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Clinical prediction models aim to provide estimates of absolute risk for a diag-
nostic or prognostic endpoint. Such models may be derived from data from
various studies in the context of a meta-analysis. We describe and propose
approaches for assessing heterogeneity in predictor effects and predictions aris-
ing from models based on data from different sources. These methods are
illustrated in a case study with patients suffering from traumatic brain injury,
where we aim to predict 6-month mortality based on individual patient data
using meta-analytic techniques (15 studies, n = 11 022 patients). The insights
into various aspects of heterogeneity are important to develop better models and
understand problems with the transportability of absolute risk predictions.
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1 INTRODUCTION

Clinical prediction models aim to provide estimates of absolute risk of an endpoint. Common endpoints are the presence
of a disease (establishing a diagnosis according to a reference standard) and the occurrence of a future event (prognosis,
eg, mortality within 30 days, within 6 months, or longer follow-up).1 Prediction models are increasingly common in the
medical literature, and multiple models may be available for the same type of patients for similar endpoints.2 Published
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prediction models often use different predictors to derive predictions for individual patients.3 Moreover, many prediction
models are developed in relatively small samples from a specific setting, eg, a single hospital.4

Prediction models that are developed from small samples are prone to statistical overfitting, and may therefore have
poor accuracy when applied to new patients.5 Applying penalization or shrinkage techniques may limit such problems,6,7

but better prediction models can be derived with larger numbers of patients. If these larger numbers of individual patient
data (IPD) come from different sources, we may aim to develop a global prediction model, with improved validity across
multiple settings or populations. A global model can, for instance, be derived by merging all IPD sets and estimating a
common baseline risk and set of predictor effects. This strategy clearly obfuscates possible differences between studies
and ignores clustering of patients within studies. Several more advanced strategies have recently been proposed. Access
to data on large numbers of patients from different settings allows us to assess between setting heterogeneity, following
principles from meta-analysis (MA).8,9,10,11

In the current paper, we aim to describe and propose approaches for assessing heterogeneity in predictor effects and
predictions arising from prediction models based on data from different studies. We consider between-study heterogene-
ity with respect to missing values, covariate and endpoint distribution, and model performance. Such assessment of
heterogeneity may serve two purposes:

(1) to support or refute the idea of a global prediction model;
(2) to appropriately indicate the uncertainty when applying the global model across different populations.

This paper starts with an overview of some key characteristics of commonly used regression models to estimate absolute
risk, and some background on a case study where we develop a global model based on IPD from 15 studies to predict
6-month mortality after traumatic brain injury (TBI).12 Section 3 considers characteristics of the included studies and
differences in study design and included patients and differences in case-mix, while Section 4 focuses on dealing with
missing values. Heterogeneity in predictor effects and predictions is discussed in Sections 5 and 6.

Section 7 is a general discussion, where we not only consider the situation of having access to IPD from each study but
also variants such as having access to only one IPD data set, or no IPD at all. We end with some reflections on the impact
of heterogeneity on model performance and model applicability.

2 PREDICTION MODELS AND MA

2.1 Common types of regression models
The most common prediction problems in medicine concern binary endpoints, where logistic regression models are often
used to estimate the probability that a certain endpoint Y is present or will occur conditional on the 1 × p row vector of
predictors X, where p is the number of predictors, ie, P(Y = 1|X = x) = exp(𝛼+X𝜷′)

1+exp(𝛼+X𝜷′)
.

Here, 𝛼 is the model intercept, and 𝜷 represents a row vector reflecting the relative effects of the predictor values X. We
refer to X𝜷′ as the linear predictor or prognostic index, which summarizes the effects of the predictors X.5 The intercept
𝛼 is kept separate from the linear predictor. In terms of odds of the endpoint, we can also write

Odds(Y = 1|X = x) = exp(𝛼)exp(X𝜷′).

For time-to-event endpoints, such as survival, the baseline risk is dependent on time and can therefore no longer by
summarized by a single constant. For this reason, time-to-event endpoints are commonly modeled with Cox regression

h(t|x) = h0(t)exp(X𝜷′).

