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Abstract

Background: Circulating lipoproteins improve the outcome of severe Gram-negative infections through neutralizing
lipopolysaccharides (LPS), thus inhibiting the release of proinflammatory cytokines.

Methods/Principal Findings: Low density lipoprotein receptor deficient (LDLR2/2) mice, with a 7-fold increase in LDL, are
resistant against infection with Salmonella typhimurium (survival 100% vs 5%, p,0.001), and 100 to 1000-fold lower bacterial
burden in the organs, compared with LDLR+/+ mice. Protection was not due to differences in cytokine production,
phagocytosis, and killing of Salmonella organisms. The differences were caused by the excess of lipoproteins, as
hyperlipoproteinemic ApoE2/2 mice were also highly resistant to Salmonella infection. Lipoproteins protect against
infection by interfering with the binding of Salmonella to host cells, and preventing organ invasion. This leads to an altered
biodistribution of the microorganisms during the first hours of infection: after intravenous injection of Salmonella into
LDLR+/+ mice, the bacteria invaded the liver and spleen within 30 minutes of infection. In contrast, in LDLR2/2 mice,
Salmonella remained constrained to the circulation from where they were efficiently cleared, with decreased organ invasion.

Conclusions: plasma lipoproteins are a potent host defense mechanism against invasive Salmonella infection, by blocking
adhesion of Salmonella to the host cells and subsequent tissue invasion.
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Introduction

Salmonella infections are a significant cause of morbidity and

mortality, despite preventive measures and the availability of

antibiotics. A major virulence factor of Salmonella is lipopolysa-

charide (LPS) [1,2], and Salmonella strains with a reduced LPS

expression have a poor growth under stress conditions and are less

virulent [2]. In addition, LPS induces proinflammatory cytokines

and is essential for internalization of Salmonella by host cells [3].

Interaction of LPS with cellular receptors is essential and

therefore, strategies aimed at blocking this interaction may have

a therapeutic potential in invasive infections.

Lipoproteins bind and neutralize bacterial LPS, and they

prevent the induction of potentially harmful proinflammatory

cytokines such as IL-1b and TNFa [4]. In experimental models,

administration of lipoproteins protects against endotoxic shock [5–

7]. Low density lipoprotein receptor deficient (LDLR2/2) mice

have a 7 times higher LDL-cholesterol level than control mice. We

have shown previously that LDLR2/2 mice survive longer and

have lower proinflammatory cytokine concentrations than control

mice after LPS challenge, as well as after infection with Klebsiella

pneumoniae [8]. In addition, LDL administration can protect against

Gram-negative microorganisms through its neutralizing effects on

LPS [9].

Although Salmonella is a Gram-negative organism, the clinical

picture and inflammatory response in systemic Salmonella infections

(e.g., typhoid fever) differs from that in other Gram-negative sepsis

[10]. This is most likely due to the behaviour of Salmonella as

facultative intracellular pathogens, and to the fact that the pattern

of cytokine induction differs from other Gram-negative infections.

In mice, TNFa is undetectable in the circulation until several days

after S. typhimurium infection, whereas TNFa rises at 1 hour after

extracellular Gram-negative infection [11]. The level of cytokine-

mia during Salmonella infections does not reach the toxic levels seen

in endotoxic shock, and inhibition of TNFa during Salmonella

infection worsens the outcome [12,13].

Considering these differences in the pathogenesis of Salmonella

and extracellular Gram-negative infections, one would envisage

either beneficial effects of lipoproteins on the host resistance to

Salmonella through blockade of cellular internalization, or delete-

rious effects by blocking the induction of cytokines by Salmonella

LPS that are required for the activation of host defense. In the
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present study, we investigated the effect of lipoproteins on the

outcome of Salmonella infection.

Methods

Animals
Homozygous C57Bl/6J mice lacking low density lipoprotein

receptors (LDLR2/2) and their wild-type littermates (C57Bl/6J

LDLR+/+) were obtained from Jackson Laboratory (Bar Harbour,

ME) [8]. Homozygous apolipoprotein E (ApoE)-deficient mice on

a C57Bl/6 background were obtained from the Transgenic

Facility of Leiden University Medical Center, Leiden, The

Netherlands [14]. Six to eight weeks old littermate LDLR+/+
and LDLR2/2 mice were used, weighing 20–25 grams. The

animals were fed standard laboratory chow and housed under

specific pathogen free conditions. The experiments were approved

by the Ethics Committee for animal experiments at the Radboud

University Nijmegen.

