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Abstract Bone functional tissue adaptation is a multiaspect
physiological process driven by interrelated mechanical and
biological stimuli which requires the combined activity of
osteoclasts and osteoblasts. In previous work, the authors
developed a phenomenological mesoscale structural mod-
elling approach capable of predicting internal structure of
the femur based on daily activity loading, which relied on
the iterative update of the cross-sectional areas of truss and
shell elements representative of trabecular and cortical bones,
respectively. The objective of this study was to introduce
trabecular reorientation in the phenomenological model at
limited computational cost. To this aim, a metamodel derived
from poroelastic microscale continuum simulations was used
to predict the functional adaptation of a simplified proximal
structural femur model. Clear smooth trabecular tracts are
predicted to form in the regions corresponding to the main
trabecular groups identified in literature, at minimal compu-
tational cost.

Keywords Metamodel - Bone remodelling - Microscale -
Poroelastic - Mesoscale - Structural

1 Introduction

Bone tissue adaptation is a multiaspect physiological pro-
cess driven by interrelated mechanical and biological stim-
uli (Zadpoor 2013) which requires the combined activity of
osteoclasts and osteoblasts. It is thought that osteoblast activ-
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ity is triggered by signals sent by the osteocytes (Burger and
Klein-Nulend 1999; Temiyasathit and Jacobs 2010). Stud-
ies suggest that fluid motion in the extracellular space of the
lacunar-canalicular porosities where the osteocytes lie may
be involved in cellular mechanosensitivity (Rubin et al. 2001;
Qin et al. 2003; Cowin et al. 1995; Temiyasathit and Jacobs
2010), potentially via the resulting shear stress on the cell
walls due to fluid motion (Adachi et al. 2010). A potential
candidate as an extracellular sensor of mechanical loading is
the primary cilium, a microtubule that protrudes from the cell
membrane (Whitfield 2003; Temiyasathit and Jacobs 2010).

In silico studies and simulations have implemented these
theories in mechanistic models with probant results (Rid-
dle and Donahue 2009; Adachi et al. 2010; Kameo and
Adachi 2014; Pereira et al. 2015). Extensive work has also
been conducted using phenomenological approaches, based
on the empirical relationships between mechanical stimu-
lus and bone adaptation (Huiskes et al. 1987; Adachi et al.
2001; Tsubota et al. 2002; Shefelbine et al. 2005; Scannell
and Prendergast 2009; Phillips 2012; Marzban et al. 2013;
Phillips et al. 2015; Geraldes et al. 2015). Such phenomeno-
logical approaches are limited in scale and scope, but present
tremendous advantages in terms of model simplicity and
computational efficiency.

In previous work, the authors developed a mesoscale struc-
tural modelling approach capable of predicting the internal
structure of the femur based on the loading it was submit-
ted to during daily activities (Phillips 2012; Phillips et al.
2015). In brief, cortical and trabecular bones were repre-
sented using shell and truss elements, respectively, and their
thickness or cross-sectional area was iteratively adapted to
reach a target strain under daily activity loading. The struc-
tural phenomenological modelling approach used in these
studies presents limitations arising from the simplifications
introduced in the truss formulation, where only axial strain
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is considered. In order to introduce a response to bending
and shear, required for a complete description of the struc-
tural behaviour of bone, the authors considered the use of
beam elements. This required a new formulation of the bone
adaptation drivers.

In addition, it has been observed that bending-related load-
ing scenarios lead to reorientation of the structure, aligning
to the trajectory of the load (Adachi et al. 2001, 2010; Kameo
and Adachi 2014; Tsubota et al. 2009). To account for the
nodal repositioning involved in a structural model where tra-
becular struts are allowed to realign, the authors isolated
phenomenological parameters with potential to drive this
realignment (Villette and Phillips 2016). To this aim, they
implemented and validated a representation of bone remod-
elling in a single trabecula treated as a microscale poroelastic
continuum. This representation was used to implement a
metamodel able to determine the change in cross section
and end point position of a single beam representation of
that same trabecula (Villette and Phillips 2016). Such a pro-
cess is called ‘metamodelling’ or ‘surrogate modelling’. An
inspiring example of metamodelling of bone structure was
developed by Hambli (2011) who used a trained neural net-
work to predict mesoscale remodelling based on macroscale
FE computations. More recently, Kim et al. (2017) proposed
and evaluated new macroscopic models for bone remod-
elling based on the microscopic mechanism of osteocytic
mechanosensing to capture essential features from the com-
plex microscopic mechanisms into a simple macroscopic
model.

