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Abstract
The hepatitis B virus (HBV) and the human immunodeficiency virus type 1 (HIV-1) can infect

cells of the lymphatic system. It is unknown whether HIV-1 co-infection impacts infection of

peripheral blood mononuclear cell (PBMC) subsets by the HBV. Aims To compare the

detection of HBV genomes and HBV sequences in unsorted PBMCs and subsets (i.e., CD4

+ T, CD8+ T, CD14+ monocytes, CD19+ B, CD56+ NK cells) in HBV mono-infected vs.

HBV/HIV-1 co-infected individuals.Methods Total PBMC and subsets isolated from 14

HBV mono-infected (4/14 before and after anti-HBV therapy) and 6 HBV/HIV-1 co-infected

individuals (5/6 consistently on dual active anti-HBV/HIV therapy) were tested for HBV

genomes, including replication indicative HBV covalently closed circular (ccc)-DNA, by

nested PCR/nucleic hybridization and/or quantitative PCR. In CD4+, and/or CD56+ subsets

from two HBV monoinfected cases, the HBV polymerase/overlapping surface region was

analyzed by next generation sequencing. Results All analyzed whole PBMC from HBV

monoinfected and HBV/HIV coinfected individuals were HBV genome positive. Similarly,

HBV DNA was detected in all target PBMC subsets regardless of antiviral therapy, but was

absent from the CD4+ T cell subset from all HBV/HIV-1 positive cases (P<0.04). In the CD4

+ and CD56+ subset of 2 HBV monoinfected cases on tenofovir therapy, mutations at resi-

dues associated with drug resistance and/or immune escape (i.e., G145R) were detected in
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a minor percentage of the population. Summary HBV genomes and drug resistant variants

were detectable in PBMC subsets from HBV mono-infected individuals. The HBV replicates

in PBMC subsets of HBV/HIV-1 patients except the CD4+ T cell subpopulation.

Introduction
Hepatitis B virus (HBV) and human immunodeficiency virus type 1 (HIV-1) co-infection is
common due to shared modes of transmission with an estimated 4 million co-infected people
worldwide [1]. Compared to HBV mono-infected patients, chronic hepatitis B and HIV-1 co-
infection increases the risk of end-stage liver disease and the development of cirrhosis and pri-
mary liver cancer or hepatocellular carcinoma [2–4].

Although HBV is predominantly a hepatotropic virus, it has been shown to infect lymphoid
cells [5]. In the closely related woodchuck animal model of HBV, woodchuck hepatitis virus
(WHV) infection can be completely restricted to the lymphatic system andWHV invasion of
lymphoid cells is related to the viral load [6,7]. In human studies, HBV genomes are detectable
in peripheral blood mononuclear cells (PBMC)s from HBV mono-infected patients despite
suppressive anti-HBV nucleos/tide analog (NA) therapy [8], in patients after resolution of
acute hepatitis B with HBV surface antigen (HBsAg) clearance [9,10], and in circulating
transplacental PBMC from HBV positive mothers possibly leading to in utero infection of the
neonate [11]. Productive HBV replication is evidenced by the detection of HBV antigens, mes-
senger RNA (mRNA), HBV covalently closed circular DNA (cccDNA) and integrated forms in
PBMC and extrahepatic tissues such as, bone marrow cells, spleen, and lymphoblastoid cell
lines [12,13]. Additionally, upregulation of HBV replication in PBMC occurs following ex-vivo
mitogen stimulation and the release of viral particles capable of further infection and replica-
tion from these HBV infected PBMC [14]. HBV genomes and viral proteins have been detected
within a variety of immune cell subpopulations and in some reports the virus appears to specif-
ically target B cells and monocytes [15–18]. The pathogenic relevance of HBV lymphotropism
is unknown, but epidemiological studies suggest an increased risk of lymphatic disorders
including chronic lymphocytic leukemia and Non-Hodgkins lymphoma [19–22]. Moreover,
unique HBV variants in PBMCs, including immune escape mutants, have been linked to vac-
cine failure and recurrence of HBV infection after liver transplant [23–27].