We notice that the logistic regression model contains a constant 𝛼, while the Cox model contains a nonparametric baseline
hazard h0(t) that plays the role of a generalized constant. Both reflect the baseline risk in a prediction model. We can
make the baseline risk more interpretable by subtracting the mean value for the predictors X, as is common for the Cox
regression model. Moreover, we might smooth the baseline hazard to facilitate calculation of absolute risks.13

Here, we focus on IPD-MA using logistic regression models. Extensions of these methods to Cox regression models are
discussed in Appendix A, along with situations where one IPD is available and where no IPD is available.
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TABLE 1 Description of 15 IMPACT data sets of 11 022 patients with
traumatic brain injury (TBI)

Nr. Name Enrollment period Type1 n
1 TINT 1991–1994 RCT 1118
2 TIUS 1991–1994 RCT 1041
3 SLIN 1994–1996 RCT 409
4 SAP 1995–1997 RCT 919
5 PEG 1993–1995 RCT 1510
6 HIT I 1987–1989 RCT 350
7 UK4 1986–1988 OBS 791
8 TCDB 1984–1987 OBS 603
9 SKB 1996–1996 RCT 126
10 EBIC 1995–1995 OBS 822
11 HIT II 1989–1991 RCT 819
12 NABIS 1994–1998 RCT 385
13 CSTAT 1996–1997 RCT 517
14 PHARMOS 2001–2004 RCT 856
15 APOE 1996–1999 OBS 756

1Type of study, RCT: randomized controlled trial, OBS: observational
cohort

2.2 Meta-analysis for prediction
Similar to the MA of randomized trials, it is readily possible to summarize parameter estimates from multiple studies
by calculating a weighted average for the intercept term and regression coefficients.14 Issues of interest are summary
estimates of baseline risk and predictor effects, as well as corresponding estimates of between-study heterogeneity. Even
more important is the heterogeneity in the linear predictor and absolute risk predictions. These predictions depend on
the joint effects of all predictors and baseline risk and need to be reasonably similar across studies for a prediction model
to be labeled “generalizable.” We hence focus on three aspects of heterogeneity for predictions, namely, in baseline risk,
predictor effects, and the linear predictor (which is directly linked to absolute risk predictions).

2.3 Case study
For illustrative purposes, we analyze 15 studies of patients suffering from TBI, including IPD from 11 randomized con-
trolled trials and four observational studies. These studies were part of the IMPACT project, where a total of 25 prognostic
factors were considered for prediction of 6-month mortality.15 Mortality occurred in 20% to 40% of the patients, while
follow-up was nearly complete for the 6-months status (Table 1). Three different models were developed of increasing
complexity.12 The core model used three key predictors, ie, age, the assessment of Glasgow Coma Scale motor score at
admission, and pupillary reactivity at admission. The CT model contained the predictors of the core model, secondary
insults (hypoxia and hypotension) and results from a CT scan (Marshall CT classification system, traumatic subarachnoid
hemorrhage and epidural hematoma). The most elaborate model contained the predictors of the CT model and results
from lab tests (glucose and hemoglobin levels).12 For our case study, we focus on the global CT model. This model was
fitted with study as a main effect, and common effects for the predictors. R code to perform the analyses is available from
the authors (R version 3.5.0, The R Project for Statistical Computing). The data that support the findings of this study are
available from the corresponding author upon reasonable request.

3 STUDY CHARACTERISTICS

3.1 Heterogeneity in study design
Meta-analysis requires a reasonable degree of similarity between studies to provide meaningful summary estimates. It is
therefore important to consider whether the included studies have major differences in their design, selection of subjects,
and setting, as this may affect the baseline risk and/or predictor-endpoint relations. For the 15 TBI studies, four were
performed in relatively unselected populations (“surveys,” observational cohorts), with broad inclusion criteria. Inclusion
criteria were stricter for 11 randomized controlled trials. The studies also varied in the calendar time of enrollment of
patients, and one study was rather small (#9, SKB, Table 1).
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Nr. Name 6-month mortality Mean lp SD lp Membership c-statistic
1 TINT 25% −1.42 1.23 0.62
2 TIUS 22% −1.6 1.13 0.65
3 SLIN 23% −1.42 0.99 0.76
4 SAP 23% −1.44 1.02 0.60
5 PEG 24% −1.51 1.26 0.67
6 HIT I 28% −1.23 1.35 0.68
7 UK4 45% −0.27 1.77 0.64
8 TCDB 44% −0.36 1.74 0.67
9 SKB 27% −1.19 0.99 0.75
10 EBIC 34% −0.98 1.81 0.63
11 HIT II 23% −1.49 1.10 0.63
12 NABIS 26% −1.27 1.08 0.65
13 CSTAT 22% −1.57 1.16 0.61
14 PHARMOS 17% −1.78 0.79 0.68
15 APOE 15% −2.45 1.65 0.73

lp: linear predictor, based on a common prediction model and study-specific predictor values; membership
c statistic: discriminative ability to separate a specific study from all other studies, where a high c-statistic
reflects substantial differences in baseline characteristics and outcome.