The aim of this study was to implement a phenomenologi-
cal representation of functional adaptation of bone, modelled
as a mesoscale lattice of beam elements, accounting for
both element growth or abatement and reorientation. To this

Fig. 1 Work-flow used in this
study. Asterisk modified from
Phillips et al. (2015).
Doubleasterisk derived in
Villette and Phillips (2016)

Structural

aim, the metamodel previously developed by the authors
(Villette and Phillips 2016) was generalised to a lattice of
beam elements and tested for the prediction of bone inter-
nal structure in a simplified structural model of the proximal
femur.

2 Methods
2.1 Overview

A schematic of the work-flow used in this study is given
in Fig. 1. An initial structural finite element (FE) model
of the proximal femur was built with a randomised internal
beam lattice structure and an outer shell layer based on the
outer femur geometry extracted from computed tomography
(CT). Five variations of a simplified load case representa-
tive of walking were simulated using Abaqus, and the strain
results of these FE analyses were used to drive an iterative
phenomenological adaptation (or remodelling) algorithm.
This adaptation algorithm was modified from the authors’
previous work (Phillips et al. 2015) to include trabecular
reorientation under loading in addition to the cross-sectional
area adaptation (Villette and Phillips 2016). Based on the FE
strain outputs, an initial estimation of adapted beam element
cross-sectional areas is conducted, followed by the computa-
tion of updated beam nodal positions necessary for the beam
reorientations. Based on the realised amount of element reori-
entation, a correction is made to the adapted cross-sectional
area. The phenomenological rules controlling this algorithm
were previously derived by the authors for a single trabecu-
lar element using a two-dimensional microscale poroelastic
formulation of a continuous trabecula (Villette and Phillips
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2016). In this study, these relationships were generalised into
a strain-based metamodel for a three-dimensional lattice of
trabecular structural beam elements.

2.2 Finite element model and loading scenarios
2.2.1 Structural model

The femur structural mesh built in (Phillips et al. 2015)
was modified for this study. In that project, a CT scan of
a Sawbones fourth-generation composite femur (#3403) was
processed in Mimics to create a volumetric mesh composed
of 113,103 four-noded tetrahedral elements with an average
edge length of 3.9 mm. The nodes and the element faces on
the external surface were used to define three-noded linear
triangular shell elements (Abaqus type S3), taken to be repre-
sentative of cortical bone. Two-noded truss elements (Abaqus
type T3D2) were defined between each node and the nearest
sixteen neighbouring nodes. These were arbitrarily assigned
a circular cross section with an initial radius of 0.1 mm. The
resulting network was taken to be representative of trabecular
bone.

This structural model was simplified for this study. Only
the proximal femur was considered, cut 85 mm distal to the
lesser trochanter. The truss elements in the distal 50 mm of the
newly cut model were also discarded. The nodal minimum
connectivity within the trabecular bone was reduced from 16
to 6, keeping only the 6 shortest elements connected to each
node. This reduction in number of elements was performed to
increase the computational efficiency of the model, but also to
ensure an easier assessment of the reorientation capability of
the adaptation algorithm by reducing the number of initially
available load paths, with the aim of encouraging some tra-
beculae to significantly reorientate. The truss elements were
changed to quadratic Timoshenko beam elements (Abaqus
type B32), keeping the truss start and end nodes and defining
additional nodes at the mid point between these. All beams
were assigned an initial radius of 0.1 mm. The shell elements
were assigned the thickness value predicted in (Phillips et al.
2015) for a femur subjected to activities of walking, stair
ascent and descent, sit-to-stand and stand-to-sit. A cut of the
initial model is displayed in Fig. 2.

2.2.2 Loading

The loading applied was adapted from Phillips (2012), who
used a simplified representation of loading experienced at the
point of maximum hip joint contact force (HIP) associated
with normal walking (Bergmann et al. 2001). That load case
included a distributed load at the hip joint, as well as two
point loads at the insertion of the iliotibial band (ITB) and
the abductor muscles (ABD).

Fig. 2 Cut of the initial proximal femur model with cortical and tra-
becular bone represented in grey and red, respectively