In HBV/HIV-1 co-infected patients, HBV genomes, replicative forms, and viral antigens
have been detected within total PBMC [28–30]. The HIV-1 primarily replicates within CD4
+ T lymphocytes but can also infect myeloid cells, including macrophages and dendritic cells
leading to the acquired immunodeficiency syndrome (HIV/AIDS). HBV immune cell co-infec-
tion may reflect the HBV immune status, disease phase, as well as the risk of HIV-1 related dis-
ease including lymphoproliferative disorders [31]. Few studies have evaluated HBV carriage
and genome carriage within PBMC and specific immune cell subsets of HBV monoinfected or
in HBV/HIV-1 positive patients on potent NA therapy targeting the HBV polymerase. We
hypothesize that co-infection with HIV-1 will affect HBV detection in CD4+/CD8+ T cells,
CD14+ monocytes, CD19+ B and/or CD56+ NK cells as compared to HBV mono-infection.

Results

Summary of Patient clinical and virological data (Table 1)
In total, 14 treatment naïve HBV mono-infected patients and 6 HBV-HIV co-infected patients,
5/6 on highly active antiretroviral therapy (HAART) were enrolled. All patients were HCV
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antibody negative. HBV genotyping was available in 3 HBV monoinfected cases and found to
have HBV genotype B (ID#1) and C (ID#3), and D (ID#8). At the time of enrolment, 7/14
HBV mono-infected were HBV e antigen (HBeAg) positive (+) / anti-HBe-negative (-) with a
median plasma HBV DNA of 5.4 X 105 IU mL-1 (<20–3.6 x 107 IU mL-1 or*100–1.8 x 106

virus copies mL-1), median alanine aminotransferase of 47.5 IU L-1 (range 23–236 IU L-1),
and 3/14 had moderate to severe liver fibrosis by transient elastography or liver stiffness mea-
surement. Follow-up blood samples were collected from 5/14 HBV mono-infected cases, of
which 4/5 had started anti-HBV therapy (e.g. tenofovir or entecavir, median duration 22.6
months, range 16–32) with suppressed plasma HBV DNA as determined by a kinetic PCR
assay (COBAS TaqMan HBV, Roche Molecular Systems). In addition, 6 HBV-HIV co-infected
patients were enrolled. In the HBV/HIV-1 co-infected cohort, 3/6 were HBeAg(+)/anti-HBe
(-), 5/6 were consistently treated with highly active antiretroviral therapy (HAART), with
median HBV DNA 313 IU mL-1 (<55–690 IU mL-1 or ~ 300–3.5 x 103 virus copies mL-1),
median ALT 43 (range 15–54 IU L-1), median CD4+ T cell count 240 cells/mm3 (114–800
cells mm3–1) and median HIV-1 RNA<40 copies mL-1 (<40–104 copies mL-1). One HBV/
HIV-1 co-infected patient was intermittently compliant with antiviral therapy (HBV-HIV
ID#3) and had low-level plasma HBV viremia (<100 copies mL-1). In the co-infected cases the
HBV genotype was not done or could not be determined by line probe assay, especially if the
patient was on suppressive antiviral therapy with suppressed HBV DNA In plasma. Overall,
both the HBV mono-infected and HBV/HIV-1 co-infected cohorts had comparable clinical
parameters except for significantly lower plasma HBV DNA levels in the HBV/HIV-1 co-
infected cohort on HAART as compared to the HBV mono-infected treatment naïve cohort
(P< 0.01) (Table 1). The difference in HBV DNA detection in plasma in the treatment naïve
HBV monoinfected versus HBV/HIV coinfected is likely due to the effect of HAART with dual
anti-HBV/HIV activity (i.e., Tenofovir, Lamivudine or Emtricitabine).

Table 1. Summary of clinical information from 6 HBV/HIV-1 coinfected and 14 HBVmono-infected
patients.

Variable HBV Mono-infected HBV/HIV-1 Coinfected

Sex N = M/F 14 = 13M/1F a 6 = 5M/1F

Median Age, years (range) 46.2 (26–62) 45 (22–60)

HBeAg Positive, N 7/14 3/6

Median HBV DNA, IU/mL (range)
b

Baseline: 5.4 x 105 (<20–3.6 x 107); Follow
up: 3.6 x 102 (<10–1.7 x 103)

313 (<55–690)

Median alanine aminotransferase
(IU/L) (range)

47.5 (23–236) 43 (15–54)

Median CD4+ T cell (cells/mm3)
(range)

N/A c 240 (114–800)

Median HIV RNA, copies/mL
(range) d

N/A <40 (<40–104)

Liver Fibrosis Stage by Transient
Elastography, N

Stage 0–1 (N = 8), Stage 2 (N = 4), Stage
3–4 (N = 2)

Unknown

Antiviral Treatment 14/14 baseline Rx naïve, 1/5 follow up Rx
naïve, 4/5 follow up on anti-HBV Rx