TABLE 2 Six-month mortality, case-mix
distribution, and discriminative ability of
the membership model in identifying
membership of a specific study

3.2 Heterogeneity in case-mix
Between-study heterogeneity in case-mix is a common source of heterogeneity in baseline risk and predictor-endpoint
associations. Briefly, heterogeneity in case-mix occurs when the distribution of patient characteristics varies across stud-
ies. In the TBI case study, there appear to be systematic differences between observational studies and RCTs in terms of
observed mortality and patient characteristics (ie, the case-mix distribution) (Table 2). Case-mix variability was partic-
ularly high in the 4 observational studies, which we quantified by the standard deviation of the linear predictor of the
global model fitted using all studies. We might also quantify this heterogeneity by study-specific models, but the standard
deviation of the linear predictor would then depend on both case-mix and estimated coefficients.

In the TBI case study, we further note substantial differences in the incidence of the end point (6-month mortality):
17% in the most recent trial (study #14) versus 42% in a survey (study #7). The difference in mortality rate may partly be
explained by study design, since RCTs only included patients who survived long enough to be included in the trial, while
the observational studies also included patients who died shortly after arriving at a hospital.

It is also possible to inspect the distributions of individual predictors. These are rather different between studies
(Figure 1). We note that this inspection does not take into account the possible correlation between predictors.

Finally, a summary measure of case-mix similarity between studies can be obtained using a membership model, where
we quantify how well we can separate patients from different studies from each other (using the c-statistic).16 We there-
fore developed a membership model using multinomial logistic regression (Table 2), where study membership was the
outcome. We included all predictor variables of the CT model and 6-month mortality as covariates. A variant of this
membership model might include only predictor variables. The c-statistic of the membership model can be calculated by
comparing the predicted probabilities for patients from one study with the predicted probabilities of patients not included
in that study. We found that studies 3, 9, and 15 were somewhat different from the other studies, with c-statistics above
0.70, based on the distribution of patient characteristics and mortality.

4 MISSING PREDICTOR VALUES AND MA

4.1 Missing values and imputation
Imputation of missing values poses specific challenges in the context of development or validation of a global prediction
model. Advanced imputation approaches may be required to fully address between-study heterogeneity in the correlation
structure between predictors and endpoint. Ignoring such heterogeneity in the imputation procedure may lead to bias in
the estimated coefficients and their associated standard errors, to bias in estimates of between-study heterogeneity, and
to model validation results that are too optimistic.11,17

More advanced multilevel imputation methods have recently proposed to impute missing values in large, clustered data
sets such as IPD-MA and can also be used to impute covariates that are systematically missing for one or more studies.18-23
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FIGURE 1 Distribution of patient characteristics in 15 studies with 11 022 traumatic brain injury patients, after single imputation of
missing values [Colour figure can be viewed at wileyonlinelibrary.com]

In our case study, we applied the simpler approach as used previously by Steyerberg et al,12 where the authors imputed
missing predictors using the study as a fixed effect in the imputation model. This imputation model admittedly only
adjusts for heterogeneity in the levels and prevalence of missing predictors.

5 HETEROGENEITY IN COMBINATIONS OF PREDICTOR EFFECTS

5.1 Estimating stratified predictor effects
After considering general between-study heterogeneity and imputing missing values, an important step is to estimate
predictor-endpoint associations across the available data sets. Ideally, the global prediction model is prespecified. Prior
knowledge and/or clinical expertise may have guided the selection of predictors as well as the choice of linear or non-
linear forms in case of continuous predictors.6,24 In practice, some form of selection may be based on predictor-endpoint
associations observed across the set of studies considered in the MA. Such a selection will cause only limited bias if sam-
ple sizes are large and the number of candidate predictors small. We first discuss full stratification by study. Subsequently,
we discuss several simplifications.

The presence of heterogeneity between J studies may be considered as follows. First, we consider stratified estimation
of the model intercept and regression coefficients for each study j (Table 3)

P (Y = 1|X = x, study 𝑗) =
exp

(
𝛼𝑗 + X𝜷 j

′)
1 + exp

(
𝛼𝑗 + X𝜷 j

′
) .

For descriptive purposes, we propose forest plots for visualization of the heterogeneity in predictor effects (Figure 2).
Additionally, pooled estimates with associated (approximate) prediction intervals and I2 estimates based on a multivariate
MA can provide further insight in the extent of between-study heterogeneity.14

5.2 Pooling with full stratification
For pooled analysis, we consider 𝜽̂j = (𝛼𝑗,𝜷𝑗), the (P + 1)-vector of regression coefficients with associated within-study
covariance matrix Ŝj. More specifically, the study-specific model is given by 𝜽̂𝑗 ∣ 𝜽𝑗 ∼ MVN(𝜽𝑗 ,S𝑗). The distribution of 𝜽j

http://wileyonlinelibrary.com
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FIGURE 2 Forest plots showing estimated multivariable logistic regression coefficients and associated 95% confidence interval per study.
The largest heterogeneity was noted for pupillary reactivity (𝜏 = 0.17) and hypotension (𝜏 = 0.27)

over the population is assumed to be a multivariate normal distribution

𝜽𝑗 ∼ MVN(𝝁,T).