Salmonella typhimurium infection
A serum-resistant strain of S. typhimurium (phage type 510) was

grown by overnight incubation at 37uC in nutrient broth (BHI

Oxoid). Mice were injected i.v. or i.p. with 16102 cfu of S.

typhimurium. Survival was assessed daily for 21 days in groups of at

least 20 animals. On day 1, 3 and 7 after infection, mice were

killed by cervical dislocation and blood for cytokines or organs for

outgrowth of the microorganisms were collected. For this purpose,

the liver and spleen were removed aseptically, and bone marrow

was flushed from the femur aseptically with 1 ml of sterile saline.

The number of viable Salmonella organisms was determined by

plating several dilutions on Brilliant Green agar (BGA) plates. The

results were expressed as log cfu per gram of tissue.

Distribution of Salmonella cfu
In a separate experiment, Salmonella cfu (105/mouse) were

injected i.v. Distribution was determined in blood, liver and spleen

after 30, 60, 120 and 360 minutes by plating serial dilutions of

blood and homogenized tissue samples on BGA plates. Groups of

5 mice were used for each time point.

Intracellular killing of S. typhimurium by peritoneal
phagocytes

Phagocytosis and intracellular killing of S. typhimurium was

assessed in vitro using peritoneal macrophages and PMN of

LRLR+/+ and LDLR2/2 mice. Exudate peritoneal neutrophils

(PMN) were harvested 4 h after an i.p. injection of 10% proteose

peptone, and exudate macrophages 72 h after i.p. injection of

proteose peptone. 56105 cells in 100 ml of RPMI were dispensed

into 96-well flat bottom plates (Costar) and incubated at 37uC and

5% CO2. To assess phagocytosis, 16105 Salmonella organisms/mL

were incubated on the phagocyte monolayers at 37uC in RPMI

with 10% serum. After 15 min, supernatants were aspirated and

the monolayers were gently washed with medium to remove

uningested bacteria. The supernatants were plated on BGA agar

(the non-phagocytozed fraction). To assess intracellular killing, the

wells containing the cells with phagocytosed bacteria were scraped

with a plastic paddle and washed with 200 ml distilled H2O to lyse

the phagocytes. The number of viable bacteria was determined by

plating serial dilutions on BGA plates.

In vitro cytokine production
Resident peritoneal macrophages were harvested from perito-

neal cavity, and cells were resuspended in RPMI 1640 containing

1 mM pyruvate, 2 mM L-glutamine and 100 mg gentamicin per

ml, and incubated (105/well) in 96-wells microtiter plates (Costar).

Heat-killed (30 min, 100uC) S. typhimurium (106 microorganisms in

100 mL of RPMI) were added to peritoneal macrophages and

incubated at 37uC in 5% CO2. After 24 h, the supernatants were

collected and stored at 270uC until assayed. To the macrophages

in the monolayer, 200 mL of RPMI was added and the cells were

disrupted by three freeze-thaw cycles to determine the cell-

associated cytokine contents.