5/6 on HAART with anti-
HBV activitye

a 5/14 follow-up samples (4/5 on therapy).
b HBV DNA tested using kinetic PCR (sensitivity <20 or <55 IU/mL, 100–300 copies/mL; TaqMan, Roche).
c normal CD4+ T cell count is 500 cells/mm3 to 1,000 cells/mm3.
d HIV RNA tested using real time PCR assay with sensitivity <40 or 75–1010 virus copies/mL (Abbott

m2000).
e HAART—highly active antiretroviral therapy.

doi:10.1371/journal.pone.0137568.t001
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Detection of HBV genomes in whole PBMC and cell subsets from HBV
mono-infected patients (Table 2)
HBV DNA and/or replication-indicative HBV mRNA and cccDNA were detected in unsorted
PBMC isolated from 13/13 treatment naïve HBV mono-infected patients at baseline and in all
HBV monoinfected patients that subsequently started on anti-HBV NA (ID#1, 3, 8, 13)
(Table 2, S2 Fig). HBV genome analysis in specific immune cell subsets from either treatment
naïve or antiviral treated HBV mono-infected patients showed that HBV DNA was detectable
in all subset types regardless of whether HBV replication in their plasma was suppressed with
highly potent anti-HBV nucleos/tide analog therapy. Thus, there was no significant difference
in the frequency of HBV DNA detection between cell subsets isolated from treatment naïve
compared to antiviral treated HBV mono-infected patients. The median HBV-cccDNA log
copy number in whole PBMC in treatment naïve HBV mono-infected patients was 4.2 (range
3.45–4.72 log10 copies/105 PBMC), and did not significantly differ from the median HBV
cccDNA copy number in HBV patients after starting on anti-HBV treatment (median 3.8,
range 3.6–3.9 log10 copies/105 PBMC) (P = 0.09) (Fig 1).

Table 2. Summary of HBV genome detection in whole peripheral bloodmononuclear cells and subsets isolated from 14 HBVmono-infected
patients.

HBV Mono-infected ID# PBMC Subset (HBV DNA) a Whole PBMC

CD4 CD8 CD14 CD19 CD56 DNA mRNA ccc DNA

1A + - - + + + + +

1B - N/A + N/A N/A + + +

2 + - - - - + + +

3A + - - + + + + +

3B + + + N/A + + + +

4 - - + + + + + +

5 N/A - - + - + + +

6 + + - + N/A + + +

7 + - + - - + + N/A

8A + - - + + + + +

8B + - + + + + + +

9 - + - - + N/A + N/A

10 + + + N/A + N/A N/A N/A

11 N/A N/A - - - + + +

12A + + - N/A - + + +

12B b + N/A + N/A - + + +

13A - + + - + + + +

13B + + - N/A N/A + + +

14 - - + - - + + +

Summary: HBV DNA+ Treatment Naïve, N 8/12 5/13 5/14 6/13 7/13 12/12 13/13 11/11

Summary: HBV DNA+, antiviral therapy c, N 3/3 2/3 3/4 1/1 2/2 4/4 4/4 4/4

a HBV DNA tested using HBV specific Core, Surface, and Polymerase primers. All subsets from HBV mono-infected cases tested HBV cccDNA negative.
b ID# 12B –follow up sample collected but patient treatment naïve.
c Follow up patient samples collected from # 1B, 3B, 8B, 13B after initiation of antivirals, all tested HBV DNA negative in serum according to a real-time

PCR.

N/A–samples excluded from PCR analysis if <80% cell purity by Flow Cytometry analysis or insufficient template. In some cases, all the whole PBMC

were seperated into cell fractions and there were no unsorted cells left-over available to test for HBV cccDNA.

doi:10.1371/journal.pone.0137568.t002
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Detection of HBV genomes in whole PBMC and individual cell subsets
from HBV/HIV coinfected patients (Table 3)
In 6/6 HBV/HIV-1 coinfected cases tested (5/6 on HAART and 1/6 intermittent compliance
with therapy) HBV DNA was found in at least one cell subset with the exception of the CD4+
T cell subpopulation (P<0.04) (Table 3). HBV cccDNA was also detected in CD8+ T and
CD56+ NK cell subsets from 3/6 HBV/HIV-1 co-infected patients. As confirmation, HBV
mRNA and HBV cccDNA was readily detectable in whole PBMC available from 2 HBV/HIV-
1 coinfected patients on HAART. HBV cccDNA quantification in the whole PBMC showed