To avoid identifiability problems, we assume that the number of studies exceeds the number of study-specific parameters,
ie, Ns > P + 1. Simplifications can be made by adopting an autocorrelation structure or specifying a diagonal matrix
for T.

Insight in the heterogeneity of the model predictors is gained by first fitting the model for each study separately, yielding
study-specific estimates 𝛼𝑗 and 𝜷𝑗 (Table 3 and Figure 2). The IPD are needed to obtain the full within-study covariance
matrix Sj. These covariance matrices are typically not available from published studies, and are the key benefit of having
access to IPD rather than published results only. The parameters of the global prediction model can be estimated from
the model 𝜽̂𝑗 ∼ MVN(𝝁,T + Ŝ𝑗), where 𝜽̂𝑗 contains the study-specific intercept term 𝛼𝑗 and regression coefficients 𝜷𝑗 ,
and Ŝ𝑗 represents the corresponding within-study covariance matrix. The between-study covariance matrix of the pooled
intercept term and predictor effects is given by T. Fitting this model also yields the covariance matrix S𝝁̂ of the estimate
𝝁̂ of 𝝁. This should not be confused with covariance matrix T of the random effects.

The aforementioned approach to an IPD-MA is a two-stage approach because studies are first analyzed individually
and corresponding results are then combined in a second multivariate step. A one-stage approach would fit a logistic
regression model with random effects. A full specification of this model for patient i in study j may be as follows:

Yij ∼ Bernoulli
(

pij
)
,

logit
(

pij
)
= 𝛼𝑗 + X ij𝜷𝑗

′,(
𝛼𝑗,𝜷 j

)
∼ MVN (𝝁,T) .

The one-stage approach is computationally more demanding than the two-stage approach, and is expected to give similar
results with similar model specification and reasonable sample size.8,25 In the case study, differences between the one-
and two-stage pooling were negligible. We present the two-stage results in Table 3. The between-study variance parameter
𝜏2

ii was relatively large compared to the pooled SE for three predictors (age, pupillary reactivity, and hypotension), with
relatively large prediction intervals (Table 3).

5.3 Heterogeneity in predictions from different cohorts
Predictor effects show substantial heterogeneity across cohorts (Table 3). On the other hand, the correlation between
predictors within the studies may make that the resulting predicted probabilities between studies for a patient with the
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FIGURE 3 Correlation between predictions of study-specific models in a pairwise comparison between studies: 1-to-1 comparisons of
predictions for all patients in the individual patient data set (n = 11 022)

same characteristics are still quite close. We propose to further consider differences between predictions for all covariate
patterns that occur across the studies. We hereto construct scatter plots of predicted probabilities according to models fitted
in each of the individual studies (Figure 3). We label this approach a 1-to-1 comparison of study-specific model predictions,
since predictions from models from each study are each compared to each other. For the case study, each comparison
includes the 11 022 patients in the IPD data set. We then note that some studies provide very similar predictions, eg, study
1 and 2. This fits with the fact that these are similar trials, one recruiting patients in the US and the other internationally.
Other studies provide somewhat different predictions compared to the other studies, eg, studies 6, 8, 9, and 15. This is
partly attributable to differences in baseline risk, reflected in lines below or above the line of identity in Figure 3.

The effect of differences in predictor strengths on the predictions can be seen from the “veins” in the plot. For instance,
when comparing the prediction based on the model developed in study 6 with the predictions made by the models
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developed in the other studies, the plot typically shows two lines around which the predictions are clustered. This reflects
that the regression coefficient of the predictor “hypoxia” is close to zero in study 6 and is different from zero in the other
studies (Table 3). In other comparisons multiple “veins” are visible, attributable to differences in predictor strength of
predictors with multiple categories, such as motor score and pupillary reactivity.

5.4 Simplifications with respect to heterogeneity
Several simplifications are possible when the extent of heterogeneity across studies is limited. The strongest simplification
is to ignore any heterogeneity and thus to assume that T = 0. This implies that all studies agree on the baseline risk and
predictor effects in the global model, and that differences in study-specific estimates only appear due to sampling error.
This simplification will not be realistic for most applications.