Cytokine measurements
TNFa, IL-1a and IL-1ß concentrations were determined using

specific radioimmunoassays (RIA), as previously described [8]. To

assess cytokine mRNA expression, total RNA from spleen cells

24 hours after infection was isolated as described [15]. The following

primers were used for the PCR reactions: GAPDH, sense, 59–

AACTCCCTCAAGATTGTCAGCA–39, and antisense, 59–TCC-

ACCACCCTGTTGCTGTA–39; TNFa, sense, 59–TCTCAT-

CAGTTCTATGGCCC–39, and antisense, 59–GGGAGTAGA-

CAAGGTACAAC– 39; IL-1a, sense, 59-CAGTTCTGCCATT-

GACCATC-39, and antisense, 59-TCTCACTGAAACTCAG-

CCGT-39, IL–1b, sense, 59–TTGACGGACCCCAAAAGATG–

39, and antisense, 59–AGAAGGTGCTCATGTCCTCA–39 (Euro-

gentec, Seraing, Belgium). After checking the reactions to be in the

log phase, thirty PCR cycles were performed with sets at 92uC for

30 sec., 55uC for 30 sec., and 72uC for 90 sec., using a Mastercycler

5330 (Eppendorf). PCR products were run on 2% agars gels stained

with ethidium bromide. The gels were scanned on a densitometer

(GS–670, Bio-Rad) and analyzed using Molecular Analyst software

(Bio-Rad). The relative amount of TNFa, IL-1a and IL–1b mRNA

in a sample was expressed as a ratio versus the amount of mRNA for

the housekeeping gene GAPDH.

Growth of Salmonella in vitro
To investigate the effect of lipoproteins on microbial growth in

vitro, 0.56103 cfu S. typhimurium in 0.5 mL BHI were incubated

with 0.5 mL of plasma obtained from control C57Bl/6J mice, or

from LDLR2/2 mice and ApoE2/2 mice. After 2, 7, 12 and

24 hours, aliquots of 0.1 mL were removed, serial dilutions were

plated on BGA agar, and cfu were counted after overnight

incubation at 37uC.

Effect of lipoproteins on interaction of Salmonella with
monocytes and endothelial cells

To assess the effect of lipoproteins on the production of

cytokines, S. typhimurium LPS (10 ng/mL; Sigma) and heat-killed

(30 min, 100uC) S. typhimurium (107 organisms/mL) were preincu-

bated with lipoprotein-depleted plasma (LPDP) or isolated LDL

[16] at various concentrations for 60 min, before being added to

the macrophages of LDLR+/+ mice (105/well). The production of

TNFa after 24 h stimulation was measured as described above,

and expressed as relative TNF production compared to controls in

LPDP.

To assess the effect of lipoproteins on the attachment of

Salmonella to vascular endothelial cells, S. typhimurium were

resuspended to 66108/ml in 0.01 mg/ml FITC (Fluka) in

0.05 M carbonate-bicarbonate buffer (pH 9.5). After incubation

for 15 min at room temperature in the dark, FITC-labeled

Salmonella cells were washed twice in PBS containing 1% BSA and

subsequently incubated with isolated 1.1 mmol/L LDL for

4 hours, or with LPDP as a negative control. The human

endothelial cell line (HMEC-1) (CDC Atlanta, GA) was cultured in

MCDB131 medium supplemented with 10% fetal calf serum,
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EGF (10 ng/ml), hydrocortison (1 mg/ml), and glutamine at 37uC
and 5% CO2,. 16105 HMEC-1 cells were trypsinized and

incubated for 1 hour with 36109 FITC-labeled S. typhimurium,

which were preincubated with either LDL or LPDP. After

incubation, the non-bound Salmonella was thoroughly washed off,

after which the cells were fixated with 2% paraformaldehyde in

PBS and analyzed for binding of FITC-labeled Salmonella by flow

cytometry using the FACScalibur (BD Biosciences).

Statistical analysis
Survival of groups of mice was compared by the Kaplan-Meyer

log-rank test. Differences in concentrations of cytokines and in

organ counts of the microorganisms were analyzed by the Mann-

Whitney U test. Differences were considered significant at P,.05.

All the experiments were at least performed in duplicate.

Results

Outcome of Salmonella infection in LDLR2/2 mice
The total cholesterol concentrations were significantly higher in

the uninfected LDLR2/2 mice than in their wild-type littermates

(9.661.1 mmol/L vs. 2.360.5 mmol/L). After i.v. infection with

102 cfu of S. typhimurium, only 5% of the LDLR2/2 mice died,

whereas the mortality of control LDLR+/+ was 100% within

12 days of infection (P,.001; Fig. 1). A similar difference in

mortality was apparent when mice were infected intraperitoneally

with S. typhimurium (10% mortality in LDLR2/2 mice, vs. 100%

mortality in control LDLR+/+ mice, p,0.01). The reduced

mortality to infection in LDLR2/2 mice was accompanied by a

markedly reduced bacterial load in the organs (Fig. 2). On day 7 of

infection, the differences between the control and LDLR2/2

mice approached 10,000-fold (P,.001; Fig. 2).