Fig 1. Comparison of median HBV covalently closed circular (ccc) DNA copies in peripheral blood
mononuclear cells in HBVmono-infected (before and after antiviral treatment) and HBV/HIV-1 co-
infected patients. The HBV covalently closed circular (ccc)—DNA copies/peripheral blood mononuclear cell
(PBMC) were determined by quantitative PCR using a TaqMan probe and normalized to a housekeeping
gene (i.e., β-globin, β-glo). The HBV cccDNA copies/PBMC did not significantly differ between groups, i.e,
HBV treatment naïve mono-infected group (n = 11): median 4.2, range 3.4–4.7 log10 copies/105 PBMC; HBV
mono-infected on antiviral therapy (n = 4): median 3.8, range 3.6–3.9 log10 copies/105 PBMC; and HBV/HIV-
1 co-infected (n = 2) mean 3.8 copies/105 PBMC.

doi:10.1371/journal.pone.0137568.g001

Table 3. Summary of HBV genome detection in whole peripheral bloodmononuclear cells and subsets isolated from 6 HBV/HIV-1 coinfected
patients.

HBV/HIV-1 Co-infected ID# PBMC Subset HBV DNA and (cccDNA) a Whole PBMC

CD4+ CD8+ CD14+ CD19+ CD56+ DNA mRNA cccDNA

1 - + (-) - - N/A + + +

2 - - + N/A - N/A N/A N/A

3b - +(+) + + +(+) + + +

4 - - - - +(+) N/A N/A N/A

5 - +(+) - - +(+) N/A N/A N/A

6 N/A - + (-) + (-) + N/A N/A N/A

Summary: HBV DNA and/or ccc-DNA positive on HAART b 0/5 (P<0.04) 3/6 3/6 2/5 4/5 2/2 2/2 2/2

a HBV DNA tested using HBV specific Core, Surface, and Polymerase primers.
b HBV/HIV positive Case ID#3 intermittent compliance with antiretroviral therapy.

bold font in brackets indicates cccDNA test results. N/A–samples excluded from summary analysis if <80% cell purity by FACS. In most cases, all of the

PBMC collected was separated into cell fractions and thus analysis of unsorted (whole PBMC) was not possible.

doi:10.1371/journal.pone.0137568.t003
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the median log copy number was 3.8 (3.8–3.9 log10 copies/105 PBMC), which was compatible
to the cccDNA load found in whole PBMC of HBV mono-infected patients on anti-HBV NA
therapy (Fig 1).

Detection of HBV Drug Resistant and Immune Escape Variants in HBV
Monoinfected Immune Cell Subsets by Next Generation Sequencing
Analysis (Fig 2, S1 Table)
Deep sequencing analysis of HBV P/overlapping S gene sequences in 2 HBV monoinfected
patients after starting potent anti-HBV therapy (Case #3B and #8B) in CD4+ and/or CD56+
compartment showed the presence of drug resistant mutations in a minor percentage of the
population (range 0.03–3.8%). Both cases were on tenofovir therapy with undetectable HBV
DNA in plasma according to clinical PCR assay. In comparision, Sanger sequence analysis (~7
clones per sample) of each case #3B-CD56+ and #8B-CD56+) showed only wild type sequences
at these sites. Error rate estimation was determined by alignment and comparison of nucleotide
substitution prevalence in the NGS sequences from a plasmid clone (PCR amplified with NGS
adaptor tags) to Sanger-sequenced plasmid clones. A low prevalence of drug resistance muta-
tions was observed in the quasispecies of CD56+ samples from Case #3B and #8B, however
this was no fold—difference from the estimated error rate at each mutation site (S1 Table).
Case #3B also carried the classic HBV vaccine escape variant (i.e, G145R) in the CD4+ and
CD56+ compartment at ~2–4% of the total population. In the CD56+ sample of Case #3B, the
G145R variant was found in greater frequency in the plasmid control NGS data compared to
the percentage of mutation in the matching sample. Thus to determine the true prevalence of
immune escape variants within immune cell subsets requires confirmation in future studies
with more clinical samples (Fig 2, S1 Table) (GenBank Accession # pending).