A less drastic simplification is to assume that the intercepts 𝛼s may vary between studies but that the predictor effects 𝜷 j
are common.8,9 We label this a common effect approach with respect to 𝜷 j. Several estimation procedures may be followed
to account for differences in baseline risk. If the number of studies is limited, say less than 5 studies, it is usually possible
to condition on the “study” variable by estimating a separate intercept for each study. Alternatively, when more studies are
available, it is reasonable to assume a Normal random effects distribution for the intercept terms.14 This second approach
allows for a simple summary estimate of the between-study heterogeneity in the intercept as 𝜏2

𝛼 . The corresponding logistic
regression model is specified as follows:

Yij ∼ Bernoulli
(

pij
)
,

logit
(

pij
)
= 𝛼𝑗 + X ij𝜷

′,

𝛼𝑗 ∼ N
(
𝛼, 𝜏2

𝛼

)
.

If 𝜏2
𝛼 is substantial, this implies that adjustments for the intercept need to be considered when applying the global model

in a local setting (see discussion). The heterogeneity between studies can well be summarized in measures such as the
median odds ratio (MOR).26

The assumption of common predictor effects 𝜷 j can be weakened by specifying that the linear predictors Xij𝜷 j share
a common direction in covariate space, but that the size of their effects might be systematically different. This can be
modeled by a rank = 1 model

Yij ∼ Bernoulli
(

pij
)
,

logit
(

pij
)
= 𝛼𝑗 + 𝛾𝑗X ij𝜷

′ ,(
𝛼𝑗, 𝛾𝑗

)
∼ MVN ((𝛼, 1) ,T) ,

and hence, E[𝛾 s𝜷] = 𝜷. In this model, the random variation between studies is described by the correlated pair (𝛼s, 𝛾 s). The
study-specific relative effects are then allowed to vary in a proportional way.27 Estimation of this model is possible with
a nonlinear mixed effect model, such as available with proc nlmixed in SAS software. We can approximate this model by
fitting a model ignoring between-study heterogeneity on all available patients to derive a linear predictor for each patient
and subsequently fitting a random effect model with random intercept 𝛼j and a random slope 𝛾 j for the linear predictor.
Both approaches gave very similar results in our case study, and hence, we present the results from the approximation
using two steps.

A further weakening of the restrictiveness is obtained by allowing models of higher rank, such as a rank = 2 model.
Again, this model can be estimated with a nonlinear mixed model, and approximated in a two-step approach with first
estimating the linear predictor globally and subsequently fitting a random effect model with the linear predictors as covari-
ates with random slopes. In these restricted models of rank 1 or rank 2, the covariance matrix T has a simpler structure
compared to the fully stratified model with study-specific predictor effects.

5.5 Heterogeneity in specific predictions of the prediction model
In the fully stratified model, the baseline risks and predictor effects show considerable variability over the studies (Table 3).
The resulting predicted probabilities also show quite some variability (Figure 3). If we consider a fixed value of the
covariate vector, x0, we can compute an approximate 95% prediction interval for new studies of P(Y = 1| x0). Since

𝜽 ∼ MVN
(
𝝁̂,T + Ŝ𝝁̂

)
,
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we can estimate this interval using

logit−1

(
x0𝝁̂ ± 1.96

√
x0

(
T + Ŝ𝝁̂

)
x′

0

)
.

This is an approximate approach since it ignores the uncertainty introduced by estimating the within- and between-study
covariance matrices. For this reason, a Student-T, rather than a Normal distribution, is often used to calculate confidence
intervals. Similarly, approximate 95% prediction intervals for new studies can be constructed for the rank = 1 model and
random intercept model. By keeping all but one predictor fixed, we can then investigate the heterogeneity of predictions
across different values of this predictor. The values of the other predictors need to be chosen, for example as representative
values, ie, the median for continuous predictors, and the most common category for categorical predictors.

We illustrate this approach for the age effect for otherwise average risk patients in the TBI case study. Obviously, the
95% prediction interval is smallest with a naïve single fit model, where we ignore any between-study heterogeneity. The
common effect model assumes fixed effects per study but leaves the baseline risk free. The uncertainty is larger when we
allow for between-study differences in the predictor effects with a rank = 1 model or a fully stratified model (Figure 4).
Note that the risk predictions according to age and their uncertainty depend on the choice of values for the other predictors
in the model.

FIGURE 4 Prediction intervals for new studies assuming a fixed effects model, random intercept model, rank = 1 model, or fully stratified
model
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TABLE 4 Comparison of variants of a global model in the TBI case study with 15 studies to predict 6-month mortality

Model variant Baseline risk Predictor effects Case study −2 log-likelihood p-value of
fully stratified

fit against
other model

Fully stratified Per study Per study See Table 2 9750
Single fit Common Common - 9922 p < 0.0001
Common effect Per study Common 𝜏𝛼 = 0.29 9810 p < 0.0001
Rank 1 Per study Proportional per study 𝜏𝛼 = 0.24; 𝜏𝛾 = 0.12 9791 p = 0.16