Intracellular killing of Salmonella by cells from LDLR+/+
and LDLR2/2 mice in vitro

The numbers of Salmonella CFU phagocytized by neutrophils

and macrophages of LDLR2/2 and LDLR+/+ mice were

similar (Fig. 3A). In addition, the intracellular killing assay

demonstrated that neutrophils and macrophages of LDLR2/2

mice and LDLR+/+ mice did not differ in their ability to kill S.

typhimurium intracellularly (Fig. 3B). The killing rate did not differ

when lipoprotein-rich serum of LDLR2/2 mice was coincubated

with LDLR+/+ control macrophages, and likewise, serum from

LDLR+/+ mice did not affect the killing of Salmonella by LDLR2/

2 macrophages (not shown).

Circulating cytokines during Salmonella infection
On day 1, cytokine concentrations in all samples were under the

detection limit. No detectable concentrations of IL-1ß (,20 pg/

ml) were found at any time point during the infection. On day 3,

IL-1a and TNFa were under the detection limit in LDLR2/2

mice, while TNFa concentrations tended to be slightly higher

(45610 pg/ml) in LDLR+/+ mice (n.s.). On day 7, circulating

concentrations of IL-1a and TNFa were significantly higher in

LDLR+/+ than in LDLR2/2 mice: 95663 pg/ml vs

30610 pg/ml for IL-1a (P,0.02) and 11406290 pg/ml vs

4366 pg/ml for TNFa (P,0.01) (Fig. 4A). These differences

were most likely due to the greater amounts of Salmonella in the

LDLR+/+ mice, leading to increased cytokine stimulation.

Figure 1. LDLR2/2 mice are more resistant to S. typhimurium
infection. Survival of LDLR2/2 and LDLR+/+ C57Bl/6J mice after i.v.
injection of 102 S. typhimurium. n = 20/group.
doi:10.1371/journal.pone.0004237.g001

Figure 2. Outgrowth of S. typhimurium in the organs of LDLR+/+ and LDLR2/2 mice. Outgrowth of S. typhimurium in the liver, spleen and
bone marrow of LDLR2/2 and control (LDLR+/+) C57Bl/6J mice after i.v. injection of 102 cfu. Each point represents the mean6SD for at least 10
animals. Significant differences between LDLR2/2 and LDLR+/+ mice are indicated (*, P,.01; **, P,.001; Mann-Whitney U test).
doi:10.1371/journal.pone.0004237.g002
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Importantly, the differences in cytokine concentrations were not

secondary to an intrinsically deficient cytokine production in the

organs of the LDLR2/2 mice: the amounts of TNF and IL-1b
mRNA in the spleens of LDLR+/+ and LDLR2/2 mice on day

1 of infection was similar (Fig. 4B). No differences in the expression

of IL-1a mRNA were observed either (not shown). In line with

this, peritoneal macrophages of LDLR2/2 and LDLR+/+ mice

stimulated with heat-killed Salmonella produced similar amounts of

TNFa in vitro: unstimulated macrophages, 194691 pg/ml and

186655 pg/ml, macrophages coincubated with heat-killed Salmo-

nella, 5506166 pg/ml and 5206135 pg/ml for LDLR2/2 and

LDLR+/+ mice, respectively (P..05).

Resistance of ApoE2/2 mice to Salmonella infection
To investigate whether the increased lipoprotein concentrations

in another model of hyperlipoproteinemia can also protect against

salmonellosis, hyperlipoproteinemic ApoE2/2 mice (total serum

cholesterol, 16.163.7 vs. 1.960.2 mmol/L [14]) were infected i.v.

with 102 cfu of S. typhimurium. Whereas little differences were

apparent on day 1 of infection, the outgrowth of Salmonella on day

3 and 7 after the infection was 100 to 1000-fold less in the liver and

spleen of ApoE2/2 mice compared to that in ApoE+/+ control

animals (Fig. 5).