The authors have reported that an increased number of var-
ied load cases yielded a more biofidelic structure (Phillips
et al. 2015). In this study, four simplified load cases were
chosen to complement that used by Phillips (2012). Two addi-
tional load cases involved a modified position of application
for the hip contact force, and a third modified the position of
application of the abductor muscle forces. The direction of
application of the hip contact force was also modified. The
last loading scenario involved an additional force exerted on
the lesser trochanter, representative of the action of the Psoas
muscle (PSOAS). These load cases were arbitrarily defined,
based on observations made in previous work regarding the
changes in direction of the hip joint contact force vector over
a walking cycle, as well as the insertion point of the mus-
cles exerting a significant force in the proximal femur during
walking. They are detailed in Table 1, and the points of appli-
cation are displayed in Fig. 3. The muscle loading was spread
over the three closest nodes to the chosen insertion point. To
ensure spreading of the hip contact force over a larger part of
the surface area, a four-layer load applicator was built over
the femoral head with six-noded linear continuum elements.
The two inner layers were assigned a 2-mm thickness and
cartilage-like material properties (£ = 10 MPa, v = 0.49). A
parametric study (Villette 2016) was conducted on the thick-
ness and Young’s modulus of the two outer layers to generate
physiological surface stresses at the hip joint, using reports
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Table 1 Detail of the five

Joading cases applied on the Position X component (N) Y component (N) Z component (N)
proximal femur model Case 1#
HIP 1 0 —2445 520
ABD 1 0 1175 —428
ITB 0 —625 0
Case 2
HIP 2 —150 —2600 100
ABD 1 0 1175 —428
ITB 0 —625 0
Case 3
HIP 3 0 —2445 520
ABD 1 0 1175 —428
ITB 0 —625 0
Case 4
HIP 1 0 —2445 520
ABD 2 0 1175 —428
ITB 0 —625 0
Case 5
HIP 1 0 —2445 520
ABD 1 0 1175 —428
ITB 0 —625 0
PSOAS 180 180 —-90

Fig. 3 Position of the load
application points on the
proximal femur model

“** refers to the loading case used by Phillips (2012)
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from in vitro tests (Brown and Shaw 1983) as reference. As a
result, the top and second layers were made 3 mm and 2 mm
thick, respectively. They were both assigned cartilage-like
Poisson ratio (v = 0.49) and respective Young’s moduli of
500 MPa and 10 MPa. The hip contact force was applied on
one node on the outer layer of this applicator. All nodes on
the distal boundary of the proximal femur model were fixed
in translation and rotation.

@ Springer

2.3 Iterative adaptation algorithm
2.3.1 Metamodel

In Villette and Phillips (2016), relationships were estimated
which predict the change in cross-sectional area Ra and the
angle of reorientation Ag of a single trabecula modelled as a
beam element in two dimensions, based on values of normal
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strain € computed across the beam cross section at both inte-
gration (Gauss) points G| and G,. The following notations
were used, which are illustrated in Fig. 4. The indices i and
f refer to the initial and final adapted states of the trabec-
ula, respectively, and the notations S| and S; refer to the two
opposite outer section points of the beam cross section in the
plane of analysis.

€h = €G,8, — €G,S)

€q = €G,
€
Ke=2
€a
Ap =@r — ¢
Ay
Ry =L
A A

@: inclination of the beam with respect to the vertical axis
Ag: change in beam inclination

A: beam cross-sectional area

R ratio of the beam initial and adapted cross-sectional
areas

Fig. 4 Schematic of the beam element parameters definition.
(Reprinted from Villette and Phillips (2016) in accordance with the
terms of the Creative Commons Attribution 4.0 International License)

¢p: relative difference in normal strain between diamet-
rically opposite points on the outer surface of the beam
cross-section. Also referred to as ‘bending strain’ in this
study.

€,: normal strain at the beam central axis

K. ratio of ¢}, over ¢,

The relationships predicting the change in cross-sectional
area R and the angle of reorientation Ag are defined in Egs.
1 and 2, respectively.

Ra = (iKe +sign (eq) j)eq + k ()
with k = —0.065, i = —274.654, j = 999.7622

Ap = aK? 4+ bK, )
witha = —0.1129, b = 0.6725

2.3.2 Generalisation of the metamodel to a beam lattice in
three dimensions

Equations 1 and 2 rely on a single computation of K. and Ag
for the whole element, under the understanding that this angle
will be used to compute the displacements of both extremity
nodes of the beam, with the same magnitude and opposite
direction, which corresponds to a rotation of A¢ of the beam
around its centre point.

This mode of reorientation is relevant when considering
a single beam in a strongly symmetrical loading scenario, as
investigated in Villette and Phillips (2016). However, the cur-
rent model includes interconnected chains of elements, which
yields potentially important asymmetries in the deformation
modes experienced by both extremities of a single beam. A
clear example of such a situation is depicted in Fig. 5, where
the deformation mode of a single bending beam is com-
pared with the deformation of a chain of three beams under
similar loading. To account for such phenomena, two com-
putations of Ag, one per integration point, were conducted
for each beam element, based on two separate computations
of K. The values of K. and A¢ corresponding to integration
point i in element e will be referred to as K¢ . ; and Ag, ;,
respectively. Associated displacements magnitudes D, ;, in
millimetres, were computed as follows:

D,; = min (0.1, 0.5L sin (Ag,,;)) 3)

where L is the initial beam element length.

