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Abstract

Bar-coded pyrosequencing has been increasingly used due to its fine taxonomic resolution and high throughput. Yet,
concerns arise regarding the reproducibility of bar-coded pyrosequencing. We evaluated the run-to-run variation of bar-
coded pyrosequencing in detecting bacterial community shifts and taxa dynamics. Our results demonstrate that
pyrosequencing is reproducible in evaluating community shifts within a run, but not between runs. Also, the reproducibility
of pyrosequencing in detecting individual taxa increased as a function of taxa abundance. Based on our findings: (1) for
studies with modest sequencing depth, it is doubtful that data from different pyrosequencing runs can be considered
comparable; (2) if multiple pyrosequencing runs are needed to increase the sequencing depth, additional sequencing
efforts should be applied to all samples, rather than to selected samples; (3) if pyrosequencing is used for estimating
bacterial population dynamics, only the abundant taxa should be considered; (4) for less-abundant taxa, the sequencing
depth should be increased to ensure an accurate evaluation of taxon variation trends across samples.
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Introduction

Advances in DNA and RNA sequencing technologies, i.e. 454

pyrosequencing [1], have allowed more sequences to be investi-

gated and thus more taxa within environmental microbial

communities to be identified. Although some other next-genera-

tion sequencing techniques, e.g., Illumina and Applied Biosystems

SOLiD platforms, have higher sequencing throughput than 454

platforms, pyrosequencing remains valuable because of its long

read length compared to other next-generation sequencing

techniques, which allows potentially more accurate read annota-

tion in ecological applications [2]. Therefore pyrosequencing, after

supplanting molecular fingerprinting approaches and Sanger

sequencing, remains an important tool in microbial community

studies [3,4].

Although a huge number of sequence reads can be achieved in a

single run, the application of pyrosequencing is limited by the high

cost of each run. However, a relatively low number of sequences

(thousands) per sample are generally sufficient for most research

questions in microbial ecology, since aims are usually to explore

community shifts and taxa dynamics at phylogenetic levels of

genera and above, rather than to describe entire communities at

the individual operational taxonomic unit (OTU) level [3,5].

Moreover, for a given sequencing effort and cost, keeping the

number of sequences per sample modest allows for a more robust

experimental design, because more samples, replicates, and

treatments can be included [6,7]. To facilitate analyzing large

numbers of samples simultaneously, bar-coded pyrosequencing

has entered wide use; this allows a single 454 pyrosequencing run

(picotitre plate) to process hundreds of samples [8,9].

A large number of studies have used bar-coded pyrosequencing

to explore microbial community shifts and taxa dynamics along

various environmental gradients including in pH [10], nitrogen

[11], heavy metals [12], elevated CO2 [13], warming [14] and

drought [15]. In such studies, microbial community differences

along the gradient are assumed to exceed the variations due to the

methods that are used to analyze the community. Yet, this

assumption has not been well tested [16]: the sparse literature has

in some cases supported [4] but in others contradicted this

assumption [17]. Variations in microbial community analysis can

arise at several steps: environmental sample collection, DNA

extraction, DNA amplification, amplicon analysis, and data

analysis. Minimal methodological variations would be ideal at

the stage of amplicon analysis, compared to prior steps, so that

intrinsic community differences between samples are not confused

with technological limitations.

To quantitatively examine the extent to which run-to-run

variation of bar-coded pyrosequencing affects the results of
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microbial community and population analyses, we used a 454

Genome Sequencer FLX platform to sequence the same bar-

coded amplicon library three times: twice on one sequencing plate

and the third on a separate half-plate. Our results demonstrate

that pyrosequencing is reproducible in evaluating community

shifts within a run, but not between runs. Also, the reproducibility

of pyrosequencing in detecting individual taxa increased as a

function of taxa abundance.

Materials and Methods

Soil samples and experiment design
Soil samples were collected from an engineered nanoparticle

(ENP) exposure experiment [18], with four experimental repli-

cates per ENP treatment (control, 2 mg g21 soil of nano-TiO2,

and 0.5 mg g21 soil of nano-ZnO) and sampling time (day 15 and

60). Samples without ENPs were used as controls, and four

additional control samples were stored at day 0 for characteriza-

tion of the baseline soil conditions. A total of 28 soil samples were

used to prepare a bar-coded amplicon library that was sequenced

three times: twice on one sequencing plate and the third on a

separate half-plate. Because the same amplicon library was used,

this provides a unique opportunity to separately evaluate

pyrosequencing run-to-run and within-run variations, in the

absence of other variations typically occurring in microbial

community analysis. With this experimental design, we aimed to

examine run-to-run variations and reproducibility of bar-coded

pyrosequencing when examining bacterial community shifts and

taxa dynamics.