Effect of lipoproteins on the growth of S. typhimurium in
vitro

To test whether lipoproteins have a direct inhibitory effect on

the growth of Salmonella, plasma isolated from control mice

(cholesterol concentration 2.3 mmol/L) and hyperlipoproteinemic

plasma from either LDLR2/2 or ApoE2/2 mice (cholesterol

concentrations, 9.6 and 16.1 mmol/L) was added to the culture.

The growth curves of Salmonella were similar in broth with plasma

obtained from all mouse strains (Fig. 6A).

Inhibition of the interaction of Salmonella with
monocytes and endothelial cells by lipoproteins

Because lipoproteins are known to bind and neutralize LPS, we

preincubated Salmonella LPS and heat-killed whole Salmonella

bacteria with LDL at various concentrations, and subsequently

stimulated normal (LDLR+/+) macrophages for cytokine produc-

tion. As shown in Fig. 6B, TNFa production induced by S.

typhimurium is reduced in the presence of elevated LDL

concentrations. To assess the effect of lipoproteins on the

attachment of Salmonella to endothelial cells, FITC-labelled S.

typhimurium was preincubated with LDL. Their attachment to

endothelial cells was significantly reduced compared to that of

Salmonella preincubated with lipoprotein-free plasma, as shown by

both reduction of the percentage of cells binding Salmonella (97%

cells bound LDPD-Salmonella, whereas only 82% cells bound LDL-

Salmonella), as well as the mean fluorescence intensity per cell (41%

reduction, from 56 to 33 conventional units) (see also Fig. 6C).

Protection against organ invasion by Salmonella in
LDLR2/2 mice

To investigate whether hyperlipoproteinemia influences the

early organ invasion from the bloodstream by Salmonella, we

determined the early distribution of the microorganisms after i.v.

injection of 105 S. typhimurium cfu. Blood from LDLR2/2 mice

contained significantly more Salmonella cfu than that of LDLR+/+
mice 30 minutes after injection (P,0.01), but an efficient

elimination of the microorganisms occurred during the next

6 hours (Fig. 7A). The numbers of cfu in the liver and spleen were

70–80% lower in LDLR2/2 mice than those in LDLR+/+ mice

at 30 minutes after injection, and remained lower throughout the

experiment, the difference between mouse strains being significant

at 30, 60, 120 and 360 minutes for the liver (Fig. 7B, P,0.05) and

at 30 and 60 minutes for the spleen (Fig. 7C, P,0.05).

Discussion

In the present study, we demonstrate that hyperlipoproteinemic

mice are resistant against S. typhimurium infection. The protection

was not due to the absence of the LDLR in the knock-out mouse

strain, but to a direct effect of hyperlipoproteinemia. The

beneficial effect of lipoproteins was exerted by blocking the

interaction of Salmonella with host cells, including endothelial cells

and monocytes, which led to inhibition of organ invasion. This

resulted in an altered distribution of the microorganism to the

organs of the host, and increased survival.

It has previously been shown that lipoproteins bind and

neutralize LPS, with beneficial effects in Gram-negative infections

[5–8]. As S. typhimurium is an LPS-containing Gram-negative

bacterium, and Salmonella LPS plays a crucial role in cytokine

stimulation [17] and induction of mortality in vivo [18], an

Figure 3. Phagocytosis and killing of S. typhimurium by
neutrophils and macrophages of LDLR2/2 mice. Phagocytosis
of S. typhimurium after 15 min incubation, and intracellular killing of S.
typhimurium after 4 h, by proteose peptone-elicited peritoneal
neutrophils and macrophages. Data are expressed as percentage of
the initial number of microorganisms. No significant differences
between LDLR2/2 and LDLR+/+ were found.
doi:10.1371/journal.pone.0004237.g003
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improved survival of LDLR2/2 mice during systemic S.

typhimurium infection would have been expected. Indeed,

LDLR2/2 mice were less susceptible to S. typhimurium infection,

but this was not due to blunted cytokine production, as we

observed undetectable or low cytokine circulating concentrations

during the infection in the LDLR2/2 and LDLR+/+ mice. In

addition, the expression of cytokine mRNA was similar in the

organs of LDLR2/2 and LDLR+/+ mice. Thus, the cytokine

response is not responsible for the mortality due to systemic S.

typhimurium infection in this model, and the major difference is the

almost complete absence of Salmonella in the organs of the

LDLR2/2 mice.