In order to generalise the metamodel in three dimensions,
a major bending plane had to be defined for each element,
at both integration points. The three-dimensional beam ele-
ments in Abaqus allow for computation of variable fields at
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Fig. 5 Schematic of a single beam and a series of three beams, sub-
mitted to the same downwards displacement to the right with top node
fixed in rotation, in their initial, deformed and adapted shapes. Note: The
deformed shapes shown are theoretical. The configuration shown in b
includes enough elements to approximate this shape. In a, the single

several section points with varying radial and angular posi-
tion around each integration point. In this study, strain values
were extracted at the centre as well as at 8 positions regu-
larly distributed on the cross-sectional outer surface. Their
position is defined as a function of the beam cross-section

normals IZ and rz The section points, beam normals and
additional notations used in this section are displayed in
Fig. 6.

At each integration point i, the plane of major bending

Pyr.i was determined as the plane containing the unit beam
—

N
direction vector b and the unit vector dyy . ; joining the pair

Fig. 6 Determination of the
beam bending planes at one
integration point. Beam cross
section in deformed state (left)
and bending planes on the
undeformed beam (right)
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B32 beam element can predict translational and rotational nodal dis-
placements consistent with this shape. However, the displacements of
points located between the nodes, estimated by quadratic interpolation
of the nodal variables, will not be consistent with this deformed shape

of diametrically opposed section points G;S1y and G;Say
presenting the highest absolute difference in normal strain
(from the section point of lower index to that of higher index).
A plane of minor bending P, ; was also deﬁned as the plane

contammg the unit beam dlI'eCtIOIl vector b and the unit vec-
tor dm ¢.i» perpendicular to d M.e.i in the cross-section plane,
and joining the pair of diametrically opposed section points
G,’S]m and GiSQm.

To ensure accurate knowledge of the beam normal defini-
tions, rz was assigned to overwrite the automatic definitions

“._Maximum diametral
strain difference
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computed by Abaqus which are not easily extracted. For each
element, an initial n; ; was set to [1, 0, 0], unless the angle

N

formed between this vector and » was lower than 25°. In
—

that case, n1; was set to [0, 1, 0], unless the angle formed

iy

between this vector and p was also lower than 25°. In this
— . —

last case, n1; was set to [0, 0, 1]. With ny defined as the

- — — — -
cross product » A nj;, and the final n; defined as ny A b,
the coordinates of the section points in the global coordinate
frame could be precisely computed for each beam element
in the undeformed configuration.
Based on these considerations, two ratios K M¢ .; and
Kme . ; were computed for each beam element e, for each
integration point i:

€GiSam.e — €GiSium.e
6Gi,e
EGiSZm.e - GGislm,e

KMe,e,i =

Kme,e,i =
€G;,

KM, . ; and Km¢ . ; were limited to 1.4 in amplitude to
restrain the use of the relationships to the domain where Ag
is monotonic (increasing).

2.3.3 First estimation of adapted cross-sectional area

Following each iteration n, an adapted cross-sectional area
Ap41 of each beam was computed as:

An+1 = RAAn (4)

with Ra computed based on Eq. 1. K. was taken as the
value of maximum amplitude between K M, . 1 and K M . 2.
Finally, €, was taken as the normal strain of maximum
amplitude between €g, and €g,. For each beam element,
the load case considered was that yielding the maximum
€,. Consistent with Villette and Phillips (2016), the beam
cross-sectional area domain was linearly discretised into
99 categories between 7 (0.1)> mm? and 7(2)> mm?. The
beam elements were assigned the closest cross-sectional
area to the computed A, in this domain. A 100th cat-
egory was added, which contained the elements whose
adapted cross-sectional area fell under the arbitrary small
area0.001 mm?. These were set to a near-zero cross-sectional

area of 7(0.001)2 mm?2.

2.3.4 Node repositioning

The nodal displacement EN of all end nodes N was com-
puted as a weighted average of the displacements associated
with both major and minor bending modes in all the beam
elements connected to them, as expressed below. For each
beam element e, four values ApM, 1, ApM, >, Apm, | and

Apm, were computed based on Eq. 2, with K, taken as
KMce1, KMc o2, Kme, 1 and Kme .2, respectively. The
associated displacements DM, 1, DM, >, Dm,  and Dm, >
were computed based on Eq. 3, with Ag, ; taken as ApM, 1,
ApM, 2, Apm, 1 and Apm, 2, respectively. Sy and En are
defined as the ensembles of beam elements connected to node
N by their start or end node, respectively. The weighting
coefficients were chosen as the index of the beam element
cross-sectional area category W, when these are ranked in
increasing order.