5.6 Model selection
We thus far described models that allow for different degrees of heterogeneity in predictor effects and/or baseline risk.
Selecting the most appropriate model for the data at hand can be based on information criteria such as AIC/BIC or using
formal statistical tests comparing the different models. We propose to apply the following test procedure. A similar type of
test was recently proposed for selecting an update method for existing prediction models,28 and longer ago for selection of
functional forms of covariates in fractional polynomials.29 We propose to perform a series of likelihood ratio tests which
start with the fully stratified model and consider simplifications from that systematically. These tests require assessing
the significance of the variance components of random effect models. Since these parameters are at the boundary of the
parameter space under the null when testing if the variance is different from zero, a mixture of𝜒2-distributions is required
to obtain a p-value.30 Hence, we compare the following:

1. The fully stratified model against a model without any heterogeneity (simple logistic regression ignoring any cluster-
ing of patients). The distribution used to calculate the p-value is a 50:50 mixture of two 𝜒2-distributions with degrees
of freedom equal to (p+1)p

2
and p(p−1)

2
, where p is the number of regression coefficients included in the model; if the

test is not significant, select the model without any heterogeneity; otherwise, continue.
2. The fully stratified model against a model with heterogeneity in baseline risk. Here, a 50:50 mixture of two

𝜒2-distributions with degrees of freedom is equal to p(p−1)
2

and (p−1)(p−2)
2

; if nonsignificant, select the model with
heterogeneity in baseline risk; otherwise, continue.

3. The fully stratified model against the rank= 1 model. Here, the variance components tested are not on the boundary of
the parameter space; a 𝜒2-distribution with (p+1)p

2
−3 degrees of freedom is used; if nonsignificant, select the rank = 1

model; otherwise, select the fully stratified model.

In our case study, the closed-test procedure selects the rank = 1 model as the most appropriate model (Table 4).

5.7 Observed heterogeneity in predictions
When substantial heterogeneity is observed in predictions across included studies, study-level covariates should be con-
sidered in the prediction model. These may explain heterogeneity in predictions across studies. In our case study, we
considered the following study-level covariates in the rank = 1 model, ie, year of start of study, RCT, or observational
study. We found that the heterogeneity in slope could be explained partly by the whether a study was an observational
study or RCT. Accounting for study type, there remained statistically significant heterogeneity in baseline risk. We hence
conclude that the appropriate model for the case study would a global model, separately for observational studies and
RCTs, with a random effect for study to allow for heterogeneity in baseline risk. Predictor effects for observational studies
appear to be larger compared to predictor effects in RCTs (Table 5). The heterogeneity in baseline risk seems higher for
observational studies, reflected in the higher standard deviation of the model intercept.

6 VALIDATION OF MODELS DEVELOPED IN AN IPD MA

6.1 Heterogeneity in calibration of predictions
Calibration can well be assessed graphically, with some summary statistics such as calibration intercept and calibration
slope.31,32,33,34 A natural approach is to consider the cross-validated performance, where models are developed for all stud-
ies minus one, for what has been labeled “internal-external validation.”9,35,36 We leave one study out at a time, which leads
to 15 validations for the case study. Here, we validate the rank=1 model, including the study-level covariate “observational
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Model based on
Observational studies RCT

Intercept −1.27 −1.41
Age 0.43 0.22
Motor score −0.42 −0.37
Pupillary reactivity 0.82 0.52
Hypoxia 0.28 0.27
Hypotension 1.03 0.62
CT class 0.34 0.42
tSAH 0.68 0.73
𝜏𝛼 0.44 0.14

TABLE 5 Logistic regression coefficients of models stratified by
observational studies and RCTs

FIGURE 5 Calibration plots of model developed in observational studies in a leave-one-study-out cross-validation

study versus RCT.” We note some miscalibration in the observational studies with higher mortality than predicted in #7
and #8, while #15 showed less mortality than predicted (Figure 5). The higher degree of miscalibration for the observa-
tional studies is in line with the larger estimated heterogeneity of the random intercept. Overall, patterns of calibration
were reasonable for most trials, although a recent trial (#14) had somewhat lower than expected mortality (Figure 6).

6.2 Heterogeneity in discrimination of predictions
Discrimination of prediction models is commonly assessed by a concordance statistic (c).6 We assessed the discrimi-
native ability of the proposed prediction model in a similar fashion as the calibration, again using “internal-external”
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FIGURE 6 Calibration plots of model developed in RCTs in a leave-one-study-out cross-validation

cross-validation stratified for observational studies and RCTs. The common estimate was c = 0.86, with a 95% confidence
interval from 0.84 to 0.87 for observational studies (Figure 7). The approximate 95% prediction interval was identical to
the 95% confidence interval as there was no evidence of heterogeneity in observed c-statistics across the observational
studies. For the RCTs, the pooled estimate was c = 0.76 with a 95% confidence interval from 0.74 to 0.78 and a 95% pre-
diction interval from 0.71 to 0.81. This reflects the heterogeneity across studies in predictor effects, but also in case-mix,
since the c-statistic depends on the combination of predictor effects and case-mix.37,38
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FIGURE 7 c-statistics leave-one-study-out cross-validation

The 95% prediction intervals may be interpreted as plausible ranges for the c-statistics of the proposed model in a new
observational setting or in a new RCT. The observed c-statistic for the observational studies was higher, in line with the
larger case-mix heterogeneity in patients as compared to the RCTs (Table 2).