The low circulating cytokine response during systemic S.

typhimurium infection may be attributed to the facultative

intracellular nature of the organism. It should be noted that at

later time points during the infection, the LDLR+/+ mice

Figure 4. In-vivo cytokine production in LDLR+/+ and LDLR2/2 mice infected with S. typhimurium. LDLR2/2 and control (LDLR+/+)
C57Bl/6J mice were infected i.v. with 102 cfu of S. typhimurium. After 1, 3 or 7 days, groups of 5 mice/group were sacrificed, and circulating
concentrations of cytokines in the plasma were measured by specific ELISA. In a separate experiment, TNF and IL-1b mRNA in the spleens of LDLR+/+
and LDLR2/2 mice was assessed by semi-quantitative RT-PCR, and expressed as ratio to GAPDH mRNA expression. Data are presented as
means6SD, *p,0.05.
doi:10.1371/journal.pone.0004237.g004

Figure 5. Outgrowth of S. typhimurium in the organs of ApoE+/+
and ApoE2/2 mice. Outgrowth of S. typhimurium in the liver and
spleen of ApoE2/2 and control (ApoE+/+) C57Bl/6J mice after i.v.
injection of 102 cfu. Each point represents the mean6SD for at least 10
animals. Significant differences between ApoE2/2 and ApoE+/+ mice
were found for both liver and spleen on days 3 and 7 (p,0.01).
doi:10.1371/journal.pone.0004237.g005

Figure 6. The effect of LDL on the interaction between S.
typhimurium and the host cells. The growth of S. typhimurium was
identical in plasma harvested from control C57Bl/6, LDLR2/2 or
ApoE2/2 mice (upper panel). Preincubation of Salmonella LPS or heat-
killed S. typhimurium with various concentrations of LDL led to a
significantly diminished stimulation of TNF when added on normal
macrophages (middle panel). Similarly, preincubation of FITC-labelled S.
typhimurium with LDL led to a diminished adhesion of the microor-
ganisms to vascular endothelial cells, when compared with the
lipoprotein-deficient serum (LPDS).
doi:10.1371/journal.pone.0004237.g006
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Figure 7. Hyperlipoproteinemia inhibits organ invasion by S. typhimurium. Distribution of S. typhimurium to the blood (cfu/ml), the liver
(cfu/organ), and the spleen (cfu/organ) at various time points after i.v. injection of 105 Salmonella cfu. Each point represents the mean6SD for at least
5 animals. Significant differences between LDLR2/2 and LDLR+/+ mice are indicated (*p,0.05; **p,0.01; Mann-Whitney U test).
doi:10.1371/journal.pone.0004237.g007
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exhibited a greater cytokine response than did LDLR2/2 mice,

and this is likely due to the 1000-fold greater bacterial burden in

the control mice, leading to substantial stimulation of the host

response.

We hypothesized that the decreased bacterial growth in the

LDLR2/2 mice may be a result of enhanced phagocytosis and

intracellular killing of Salmonella organisms in these mice. However,

this proved not to be the case: phagocytosis and subsequent

intracellular killing of the organisms by both neutrophils and

macrophages did not differ between LDLR2/2 and LDLR+/+
mice. Another reason for protection could have been the absence of

the LDL receptor in the knock-out mice. Toxoplasma gondii is known

to use the host LDLR for cholesterol acquisition [19], whereas

penetration of cells by Pseudomonas exotoxin A is mediated through

LDLR-related protein [20,21]. Thus, use of the LDLR by Salmonella

during organ invasion could be envisaged, but was ruled out by the

observation that hyperlipoproteinemic ApoE2/2 mice, which

have an intact LDLR, also were resistant to Salmonella infection. In

addition, LDL affected the adhesion of S. typhimurium to LDLR-

bearing endothelial cells. This demonstrates that elevated lipopro-

tein concentrations, and not the lack of LDLR itself, are responsible

from the resistance of mice against Salmonella infection.