Bar-coded amplicon library preparation
The bar-coded amplicon library was prepared, based on a

previously described procedure [19]. In brief, soil DNA was

extracted from 0.3 g soil using the Powersoil DNA Isolation Kit

(Mo Bio, Carlsbad, USA) according to the manufacturers’

instructions. Genes encoding 16S rRNA were PCR-amplified

using unique bar-coded primers [8], following the PCR conditions

and thermal cycling scheme described previously [19]. For each

sample, triplicate PCR runs were pooled to reduce random PCR

bias. PCR products were purified using the QIAquick PCR

Purification Kit (Qiagen, Valencia, USA), and quantified using the

Quant-iT DNA Assay Kit, High Sensitivity (Invitrogen, Eugene,

USA). The purified PCR products from each sample were equally

pooled by amount, and concentrated to form a bar-coded

amplicon library that was used for pyrosequencing [19].

Pyrosequencing and sequence preprocessing
Pyrosequencing was performed on a 454 Genome Sequencer

FLX platform using Titanium chemistry (Roche, Branford, USA).

The sequences achieved were preprocessed to remove low-quality

sequences and noise using the AmpliconNoise function in QIIME

[20,21]. In brief, the plain-text flowgram file of each technical

replicate was quality filtered using the default parameters of

AmpliconNoise, truncated to 400 bp, and split into one file per

sample based on the unique barcodes. For each split file,

PyroNoise scripts, SeqNoise scripts, and Perseus scripts were

respectively conducted to remove sequencing errors, single base

PCR errors, and PCR chimeras using the default parameters of

AmpliconNoise. After AmpliconNoise screening, qualified se-

quences from all samples and technical replicates were merged

Figure 1. Principal coordinates analysis (PCoA) showing that although each of the three technical replicates was sufficient to reveal
community shift in response to nano-TiO2 and nano-ZnO (a–c and e–g), bacterial communities derived from technical replicate 3
distinctly separated from the other replicates (d and h). Bacterial community dissimilarity was characterized by Bray-Curtis
distance (a–d) and weighted-UniFrac distance (e–h). Technical replicates 1 and 2 were conducted on the same pyrosequencing plate, while
technical replicate 3 was sequenced on a separate half-plate.
doi:10.1371/journal.pone.0099414.g001
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into one file. The merged file was used to cluster qualified

sequences into universal OTUs (at a 0.03 cutoff) for Bray-Curtis

distance-based community analysis. Phylogenetic trees were also

clustered using the merged file for Weighted-Unifrac distance-

based community analysis, as described previously [19]. To

increase the reliability of community comparison among samples

with different sequencing depths, we rarefied the qualified

sequence counts of all samples to the smallest sequence count

(637) among samples through a random subsampling process, and

conducted our analyses using the rarefied sample-OTU matrix

[19,22]. To examine bacterial population dynamics, qualified

sequences from all samples and technical replicates were also

assigned to a set of hierarchical taxa (phylum, class, order, family,

and genus) using the program Classifier in the Ribosomal

Database Project (http://rdp.cme.msu.edu/classifier/). The pyro-

sequencing reads have been deposited in the National Center for

Biotechnology Information Sequence Read Archive (NCBI SRA)

with an Accession number SRP041081.

Statistical Analysis
Principal coordinates analysis (PCoA) was used to illustrate the

effects of different technical replicates of pyrosequencing (both

within and between plates) on the estimation of community shift. A

Mantel test with 999 permutations was used to test whether

different technical replicates of pyrosequencing can reveal similar

patterns of bacterial community shifts. Analysis of variance

(ANOVA) was used to examine the effects of ENP treatments,

pyrosequencing runs, and technical replicates on community

dissimilarities (Bray-Curtis and Weighted-Unifrac distances). A

Pearson correlation of the relative abundance of each taxon

between technical replicates of pyrosequencing was used to

estimate the reproducibility of technical replicates in detecting

individual taxon variations across samples. Regression analysis was

used to quantitatively predict the number of sequences needed to

ensure robust reproducibility when using pyrosequencing to

estimate individual taxon variations across samples. The ‘‘Meta-

stats’’ function in Mothur [23,24] was used to determine which

taxa were responsible for shifting the samples between pyrose-

quencing runs and between ENP treatments.

Analyses were conducted using either Mothur [24], QIIME

[20], R (http://www.r-project.org/), or SigmaPlot (Systat Soft-

ware, San Jose, USA).

Results and Discussion

We first used principal coordinate analysis (PCoA) to illustrate

the effects of different technical replicates of pyrosequencing (both

within and between plates) on the estimation of community shift.