Discussion
The aim of this study was to compare the presence of HBV genomes within whole (unsorted
PBMC) and immune cell subsets from HBV mono-infected and/or HBV/HIV-1 coinfected

Fig 2. Frequency (% of total reads) of HBV drug-resistant and immune escape (i.e., G145R) mutations
detected in CD4+ and/or CD56+ immune cell subset by deep sequencing analysis in 2 HBV
monoinfected cases (i.e., #3B and #8B) on tenofovir anti-HBV therapy.

doi:10.1371/journal.pone.0137568.g002
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individuals. In the current study we found HBV DNA, HBV cccDNA and mRNA in both
whole (unsorted) PBMC isolated from HBV mono-infected (either treatment naïve and after
starting anti-HBV therapy) and in HBV/HIV-1 co-infected patients on dual-active anti-HBV/
HIV therapy. In the current cohorts, HBV genomes were detected in all PBMC subset types,
with the exception of the CD4+ T cell subpopulation in HBV/HIV-1 co-infected cases.
Although Sanger sequencing analysis revealed only wild-type HBV at residues associated with
drug resistance or immune escape, deep sequencing analysis of viral sequences in immune cell
subsets (CD4+ and CD56+) from 2 HBV monoinfected cases (#3B and #8B) on tenofovir anti-
viral therapy revealed the presence of drug resistant variants in a minor percentage of the pop-
ulation. In Case #3B, the classic vaccine escape mutant (i.e., G145R) was also detected in both
the CD4+ T cell and the CD56+ T cell subset, albeit in greater frequency in the estimated error
rate based on the NGS-sequenced plasmid clone of the CD56+ samples (S1 Table), thus the
data requires confirmation in further studies.

Earlier studies show conflicting data with regard to infection of PBMC subsets by HBV. In
HBV mono-infected patients, HBV genomes were detected in all PBMC subsets, with no sig-
nificant difference in frequency [16]. Pasquinelli et al. detected HBV genomes but no replica-
tive forms in CD4+ and CD8+ T cells and B lymphocytes using a less sensitivie 32P-labelled
PCR probe hybridization assay (sensitivity ~4 x 108 virus copies μg-1 HBV DNA) [32]. Yoffe
et al. (using a similar less-sensitive hybridization assay) also detected HBV DNA in monocytes
and B cells, but HBV genomes were not found in the T and NK cell subset [15]. The discrep-
ancy between previous reports and the current study may be due to differences in PBMC subset
isolation and enrichment techniques, the enhanced sensitivity of our nested PCR/NAH and
quantitative PCR assay and the use of multiple HBV primers to detect HBV genomes. All HBV
mono-infected cell subsets did test negative for HBV cccDNA, despite testing positive for HBV
genomes using HBV C, S and P specific primers, and as well as testing positive for HBV
cccDNA in whole unsorted PBMC. This may be related to the limited template remaining
from the individual cell subsets to test for HBV cccDNA (after testing for HBV C, S and P spe-
cific gene fragments), as well as the overall low predominance of HBV cccDNA overall, affect-
ing detection after cell sorting.

In the current study, HBV genomes were detectable in PBMC, despite suppression of
HBV DNA in plasma (following initiation of anti-HBV NA in HBV monoinfected cases or in
HBV/HIV co-infected patients already on HARRT). This data is in agreement with our prior
studies showing persistence of the HBV genome, minor drug resistant, and possible immune
escape variants within PBMC in treatment naïve HBV infected individuals, patients on potent
anti-HBV therapy or in liver transplant recipients on HBV prophylaxis [8,25,33]. Other studies
have also described detection of the classic vaccine escape mutant (i.e., G145R) in the PBMC
compartment that was linked to vertical and intrafamilial horizontal occult (i.e., low-level)
HBV transmission [23]. Additionally, our studies in HIV-1 positive patients with occult hepati-
tis B infection on HAART clearly demonstrated the presence of HBV DNA and HBV ccc-
DNA in PBMC even despite absence of HBV DNA in the plasma compartment [34]. In the
current study, replicative-indicative HBV cccDNA and/or mRNA was detected in unsorted
PBMC of HBV mono-infected patients as well as unsorted PBMC and CD8+ T and CD56+
NK cells of HBV/HIV-1 coinfected patients. The detection of HBV mRNA and cccDNA within
unsorted PBMCs and subsets suggests active HBV viral replication in the lymphoid cell com-
partment [35]. Moreover, our recent work suggest that the unique biological conditions within
the PBMC, may allow HBV to persist and evolve differently within the PBMC compared to the
plasma or liver site [33]. HIV-1 co-infection may in turn change the biology of PBMC subsets
and alter their susceptibility to HBV infection.
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The mechanisms by which HIV-1 infection can potentially impact HBV infection in specific
PBMC subsets remain unclear. A study by Stacey et al. [36], documented that plasma cytokine
profiles of HIV-1 positive individuals as compared to HBV mono-infected individuals showed
sustained increases of IFN-α and monocyte chemotactic protein 1, lower increases of proin-
flammatory factors such as interferon gamma (IFN-γ) and late increases in immunoregulatory
cytokines like interleukin 10 (IL-10). Increased T-cell turnover and proinflammatory cytokines
observed during HIV-1 infection might alter the cytokine milieu affecting the susceptibility of
PBMCs to HBV infection. Alternatively, HIV-1 and HBV may directly compete for host cellu-
lar machinery. For example, the entry binding proteins for HBV (S proteins) and the HIV-1
envelope (Env, gp160) are membrane-associated proteins, and could interfere with each other
in the assembly process in HBV/HIV coinfected cells [37]. However, the possibility that one
virus would directly exclude infection by the other, would be unexpected given that the number
of HIV infected CD4+ T cells in the periphery is considered to be relatively low (i.e., ~1.4% of
the total subpopulation) [38].