Theoretically, there are several mechanisms that could account

for the beneficial effects of the lipoproteins on Salmonella infection.

Firstly, a direct effect of lipoproteins on the growth of Salmonella

could be envisaged. In this respect, it is of interest that HDL has

been found to be cidal against Trypanosoma cruzi [20]. However, the

growth of Salmonella was similar in the plasma of LDLR2/2,

ApoE2/2 and control mice, excluding a direct antimicrobial

effect of LDL. Secondly, lipoproteins may interact with Salmonella,

putatively with its LPS component, and thus block bacterial

binding and internalization by host cells. As LPS is crucial for the

internalization of Salmonella [22], blocking the interaction between

LPS and host cells may prevent subsequent tissue invasion.

Indeed, preincubation of Salmonella with LDL led to reduced

cytokine production, demonstrating that lipoproteins are able to

inhibit the interaction of Salmonella with monocytes. Even more

relevant for tissue invasion, preincubation of Salmonella with LDL

significantly reduced its attachment to endothelial cells. This

protective mechanism in which lipoproteins block Salmonella

interaction with endothelial cells by their blockade of LPS

represents the same type of mechanism as previously shown by

the blockade of MSCRAMMs (microbial surface components

recognizing adhesive matrix molecules) of Staphylococcus by

naturally occurring antibodies, resulting in the inhibition of

staphylococcal adhesion to endothelial cell and reduced tissue

invasion [23].

Interaction of Salmonella with host cells likely is an important

early step in the pathogenesis of invasive infection. The ability to

infect tissue macrophages has been described as an invasive trait of

intracellular bacteria such as Salmonella spp. [24], and attachment

to endothelial cells is the first step in organ invasion by Salmonella

from the bloodstream. The hypothesis that lipoproteins are able to

directly modify organ invasion by Salmonella, was tested by

assessing early distribution of Salmonella organisms in LDLR2/2

and LDLR+/+ mice after i.v. injection of a large bacterial load.

Indeed, we observed that invasion of Salmonella organisms into the

liver and spleen of LDLR2/2 mice was markedly lower than that

in control mice. The difference in clearance of bacteria between

the two strains of mice was already apparent within 30 minutes

after injection. In this early phase of infection, the numerical

balance between bacterial burden and host defense mechanisms in

the tissues will determine the outcome of infection, and the

LDLR2/2 mice start with a substantial advantage over control

animals. In contrast to the LDLR+/+ mice, the vast majority of

Salmonella organisms in the LDLR2/2 remain sequestrated in the

circulation, where are eliminated by complement and neutrophils,

known to efficiently clear Salmonella from the bloodstream [25].

Blocking tissue invasion by lipoproteins is not unique for Salmonella,

as others have reported that VLDL inhibits liver invasion by

Plasmodium sporozoites, leading to protection against malaria [26].

The precise molecular interaction between Salmonella and

lipoproteins remains to be elucidated, but the bacterial LPS is

the most likely candidate to be involved. Salmonella is known to

interact with host cell Toll-like receptor (TLR)-4 through its LPS

component [17,27], and this signaling mechanism is likely blocked

by binding of lipoproteins to the LPS. The exact nature of the

lipoprotein particle responsible for interaction with Salmonella has

yet to be identified. Phospholipids have been shown to mediate

LPS neutralization, but protein components, such as apolipopro-

tein E, have also been reported to bind LPS [28]. Our findings in

the apoE- and LDLR-deficient mice, which are also protected

against salmonellosis, however, point to a binding site other than

apoE. In addition to TLR4, the macrophage scavenger receptors

[29], and the cystic fibrosis transmembrane conductance regulator

protein [30] are probably involved in the entry of Salmonella into

cells. Whether the interaction of these receptors with Salmonella is

also influenced by lipoproteins remains to be elucidated.

In conclusion, plasma lipoproteins appear to be an important

host defense mechanism against invasive Salmonella infection. A

direct and rapid interaction between lipoproteins and Salmonella in

the bloodstream occurs, preventing the invasion of the microor-

ganisms from the bloodstream into the organs. These new insights

improve the understanding of the pathogenesis of Salmonella

infection, and could ultimately lead to the design of new

therapeutic strategies.
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