1
ZBESN WAe
1

— —
e ) Wy (DMG,Z dM. s +Dm, dme,z)
ZEEEN WAe

— — —
Dy = > Wy, (DMg,1 dM, 1 +Dm, dme,l)

eESN

ecEy

(&)

Updated node positions were constrained within the volume
enclosed by the cortex. The positions of all beam middle
nodes were updated as the middle point between start and
end node updated positions.

Following the update of the node positions, the new beam
normals r?z were computed following the process described
in Sect. 2.3.2, and assigned to the elements for the next iter-
ation. A copy of these normal definitions was stored in a
text file to be retrieved when running the next iteration of
orientation adaptation.

2.3.5 Cross-sectional area correction

In order to prevent excessive bone resorption observed in
preliminary models, arising due to a difference in rates
of cross-sectional adaptation and reorientation, the cross-
sectional adaptation was conducted in two stages in each
iteration: a preliminary adapted cross-sectional area A,
was initially computed as described in 2.3.3 and set to its
closest value in the modified domain. The orientation adap-
tation was then performed as described in 2.3.4. In the case
when A, was found inferior A,,, the computation of a cor-
rected cross-sectional area was then introduced at this point,
to scale the cross-sectional adaptation based on the amount
of reorientation effectively performed, to synchronise both
adaptations. This step was not applied when A, was found
superior to A,.

To this aim, an estimate of the amount of effective reorien-
tation Agefr » was computed for each beam e and compared to
an estimate of the required reorientation ApM,. Ap M, was
taken as the value of maximum amplitude between ApM, |
and ApM, . The index of the corresponding integration
point (‘1” or 2°) was stored as imax. The plane of reorienta-
tion considered was taken as Py ;... A¢efr,e Was computed
as the angle between the newly reorientated beam direction
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in this iteration n 4 1 and the previous beam direction in iter-
ation n in Py ;.. . A corrected cross-sectional area Acyi
was then computed as follows for the elements presenting

Appr < Ap:
A(”eff,e,o b
ApM,

(6)

Acpy1 = Ap + (Ap+1 — Ay) min (max (

2.3.6 Control adaptation algorithm

The functional adaptation algorithm was run over 50 itera-
tions using the FE model and loading described in Sect. 2.2. In
order to assess the changes generated by the implementation
of the generalised metamodel compared to the original adap-
tation algorithm used by the authors (Phillips et al. 2015),
a variation of this metamodel was run separately as control,
using the same scenarios. Cross-sectional adaptation only
was considered, with the influence of bending removed by
setting K¢ to zero in Eq. 1. This is equivalent to adapting the
cross-section of beam elements fixed in space based on a lin-
ear function of €,. This adaptation is considered as virtually
equivalent to the structural adaptation previously conducted
by the authors (Phillips et al. 2015).

2.4 Morphometry measurements

Bone volume density fields in the generalised metamodel
were estimated in three dimensions using an in-house parti-
tion algorithm spanning the trabecular domain. In brief, each
trabecular element was divided in segments of equal length
to the spatial resolution characteristic of the partition. The
volume of each segment was then added to the volume of
the partition cell whose centroid was closest to the centre of
that segment. Three iterations of convolution smoothing were
used to attenuate the artefacts associated with using a discrete
partition. Density measures are given as dimensionless values
representing solid bone volume over total volume. Details of
the partition resolutions used are provided in Results section.
The degree of anisotropy in the structure resulting from
the generalised metamodel was quantified and compared
to that of the control algorithm result. An in-house three-
dimensional partition algorithm similar to that used to
estimate density was used for these measures. In brief, the
orientation of each trabecular element segment was stored as
a unit vector in relation to the partition cell whose centroid
was closest to the centre of that segment. These orientations
were assigned a weighting related to the cross section of the
corresponding trabecular element, and used to compute the
weighted distribution of trabecular orientations within each
cell. The results can be visualised for each cell in 2D polar
plots, with angular coordinate representative of the orienta-

@ Springer

tion projected in the plane of interest and the radial coordinate
representative of the prevalence (weighting) of that orienta-
tion in the partition cell. For clarity, the polar plots domains
presented here are discretised in categories of orientations
spanning 10 degrees, and the radial coordinates are nor-
malised. The degree of anisotropy can also be visualised over
entire slices of the model, by plotting the ‘major orientation’
of each partition cell. In this case, the “‘major orientation’ over
a partition cell is representative of the most prevalent orien-
tation in this cell. It is obtained using a K-Means (Lloyd’s)
clustering algorithm (Lloyd 1982), and defined as the mean
orientation of the largest of four clusters best defining the
distribution of orientations.