The detection of false positive HBV genome signals is unlikely, as all experiments included
strict contamination controls and lab procedural precautions, and HBV DNA was not detected
in every PBMC subsets from individual patient samples. The inability to detect HBV genomes
in CD4+ T cells from HBV/HIV-1 coinfected samples is also not explained by the potentially
lower levels of CD4+ T cells in HIV-1 coinfected patients enrolled in this study. The median
CD4+ T cell count of the HBV/HIV-1 cohort was 240 cells mm3-1 (113–800 cells mm3-1) and
although CD4+ T cell counts were not determined in HBV mono-infected cohorts, the
expected normal range in HIV-1 negative individuals is ~500–1,000 cells mm3-1 [39,40]. In all
assays the target subset fractions were enriched and input HBV DNA template for PCR was
standardized. We acknowledge that future studies with additional clinical samples are planned
to confirm these findings.

In summary, the HBV can be detected in whole PBMC and in most immune cell subsets of
HBV mono-infected and HBV/HIV co-infected patients even despite potent anti-HBV nucleo-
side analog therapy, including the presence of drug resistant and potentially immune escape
variants in a minor percentage of the population. However, the HBV was excluded from CD4+
T cells of all HBV/HIV-1 co-infected patients tested. The study provides additional evidence
supporting the role for PBMCs to act as a viral reservoir for the HBV, and suggests that con-
comitant HIV-1 infection affects HBV lymphotropism. HBV immune system infection may
have clinical relevance regarding the natural history of HBV-related liver and extrahepatic dis-
ease in patients co-infected with HIV.

Materials and Methods

Patients, Clinical and Laboratory Tests
The local institutional review board (i.e., the University of Calgary conjoint health research eth-
ics board, CHREB) specifically approved the study (Ethics ID #16636 and #3220). All subjects
provided informed written consent according to the World Medical Association Declaration of
Helsinki. In total, 14 HBV mono-infected (13 M/1F, median age 46.2 y, range 26–62), and 6
HBV/HIV-1 co-infected (5M/1F, median age 45 y, range 22–60) patients were enrolled in our
study (Table 1). All patients tested hepatitis C virus (HCV) antibody negative. HBV genotyp-
ing was done in 3 HBV monoinfected cases by INNO-LiPA line probe assay (Innogenetics, N.
V., Ghent, Belgium). Chronic hepatitis B or HIV-1 co-infection was diagnosed according to
standard clinical, virological and serological criteria. The clinical and demographic data col-
lected included age, sex, co-morbid liver disease and antiviral therapy. Laboratory information
included CD4+ T cell count, HIV-1 and HBV plasma viral load, liver enzymes, and platelet
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count. Transient elastography (FibroScan1, Echosens, France) was used to assess stages of
liver fibrosis. HBV serologic markers included HBsAg, HBV e antigen (HBeAg), hepatitis B
surface antibody (anti-HBs), and HBe antibody (anti-HBe), were evaluated by commercial
chemiluminescent microparticle immunoassays (ARCHITECT Anti-HBsAg Qualitative, anti-
HBs; Abbott Diagnostics, Mississauga, ON, Canada). The HBV DNA levels in serum were
tested by PCR (COBAS TaqMan HBV test, detection limit<20–<55 IU mL-1 or*100–300
copies mL-1, Roche Molecular Systems, Inc., Branchburg, NJ, USA). The HIV-1 RNA was
tested using the Abbott Real Time HIV-1 assay m2000 (<40–107 virus copies mL-1, Abbott,
Mississauga, ON, Canada).