We found that each of three technical replicates was sufficient to

reveal bacterial community shifts in response to ENP exposure, as

reflected by the distinct separation between controls and nano-

Figure 2. Bray-Curtis distances within and between treatments, technical replicates, and runs, showing that community
dissimilarities within and between replicates on the same sequencing plate (technical replicates 1 and 2) were almost identical (a),
while community dissimilarities within and between pyrosequencing runs were significantly different (b). The lines represent the
mean distances of different groups (within replicates/runs + within treatments, between replicates/runs + within treatments, within replicates/runs +
between treatments, between replicates/runs + between treatments). Lines labeled by the same letter do not differ at a P value of 0.05. Con, control;
Ti, nano-TiO2 (2.0 mg g21 soil); Zn, nano-ZnO (0.5 mg g21 soil). Exposure time is indicated by the numerical suffix; e.g., Con15 represents the control
at day 15.
doi:10.1371/journal.pone.0099414.g002
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TiO2 or nano-ZnO treated samples (Fig. 1a–c and e–g). These

results indicate that pyrosequencing, whether conducted in the

same plate (run) or in a separate plate, is highly reproducible for

revealing bacterial community shifts of this magnitude. This was

also suggested by the significant pair-wise correlations (R.0.6, P,

0.05 for all combinations) of community dissimilarities derived

from three technical replicates (Fig. S1).

However, when we plotted the results of three technical

replicates in the same PCoA graph, a distinct run-to-run

pyrosequencing effect was observed (Fig. 1d and h). For each

sample, the bacterial community resolved from the second

pyrosequencing run (technical replicate 3) separated from com-

munities resolved from the first pyrosequencing run (technical

replicates 1 and 2), while communities resolved from technical

replicates 1 and 2 overlapped each other. This was also suggested

by the direct comparisons of community dissimilarities using

analysis of variance (ANOVA): for both Bray-Curtis distance

(Fig. 2) and Weighted-Unifrac distance (Fig. S2), community

dissimilarities within and between replicates on the same

sequencing plate (replicates 1 and 2) were almost identical, while

community dissimilarities within and between pyrosequencing

runs were significantly different (P,0.05 for both distances).

Notably, community dissimilarities between pyrosequencing runs

but within treatments were as high as (for Weighted-Unifrac

distance), or significantly higher than (P,0.05 for Bray-Curtis

distances), community dissimilarities between treatments but

within pyrosequencing runs. These results indicate that, compared

to the variations within a pyrosequencing run, the run-to-run

variation of pyrosequencing in evaluating a community may be

relatively high, i.e., high enough to indicate a community shift

where in fact one might not exist. A previous study also reported

batching effects (i.e. identical samples sequenced at the same

sequencing facility and between facilities) that may confuse the

interpretation of microbial community data [22].

We also examined the effects of different technical replicates of

pyrosequencing on the estimation of individual taxon variations

across samples. To do that, we examined the Pearson correlation

of the relative abundance of each taxon between technical

replicates of pyrosequencing. Theoretically, a maximum correla-

tion coefficient of 1 should be expected if individual taxon

variations across samples could be equally resolved within different

technical replicates. We found that, for all pair-wise combinations

of technical replicates, the correlation increased as a function of

the detected number of sequences (Figs. 3 and S3). These results

indicate that it is only for the abundant taxa that variation trends

across samples can be resolved repeatedly by different technical

replicates. To quantitatively predict the number of sequences

needed to ensure robust reproducibility when using pyrosequenc-

ing to estimate individual taxon variations across samples, the

measure of reproducibility (Pearson correlation coefficient) was

exponentially or linearly regressed against the detected number of

sequences at different taxonomic levels (Fig. 3). Based on the

regression equations, we predicted that, to ensure relatively robust

reproducibility, e.g. Pearson correlation coefficient .0.6, the

number of sequences detected for a specific taxon should be .

2362 sequences per sample (see also Table S1 for the predicted

number of sequences at different taxonomic levels). Until such

numbers have been reached, plate-to-plate variation can mask real

population variations.

Based on the estimated cutoff, we next used the ‘‘Metastats’’

function in Mothur [23,24], a non-parametric test, to determine

which taxa are responsible for shifting the samples between runs

and between treatments. The results showed that, within the 42

classified taxa whose detected number were .23 sequences per

sample, 36 taxa were responsible for the observed variation

between run 1 and run 2 (P,0.05, Table S2), and that 40 taxa

were responsible for the observed difference between the control

and ENP treatments (P,0.05, Table S3). Although we identified

the taxa that are responsible for the run-to-run variation, it

remains unknown whether this variation is cause by random

sampling artifacts during pyrosequencing (emulsion PCR and

detection) [17,25], or by systematic instrument errors. Based on

general sampling theory, a recent study has reported that random

sampling processes could be an important factor causing high

percentages of technical variations for sequencing-based tech-

niques [25].