3 Results

The results of the two adaptations are presented in Fig. 7.
Figure 8 displays clinical images of the proximal femur for
comparison.

The metamodel adaptation resulted in a larger volume of
trabecular bone (39, 500 mm?) compared to the control adap-
tation (35,000 mm?). The number of trabecular elements
reduced from 18,766 initially to 3864, and 10,873 at the end
of the metamodel and the control adaptations, respectively.
Consistent with these quantities, the trabecular lattice appears
denser yet finer following the control adaptation in compar-
ison with the metamodel.

The main trabecular groups described in literature (Singh
et al. 1970), as well as Ward’s triangle, can be observed
clearly for the metamodel, and to a lesser extent in the con-
trol. Characteristic structural features of the human proximal
femur (Vahdati et al. 2014; Fyhrie and Carter 1990) includ-
ing dense cross-shaped area in the centre of the head where
primary compressive and tensile trabecular groups meet and
sparser neck and greater trochanter are also visible in the
density plots shown in Fig. 9. When multiplied by solid bone
volumetric mass density of 2 g/cm® (Keaveny et al. 2003),
the density distributions calculated in both models compare
well with measures reported in literature (Fyhrie and Carter
1990; Yang et al. 2012), ranging from around 0.2 —0.3 g/cm?
in the neck and the greater trochanter, to close to solid bone
(1.8 g/cm?) in some areas of the head. These density plots
also illustrate the high heterogeneity of the structures gener-
ated, with some important structural features including part
of the primary compressive and greater trochanter groups
not being picked up in the chosen longitudinal slice. This is
particularly visible in the metamodel structure, which also
presents a clearer Ward’s triangle and a sparser distal region
where the proximal femur transitions into the shaft. It should
be noted that the density plots only consider trabecular bone,
whose domain is larger in the metamodel than in the control
due to the elements repositioning. For this reason, the prox-
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Fig. 7 Adapted proximal
femurs. Frontal posterior cuts of
the cortex are displayed in grey.
Trabecular elements across the
full depth of the bone are
displayed in red (radius

r > 0.5 mm ) and light yellow
(r < 0.5 mm), with their
cross-sectional area halved for
clarity. The elements in the
smallest category (near-zero
radius) are not displayed (a)
Generalised metamodel (b)
Control algorithm

(b)

Fig. 8 Clinical images of the human proximal femur a Photography of a longitudinal cut, b von Meyer (1867) anatomical drawing of the trabecular

tracts (adapted by Phillips (2012))

imal femur contours on both density plots appear slightly
different, although the same femur outer shape was used for
both models.

Figs. 10 and 11 illustrate the degree of anisotropy in the
generalised metamodel and control trabecular structures. In
the generalised metamodel structure, the major trabecular
orientation shows a good correlation with the main trabec-
ular group orientations displayed in Fig. 8b and reported in
literature (von Meyer 1867; Enns-Bray et al. 2014; Kersh
et al. 2013). This is particularly true for the primary com-
pressive group, the greater trochanter group and the thin
secondary compressive group. It is also highly visible for
the part of the primary compressive group which appears

on this slice. In the control model, the alignment of the
major trabecular orientations with clinical observations is
less evident. Some consistency is observed in the primary
tensile group and in the primary and secondary compressive
groups. However, significant variations in major orienta-
tion are observed between consecutive cells, which does
not allow the definition of smooth trabecular trajectories
spanning several centimetres. Consistent with these observa-
tions, the distributions of trabecular orientations at selected
locations show a small number of well-defined trabecular
orientations spanning the areas in the generalised metamodel
while trabecular orientations are more spread out in the con-
trol model.
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(a)

0.4

0.2

(b)

Fig. 9 Density measures (volume of bone over surrounding total volume) in 10-mm-thick longitudinal slices of the trabecular structures, going
through the centre of the femoral head with in-plane resolution of 4 mm. a Generalised metamodel, b Control algorithm