Whole PBMC Isolation, Cell Subset Purification, and Fluorescence-
Activated Cell Sorting Analysis (FACS)
Whole blood (~60–80 ml) was obtained from patients (N = 20) and healthy volunteers (N = 7).
Plasma was collected and PBMC were isolated on a Ficoll gradient. Approximately 2.0 x 107 of
whole PBMC were cryopreserved and the remaining cells divided into equal aliquots for the
positive selection of CD4+ T cells, CD8+ T cells, CD14+ monocytes, CD19+ B cells and
CD56+ NK cells with magnetic bead monoclonal human antibodies as per the manufacturer’s
instructions (MACS Miltenyi Biotec1, Auburn, CA, USA). The purity of the cell subsets (~ 106

cells from each fraction) were verified using dual color immunofluorescence flow cytometry
(BD Biosciences LSR II, San Jose, California) and analyzed with Kaluza software (Beckman
Coulter, Mississauga, Ontario) (S2 Fig). During all procedures, precautions were undertaken
to avoid cross-contamination and to standardize cell-sorting experiments. Samples with<80%
purity as determined by FACS analysis, were excluded in the final data analysis. The final
PBMC wash after isolation and the left—over flow-through following magnetic bead cell sepa-
ration was saved for PCR analysis (data not shown).

Nucleic acid isolation and detection of HBV genomes
Total PBMC and cell subsets were treated with DNase/trypsin to remove any adhering extra-
cellular viral particles [9]. Total DNA and RNA were isolated using commercial nucleic acid
extraction kits (Illustra TriplePrep kit, GE Healthcare, Chalfont St Giles, Buckinghamshire),
and/or by standard phenol-chloroform/ethanol precipitation method. Total RNA was isolated
from whole PBMC (13/14 HBV mono-infected and 3/5 HBV/HIV-1 co-infected) using TRI-
zol1 reagent (Roche technologies, CA, USA). The isolated total PBMC and cell subsets were
analyzed for HBV genomes using HBV specific core (C), surface (S), and polymerase (P) prim-
ers [8,25,41] via nested PCR/digoxigenin-antidigoxigenin detection (DIG) labelled probe
according to the manufacturer’s instructions (Roche Diagnostics, Manheim, Germany). PBMC
subsets which tested positive for HBV DNA with at least one HBV gene specific primer were
analyzed for HBV cccDNA (lower detection limit<102 virus copies mL-1), as described [25].
For detection of HBV mRNA, reverse transcription (RT) of total RNA to complementary (c)
DNA was done followed by nested PCR/NAH as described [9]. In addition, HBV cccDNA was
tested in whole PBMC by sensitive quantitative real-time assay (lower detection limit ~92
cccDNA copies mL-1). In brief, a 10-fold serial plasmid dilution with either a HBV cccDNA
insert or human β-globin (beta-glo) internal control was used to generate duplicate standard
curves. All reactions were set up in triplicate using PerfeCTa1 FastMix1 II, ROX™ (Quanta
Biosciences, Gaithersburg, MD, USA) with specific specific cccDNA primers and a TaqMan
labelled probe (5’- GTGCCTTCTCATCTGCCGG-3‘; 5’-GGAAAGAAGTCAGAAGGCAA-3’
and probe AGGCTGTAGGCATAAATTGGT) in parallel with homo β-globin primers and
probe (5’-CTGGGCAACGTGCTGGTCTG-3’; 5’-GGCAGAATCCAGATGCTCAAG-3’;
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probe TGCTGGCCCATCACTTTGGCAA). Rigorous precautions were taken against contam-
ination and all reactions included negative controls consisting of total PBMC and subsets from
healthy HIV-1 and HBV negative volunteers, mock water extractions, and reagents. All PCR
reaction mixes and samples were set up in different rooms and in laminar flow cabinets to min-
imize cross contamination with amplicons. The reverse transcription step for RNA detection
was carried out in parallel with and without reverse transcriptase enzyme to ensure specificity
for cDNA detection and not viral DNA carry-over. The positive control was a HBV genotype
A EcoR1 digested HBV genotype A DNA plasmid (kindly provided by Dr. T.I. Michalak).

