognition site is either hidden from the COPI proteins because of a specific conforma-
tional structure of the receptor, or not sufficiently robust to retain SUCNR1 to the ER upon
deglycosylation, in a mechanism reminiscent of the GABA receptor heterodimerization,
albeit with an unknown partner [65]. In addition, although this sequence is not present in
rodents, we observed ER localization of SUCNR1 in rodents. Hence, although we cannot
definitively rule out a role for the R217NR sequence in the ER retention in humans, we
think it is unlikely to play a major role for the aforementioned reasons. Other canonical
ER-retention sequences, such as KDEL, KKXX, or HIEL motifs, are not present at the C-
terminus of SUCNR1, thereby implying that localization of the receptor to the ER is not
dependent on a canonical pathway. Of note, di-leucine motifs known to mediate the export
of GPCR to the synapse of neurons can be found within the sequence of SUCNR1 [66]. This
export has been shown to be mediated by an interaction with RAB8 and RAB1 [67,68]. It is
thus striking that these motifs in SUCNR1 do not target the glycosylated receptor to the
PM: we speculate that the overall 3D structure of the glycosylated SUCNR1 does not allow
access of the PM-targeting proteins to their cognate motifs on the receptor, or that specific
interactions with yet-uncovered, glycosyl-interacting proteins hide these motifs from traf-
ficking proteins such as RAB1, RAB8, or RAB11. In addition, cell-type-specific trafficking
mechanisms are likely at play, as has been shown for other GPCRs [69–72]. Future work to
uncover the motifs responsible for the subcellular sorting of SUCNR1 is warranted, and
will likely open new grounds for GPCRs and other transmembrane proteins.

We noted that, in all species where an ortholog of SUCNR1 is found, the N-terminal
N-glycosylation site is conserved. This conservation underlies the importance of this post-
translational modification for the proper function of the receptor. A second glycosylation
site, located in the ECL2 of the human SUCNR1 (N168), is absent in rodents. Strikingly,
SUCNR1 N168A, although still observable at the ER, exhibited a different downstream
gene expression than N8A, suggesting N168 glycosylation may be required for proper
signaling in humans. The absence of this second glycosylation site in rodents may underlie
different needs in response to succinate.

Localization of SUCNR1 in various cells has mostly been described at the PM, where
it can be internalized upon succinate stimulation [22,23]. This contrasts our findings where
SUCNR1 in transfected cells, as well as in intact retinal tissue, inherently localized at the ER
compartment. These apparent distinctions likely result from different intracellular transport
mechanisms, such as those that apply to cell-type- and cell-condition-specific RAB protein
expression [73–76]. Such mechanisms may explain why proper glycosylation of SUCNR1
is associated with plasma membrane localization in MDCK cells, and with ER localization
in HEK 293T and RGCs. Although glycosylation is part of the synthesis pathway of
transmembrane proteins thought to be essential for proper folding and addressing of
membranes after final processing at the Golgi [77,78], exceptions to this have been reported.
For instance, the ER-resident chaperone GRP94 physiologically carries an N-glycosylation,
yet remains at the ER; in contrast, N-glycosylation mutants of the GPCRs DOR1 and
M2AchR localize to the plasma membrane [79–81]. Hence, glycosylation is not exclusively
associated to extracellular milieu interactions, and likely depends on a cell-specific interplay
between protein conformation and subcellular trafficking.

SUCNR1 couples to PGE2 synthesis, ensuing in VEGFA expression via EP4 receptor
activity, itself localized at the cell nucleus [19,50,82]. The location of SUCNR1 at the
ER is fitting, in proximity to the prostaglandin synthesis pathway, documented to be
present at the ER, as is the case for COX-2, cPLA2, and mPGES [83,84]. Such a physical
proximity between these actors may help mediate a rapid response to intracellular succinate
accumulation, favoring vascularization to alleviate new cellular metabolic requirements.
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Along these lines, a direct interaction of COX-2 with regulatory proteins, including several
GPCRs, was described [85].

The model we propose based on our observations suggests that succinate accesses
the ER lumen to activate SUCNR1. Although to the best of our knowledge, no reports
concerning succinate concentration in the ER have been published, inferences on this
mechanism can be drawn based on published literature. Several reports have shown that
the ER is highly permeable to small molecules such as α-d-glucopyranoside, biotin, and
ATP [86–88]. While the transport mechanism of such small molecules still remains elusive,
considered pathways include: passive diffusion through the more permeable, cholesterol-
poor lipid bilayer of the ER; diffusion across the large translocon pore; active transport
along the maturation process of transporters en route toward the plasma membrane; or
through the Mitochondria-Associated Membrane (MAM) [86,88–90]. Either or all of these
mechanisms may contribute to allowing succinate into the ER lumen to activate SUCNR1.

In conclusion, our observations unveil an unprecedented localization of a functional
GPCR, SUCNR1, at the ER, which depends on N-terminal glycosylation. Deglycosylation
directs the receptor to the PM and modifies its signaling. The present findings expand
upon our understanding of GPCRs in other subcellular compartments, notably the nucleus,
mitochondria, and endosomes [31]. Notions described herein also highlight the importance
of the subcellular localization on GPCR function, as it adds a level of complexity to GPCR
biology. These observations also have therapeutic implications; for example, targeting a
specific receptor based on its localization impacts the procured actions. This was observed
with NK1R, where endosomal targeting prolongs its antinociceptive effects [91]; another
example applies to the kinin B1 receptor, which shows anticancer activity when targeted
intracellularly, but not when at the cell surface [92]. This would also concern SUCNR1,
where subcellular location affects function.
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Figure S5: PGE production upon succinate treatment in RGC.
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