4 Discussion

The overall directionality of the trabecular groups is better
defined on the structure resulting from the metamodel than
on the control adaptation structure. The visibly smoother tra-
becular lines shown in Figs. 7a and 10 compared to Figs. 7b
and 11 illustrate the reorientation capabilities of the meta-
model. In addition, the major trabecular orientations of the
metamodel are more consistent with observations on native
femur slices or clinical images reported in the literature (von
Meyer 1867; Koch 1917; Enns-Bray et al. 2014; Kersh et al.
2013) than the major orientations of the control. Further-
more, the main orientations measured in location 1 in the
metamodel are consistent with the intersection of the pri-
mary compressive and tensile groups as depicted in Fig. 8b.
Similarly, the main orientations measured in location 3 in the
metamodel are consistent with the intersection of the primary
tensile and secondary compressive groups. The main orien-
tations measured in location 2 suggest a strong prevalence of
elements aligned with the primary tensile group, as would be
expected from clinical observations. It should be noted that
weightings have been used to measure degrees of anisotropy
in this study. For this reason, a small number of thin elements
with non-prevalent orientations can exist which do not impact
these measures and will not be visible on the polar plots if
their own weighting is negligible. Rough alignment of the
trabecular orientations with the primary tensile group tracts
is clearly visible from the polar plots at all three locations
in the control model. However, the existence of clear other
trabecular trajectories is negated by the high number of tra-

@ Springer

becular orientations of similar importance measured, which
is inconsistent with clinical observations (von Meyer 1867;
Koch 1917). In conclusion, the metamodel results in better
alignments of its main trabecular orientations with the proxi-
mal femur trabecular tracts described in literature (von Meyer
1867; Koch 1917; Enns-Bray et al. 2014; Kersh et al. 2013)
which strongly highlights the improvement brought by the
metamodel to the accuracy of bone structure representation.
From qualitative assessment of the metamodel structure in
Figs. 7a, and quantitative measures in Fig. 10b and 10d,
it appears that the intersections of trabecular tracts are not
orthogonal. In his drawings, von Meyer (1867) did not report
them as orthogonal. However, Wolff (1869) later admon-
ished him for what he considered as an omission. To this day,
the debate between supporters (Koch 1917; Pauwels 1950;
Hayes and Snyder 1981) and critics (Zschokke 1892; Carter
etal. 1989; Skedros and Baucom 2007) of Wolff’s trajectorial
theory is not settled. Although conducted at low resolution
with simplified loading scenarios, the present study is more
in line with the latter. Several authors have suggested that
the non-orthogonal intersections of trabeculae in the human
proximal femur may represent a more optimal design for
resisting shear stresses (Skedros and Baucom 2007; Pida-
parti and Turner 1997), presumably more prevalent in the
human femoral neck than in other bones such as the calcanei
of deer or sheep where orthogonal intersections of trabecular
tracts have been observed (Lanyon 1974).

Both adapted structures present numerous thick elements,
with a radius close to the upper limit, in localised areas.
This is due in part to the chosen scale and the low initial
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Fig. 10 Measures of the degree of anisotropy in the generalised meta-
model trabecular structure. a Major trabecular orientations in the
longitudinal 10-mm-thick slice going through the centre of the head
with in-plane resolution of 4 mm. Grey level is indicative of the in-plane
component of this orientation (dark shades indicate close-to-in-plane
orientations). Space is left empty when not enough trabecular material

connectivity, which limited the initial number of elements,
and thus the opportunities to spread the load, yielding high
load transfer through the elements localised near the points
of load application. In addition, only a very small subset of
loading scenarios representative of daily activity loading was
applied to these models; a broader range of load cases would
act against excessive specific specialisation of the structure
(Phillips et al. 2015; Villette 2016). Future work should con-
sider investigating a reorientation adaptation based on the
average of the reorientations predicted for each individual
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(d)

is present to compute orientations. (b,c,d) Normalised weighted dis-
tribution of trabecular orientations within 10-mm large cubic partition
cells defined in (a). Angular coordinates are representative of orienta-
tions and radial coordinates are representative of their prevalence. The
orientations are projected in the (YZ) plane

load case, rather than considering only the load case respon-
sible for the highest strain on the beam central axis as was
done here.

Realignment of trabecular elements is supposed to reduce
bending in the structure and thus increase the structural effi-
ciency of the modelled bone architecture. For this reason, the
higher bone volume resulting from the metamodel adaptation
compared to the control adaptation is unexpected. However,
the control algorithm only takes into account the normal
strain measure on the central axis of the beam; high sur-
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Fig. 11 Measures of the degree of anisotropy in the control algorithm
structure. a Major trabecular orientations in the longitudinal 10-mm-
thick slice going through the centre of the head with in-plane resolution
of 4 mm. Grey level is indicative of the in-plane component of this ori-
entation (dark shades indicate close-to-in-plane orientations). Space is
left empty when not enough trabecular material is present to compute