7 CASE STUDY SUMMARIZED

In our case study, we found substantial heterogeneity in baseline risk and predictor effects of a fully stratified model. Using
the approximate closed-test procedure, we found that the rank = 1 model was the most appropriate model, rather than
the initially proposed global model with common effects for the regression coefficients.12 The observed heterogeneity in
slope of the rank= 1 model could largely be explained by whether a study was a trial or an observational study. Substantial
heterogeneity in the baseline risk remained present after adjustment for study type. This was especially pronounced for
the observational studies. These results argue for two separate models, ie, one for trials and one for observational studies,
each with further local adjustment for the baseline risk (the model intercept).

The heterogeneity in baseline risk was clear in the internal-external validation approach for calibration for the obser-
vational studies, while the calibration was less heterogeneous across trials. The c-statistic was higher for observational
studies, reflecting the larger case-mix heterogeneity and stronger predictor effects in these studies as compared to trials.
The steps taking in this assessment of the case study are summarized in Figure 8.

In conclusion, these results suggest that two separate models are needed for different purposes. If the goal is to use the
model for use in general care, the model based on the observational studies may be the better choice. In contrast, the

FIGURE 8 Schematic representation of the research questions to be
answered for the development and validation of a prediction model in an
individual patient data meta-analysis [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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model based on the RCTs may be the better choice if the model is used for risk stratification of patients participating in a
randomized trial.

8 DISCUSSION

In this overview, we considered the assessment of various aspects of heterogeneity in the context of a MA for prediction
models. The assessment of heterogeneity in baseline risk, and each of the predictor effects per se, is rather similar to
standard MA, except for the multivariate nature of MA of multivariable regression coefficients from multiple studies.
More challenging is the assessment of heterogeneity in combinations of baseline risk and predictor effects (Section 5),
and heterogeneity in absolute risk and model performance (Section 6).

8.1 Heterogeneity in IPD MA
We first discussed the assessment of between-study heterogeneity in design, predictors, and endpoints (Section 3). Specif-
ically, a membership model may be valuable to assess between-study heterogeneity in case-mix distributions, and to
identify outlier studies.16 In the case study, there was however only a weak relation between-study characteristics and
deviating baseline risk or deviating predictor effects. Some trials had a lower mortality, which may be related to the selec-
tion of somewhat more favorable patients, while this selection was not fully captured in the observed covariates. In other
cases, the baseline risk may be related even more directly to study characteristics. As an example from a very different
clinical field, we found a substantially higher probability of indolent prostate cancers among screened patients compared
to clinically presenting patients.39

Next, methods to deal with missing values are essential in the context of multivariable prediction modeling, since a few
missing values over different predictors may cause a substantial loss in efficiency in a complete case analysis (Section 4).
Moreover, some variables may be systematically missing in some of the studies. Several methods to deal with sporadically
and systematically missing values in an IPD-MA have been proposed that aim to maximize congeniality between the
imputation and the analysis model. Although it has been demonstrated that multilevel imputation models with a random
slope are uncongenial, the resulting bias is often negligible. In the case study of TBI patients, three sets with increasingly
complex prediction models were originally proposed, with exclusion of studies for more complex prediction models if
predictors were systematically missing.12 The problem of systematically missing variables was also noted in most of 15 IPD
meta-analyses reviewed recently.11 If imputation is attempted, allowing for between-study heterogeneity is important,
arguing for a more refined procedure than applied in our case study.18-21

Heterogeneity in predictor effects is straightforward to visualize with forest plots and other standard meta-analytical
approaches (Section 5). We may debate whether the choice of predictors for the prediction models should be influenced
by the amount of heterogeneity. If the effect is relatively strong but heterogeneous, the first check should be whether
there are explanations for the heterogeneity, such as issues in the operationalization of the predictor. If not, we propose
that such a strong predictor be kept in the model. The heterogeneity will be reflected in extra uncertainty in prediction
intervals (Section 6). Additionally, apparent heterogeneity may be explained by missed nonlinear associations between
predictors and outcome, or not including relevant interactions in the global model.