Next Generation and Sanger Sequencing of HBV Genomes Detected in
Different HBV Immune Cell Subsets
To analyze HBV sequences carried within a specific immune cell subset for presence of drug
resistant and/or immune escape variants, the available remaining PCR amplified HBV
genomes from Cases #3B and #8B (after starting tenofovir therapy) were analyzed by Sanger
sequencing and next generation sequencing technology. In the other cases, which tested posi-
tive, the original PCR template was not available, or re-amplification using NGS adaptor-tag
primers was unsuccessful. NGS analysis of available HBV P gene amplicons from Cases #3B
CD4+ T cells, #3B-CD56+ T cells and #8B CD56+ T cells (i.e, “clinical samples”),were per-
formed by re-amplification in a nested PCR reaction using high fidelity polymerase (Phusion1,
New England Biolabs) and HBV specific Illumina index compatible primers with adaptor tags
(i.e., HBV Polymerase forward (nt 141–159) with overhang 5’-TCGTCGGCAGCGTCAGAT
GTGTATAAGAGACAG CAG GAT TCC TAG GAC CCC TGC-3’ and HBV Polymerase
reverse (nt 878–899) with overhang GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG
CCA TGA ART TAA GGG AAT AGC CCC-3’, amplicon size 710 bp), followed by sequencing
using the the Illumina-MiSeq platform (Illumina, Inc. San Diego, CA). To estimate the putative
error rate of experimentation and the Illumina system, the above amplicons were cloned
(~ 7 clones per sample) using the Topo-TA cloning system and all clones underwent Sanger
sequencing. In addition, an HBV plasmid clone for each sample was amplified with NGS over-
hang/adaptor tags for sequencing using the Illumina-MiSeq platform and compared to data
from the Sanger sequenced clones by alignment to determine the Illumina-associated error-
rate. The average sequencing depth for each plasmid or clinical sample by NGS was 2150x. The
assembled HBV Polymerase / overlapping Surface sequences were analyzed with Geneious1

software (R8.1.5. Biomatters, Auckland, New Zealand). The estimated error rate was taken into
account by determining the fold-difference in nucleotide substitution between the plasmid and
clinical sample NGS sequence data (see S1 Table).

Data Analysis
A nonparametric Mood’s median test was used for the comparison of HBV DNA from whole
PBMC using Minitab1 17 software. A multivariate analysis of frequency distribution using the
Fisher exact test was used for the comparison of HBV genome detection within PBMC subsets
from HBV treatment naïve, HBV ART follow-up and HBV/HIV-1 HAART treated patients
with SAS1 9.3 software. The statistical significance between the HBV cccDNA detection within
HBV/HIV co-infected versus HBV mono-infected (treatment naïve and on treatment) groups
were analyzed using a one-way ANOVA and paired t-test respectively. Pearsons X2 test was
done to compare the % mutation detection in each PBMC subsets analyzed by NGS compared
to Sanger (clonal sequencing). Two-tailed P values of< 0.05 were considered statistically sig-
nificant for all tests.
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Supporting Information
S1 Fig. Detection of HBV DNA in PBMC subsets isolated from a treatment naïve HBV
mono-infected case. Representative results illustrating detection of HBV genomes by nested
PCR/nucleic acid hybridization to a digoxigenin (DIG) labelled PCR probe labelled with sur-
face (S), core (C) and polymerase (P) primers in immune cell subsets isolated from a treatment
naïve HBV mono-infected patient (ID# 8A). HBV DNA was detected in CD4+ T cells and
CD19+ B cells using HBV specific C primers and CD56+ NK cells using HBV specific P prim-
ers. The size of the expected amplicon is indicated to the right of the panel. Water from second
round of amplification (NW) and first round of amplification (DW) and a mock nucleic acid
extraction served as negative controls. An HBV genotype A plasmid served as the positive con-
trol.
(TIFF)

S2 Fig. A representative fluorescence activated cell (FACS) sorting density plots and histo-
gram analysis of immune cell subsets isolated from a HBVmono-infected patient. Fluores-
cence activated cell sorting purity analysis of peripheral blood mononuclear cell subsets enriched
via positive magnetic bead cell sorting (Miltenyi1) isolated from a hepatitis B virus (HBV)
mono-infected treatment naïve patient (Patient ID# 9). PBMC subsets determined to have>80%
purity when compared to a background sample of unlabelled cells were considered suitable for
further HBV genome detection assays. In this representative patient sample, the purity of each
isolated subset was determined to be 96.8% for CD4+ T cells, 94.8% for CD8+ T cells, 82.8% for
CD14+ monocytes, 89.0% for CD19+ B cells and 83.2% for CD56+ natural killer cells.
(TIFF)

S1 Table. Summary of HBV Polymerase/Overlapping S Gene Deep Sequencing Analysis in
Immune Cell Subsets Isolated from 2 HBVmonoinfected patients on suppressive TDF
antiviral Therapy.
(DOCX)
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