Our findings have several implications for using bar-coded

pyrosequencing to evaluate bacterial community shifts and

taxonomic population dynamics. First, although each technical

replicate revealed a similar overall pattern of biological commu-

nity shift, the different pyrosequencing runs were not equivalent in

resolving communities at finer resolution (Figs. 1, 2 and S2).

Therefore, for those studies with modest sequencing depth, i.e.

around 1000 sequences per sample, caution should be taken in

interpreting data from different pyrosequencing runs [17,22]. For

example, in this study, bacterial communities in 0-day and 15-day

controls overlapped each other. However, if bacterial communities

in 0-day controls are evaluated by the first pyrosequencing run

(either technical replicate 1 or 2), while bacterial communities in

15-day controls are evaluated by the second pyrosequencing run

(technical replicate 3), a community shift between 0-day and 15-

day controls would be falsely revealed by PCoA. Furthermore, if

multiple pyrosequencing runs are needed in order to increase the

sequencing depth, additional sequencing efforts should be applied

for all samples, rather than for some selected samples.

Second, our results demonstrated that the reproducibility of

pyrosequencing in detecting individual taxon variations across

samples increased as a function of the detected number of

sequences (Fig. 3). Therefore, to use pyrosequencing to estimate

bacterial population dynamics, the taxa should be constrained to

abundant taxa, i.e. the detected number should be .2362

sequences per sample (Table S1), since their variation trends

across samples can be analyzed more reproducibly (Pearson

correlation coefficient .0.6). On the other hand, for some less-

represented taxa, if their variation trends across samples need to be

examined, the sequencing depth should be increased to ensure an

accurate evaluation [4]; otherwise, a high uncertainty may exist

[17].

Supporting Information

Figure S1 Significant pair-wise correlations (P,0.05) of
community dissimilarities derived from three technical
pyrosequencing replicates. Bacterial community dissimilarity

was characterized by Bray-Curtis distance (a–c) and weighted-

UniFrac distance (d–f). Technical replicates 1 and 2 were

Figure 3. Plots of the reproducibility between technical replicates of taxon relative abundance (calculated as Pearson correlation
coefficients) versus the number of detected sequences, showing that the reproducibility of bar-coded pyrosequencing in detecting
individual taxon dynamics increased as a function of the detected number of sequences.
doi:10.1371/journal.pone.0099414.g003
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conducted on the same pyrosequencing plate, while technical

replicate 3 was on a separate half-plate.

(TIF)

Figure S2 Weighted-Unifrac distances within and be-
tween treatments, technical replicates, and runs, show-
ing that community dissimilarities within and between
replicates on the same sequencing plate (technical
replicates 1 and 2) were almost identical (a), while
community dissimilarities within and between pyrose-
quencing runs were significantly different (b). The lines

represent the mean distances of different groups (within replicates/

runs + within treatments, between replicates/runs + within

treatments, within replicates/runs + between treatments, between

replicates/runs + between treatments). Lines labeled by the same

letter do not differ at a P value of 0.05. Con, control; Ti, nano-

TiO2 (2.0 mg g21 soil); Zn, nano-ZnO (0.5 mg g21 soil). Exposure

time is indicated by the numerical suffix; e.g., Con15 represents

the control at day 15.

(TIF)

Figure S3 The Pearson correlation of the relative
abundance of each taxon between technical replicates
at the phylum level. Technical replicates 1 and 2 were

conducted on the same pyrosequencing plate, while technical

replicate 3 was on a separate half-plate. A strong (R.0.6) and

significant (P,0.05) correlation indicates a robust reproducibility

of pyrosequencing in detecting individual taxon variations across

samples. Each scatterplot matrix shows the results of a specific

bacterial phylum, and the detected number of sequences for that

phylum is shown in the brackets. Each scatterplot shows the

relationship of relative abundance between two technical repli-

cates, which are denoted on the diagonal. The Pearson correlation

coefficient for that scatterplot is shown on the corresponding upper

right panel, with red color indicating at least P,0.05 (*, P,0.05;

**, P,0.01; ***, P,0.001). The histogram in the diagonal plot

shows the frequency distribution of relative abundance derived

from a specific technical replicate.

(TIF)

Table S1 The predicted number of sequences that is
needed to ensure robust reproducibility, e.g. Pearson
correlation coefficients of 0.6, 0.7 and 0.8, when using
pyrosequencing to estimate individual taxon variations
across samples. Technical replicates 1 and 2 were conducted

on the same pyrosequencing plate, while technical replicate 3 was

on a separate half-plate.

(PDF)

Table S2 Taxa responsible for shifting the samples
between run 1 and run 2.

(PDF)

Table S3 Taxa responsible for shifting the samples
between control and ENP treatment.

(PDF)
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