face strains arising from bending are thus not considered
when driving the adaptation, which partly explains the lower
required bone volume compared to the metamodel. In order to
clarify this point, a modified version of the control algorithm
was run, driven by the normal strain of maximum amplitude
over the whole beam cross section. The resulting trabecular
volume amounted to over 110, 000 mm?3, close to three times
the trabecular bone volume required in the metamodel. This
observation supports the argument in favour of a higher struc-
tural efficiency of the metamodel over the control model. In
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orientations. (b,c,d) Normalised weighted distribution of trabecular ori-
entations within 10 mm large cubic partition cells defined in (a). Angular
coordinates are representative of orientations, and radial coordinates are
representative of their prevalence. The orientations are projected in the
(YZ) plane

addition, it should be noted that a trabecular group is form-
ing in the medial cortex region beneath the femoral head
in the metamodel adaptation, which is not observed in the
control adaptation. Trabecular beam elements growing in the
medial cortex region amount to about 4000 mm? in the meta-
model adaptation, compared to only 800 mm? in the control
adaptation. This phenomenon accounts for over half of the
difference in trabecular bone volume between the two adap-
tations.
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The metamodel adaptation algorithm presented in this
study does not support beam elements redefinition. For this
reason, new connections between elements, or merging of
superposed elements is not allowed, and neither are bifurca-
tions or suppression of load paths. Further developments of
the algorithm will focus on implementing these capabilities.

It is thought that growth of trabecular beam elements in
the medial cortex region originates from the particular cor-
tical representation used in the authors’ models. The shell
elements used to represent bone cortex present a reduced
number of nodes, only present on the outer femoral sur-
face. For this reason, load transfer between beam and shell
elements is limited to a reduced number of points on the
outer surface. Alignment of interconnected beam elements
overlapping with the shell thickness is likely to increase
the efficiency of the load transfer mechanism in this region.
Future versions of the structural models may benefit from a
more comprehensive representation of the transition between
cortical and trabecular bones. For example, use of continuum
shell elements, with twice as many defining nodes as the con-
ventional shell elements, could be considered.

The number of 50 iterations used here was arbitrarily set,
although the stabilisation of the structural adaptation in the
preceding iterations was qualitatively checked. Further work
should focus on the implementation of a quantitative conver-
gence criterion to control the number of iterations required.

The quadratic beam model of the proximal femur model
used here counts 18,766 beam elements and a total of 150,000
variables. Its CPU time to run load Case 1 is 20s. This is a sig-
nificant increase in computational efficiency when compared
to a purely microscale poroelastic model used to derive the
relationships defining the metamodel (Villette and Phillips
2016), which requires around 9s to run a simple load case
on a single trabeculae, equivalent to one single beam, which
would correspond to around 47 h for a full proximal femur
model. Based on these considerations, the metamodel allows
for an increase in computational efficiency of around four
orders of magnitude. However, it should be noted that the
use of quadratic beams, required to use the metamodel, has
a cost in terms of computational efficiency compared to the
truss models previously used by the authors (Phillips et al.
2015). Indeed, the truss model equivalent to the proximal
femur model used here counts only 30,000 variables, and
runs in 7s.

5 Conclusion

A metamodel developed based on two-dimensional
microscale poroelastic remodelling analyses (Villette and
Phillips 2016) was generalised to a three-dimensional lattice
of multiple trabecular elements. It was applied to a sim-
ple structural model of a proximal femur made of around

19,000 elements, submitted to a simplified set of loading
cases, and was able to capture realignment of trabecular ele-
ments consistent with the main trabecular groups observed
in the native femur. With a CPU time of 20s to run a sim-
ple load case, this model has strong potential for an effective
compromise between accuracy of bone structure representa-
tion and computational efficiency. The main limitation of the
bone remodelling metamodel at this stage is the lack of defi-
nition and implementation of a convergence criterion, which
should be prioritised in future work.

Future work will include the adaptation of long bones
made of a finer mesh, submitted to more representative
load cases, for increased resolution, and better assessment
of the capabilities of the metamodel when compared to the
purely phenomenological models (Phillips 2012; Phillips
et al. 2015; Geraldes and Phillips 2015).

In addition to the improvement they can bring to bone
remodelling predictions at meso- to macroscales incompat-
ible with mechanistic models of cellular biology and bio-
chemistry, the poroelastic model and the derived metamodel
present potential for use within multiscale and multiphysics
approaches, typically where living cells would be considered.
For instance, it makes it possible to consider a combined
model with poroelastic regions where localised cell mechan-
ical stimulus is of interest, while conserving computational
efficiency in the majority of the volume of the model. The
metamodel could also be adapted to take into account alter-
ation of cellular mechanotransduction, such as a reduced
threshold for stimuli sensing, or a modified response to
stimuli, with applications in osteoporosis and osteoarthritis
investigation.
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