Heterogeneity in absolute risk is what matters ultimately for prediction models (Section 6). This heterogeneity may be
driven by heterogeneity in baseline risk in many cases. It is the focus of quality of care research, where specialized centers
may claim better results than others, eg, a lower surgical mortality, also related to the volume of care delivered.40 For
comparison of predicted absolute risks, the 1-to-1 comparisons capture all information (Figure 3). In a variant of this plot,
we might standardize the baseline risk, such that the focus shifts to heterogeneity in predictor effects. Figure 3 shows
the predicted risks for all available predictor combinations, which is related to attempting to assess the strongest type of
calibration, ie, the comparison of observed to predicted risk for individual covariate patterns.34 Validation by predicted
risk (rather than specific covariate patterns) is standard for prediction models, and, as illustrated, is readily possible in
the context of MA with an internal-external cross-validation procedure.16,35,36,41 Both calibration and discrimination can
hence be assessed across studies (Section 6). It should also be noted that for internal-external validation results relatively
large studies are required to obtain reliable estimates of study-specific model performance. Recent studies suggest at least
100 events and 100 nonevents for binary outcomes.42

If there is substantial heterogeneity in baseline risk, the MOR can be a helpful measure to quantify the magnitude of
this heterogeneity.43 The MOR is defined as the median value of the odds ratio between the study at the lowest risk and
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the study with the highest risk when picking two studies at random, or in other words, the increase in risk (in median) of
when a patient is included in a study with higher risk of the outcome compared to a study with a lower risk of the outcome.

We recognize that our review and proposals have some limitations. Although the test procedure proposed in the
manuscript allows for a formal approach to test whether a fully stratified model is needed, similar procedures to choose
between fixed and random effects meta-analyses have been criticized previously. Therefore, it is advised to not only
apply the test procedure but also assess the heterogeneity between studies and consider the practical implications of the
between-study heterogeneity.

We focused on prediction of a binary endpoint. Extensions to survival models require further study (Appendix A).44

More case studies are required to evaluate the practical usefulness of different options to both methodological and clin-
ical researchers. We considered the combination of multiple predictors, while much current research aims to quantify
the value of new predictors, such as new markers to predict cardiovascular disease, beyond what is possible with tradi-
tional predictors.45 The incremental value of a marker may then be studied per study, with MA approaches applied to
performance measures such as the increment in discriminative ability (c statistic, possibly with some transformation).9,46

Moreover, we considered an ideal modeling situation, where we have access to IPD and have the most relevant predictors
available in each study. We expand on situations with aggregated data in Appendix B.

8.2 Heterogeneity and global model performance
If a global model is considered reasonable to propose, we are interested in its performance across different settings and
populations.41 It is helpful to distinguish reproducibility and transportability.47 A prediction model is reproducible when
it performs sufficiently accurate across new patients from the same underlying population. This property can be directly
assessed in a single development data set by applying internal validation techniques such as bootstrapping, with random
resampling.6,48 Model transportability, however, requires the model to perform well across samples from “different but
related populations.”47 Transportability can be assessed by performing external validation studies, or by adopting nonran-
dom resampling methods such as internal-external cross-validation.36 When the model is reproducible and shows good
transportability across several complementary settings, it can be concluded that its generalizability is adequate.49 This
claim is stronger if the included studies are more different from the development study. Therefore, the larger the differ-
ences between studies, the stronger the test of generalizability. If development and validation samples are quite similar,
reproducibility rather than transportability is assessed.16,47

8.3 Heterogeneity and local performance
Once a global model from an IPD-MA is developed and validated across multiple studies, we may consider its practical
application in a specific local setting.17 If heterogeneity in predictions between settings is substantial, setting specific
covariates may be included to explain part of the observed heterogeneity, as was illustrated in our case study. If substantial
heterogeneity remains, a global prediction model is suboptimal in some settings. For settings that were included in the
IPD MA, either study specific estimates of coefficients may be used, or a suboptimal performance may be acceptable. If
the model is however applied in a new setting, not included in the MA, several other options may be considered.

1. Use the global model with the common estimates of baseline risk and common estimates for the predictor effects;
2. Pick baseline risk and/or coefficients from a setting considered most similar to the new setting, based on setting and

context specific characteristics;
3. Use the global model as prior information and update the model for the new setting.

Option 3 requires IPD from the local setting. If heterogeneity appears to be substantial, there is an urgent need to gather
such local data to update the model. Furthermore, the usefulness of the global model as prior information will be limited
as the information in newly collected data will outweigh the information in the global model. Updating methods may
start with simple adjustment of the baseline risk to guarantee calibration-in-the-large in the local setting. More extensive
updating approaches can be considered, guided by the available sample size.28,50

9 CONCLUSIONS

Meta-analytical techniques have a key role in the development of a global prediction model across multiple studies. As
illustrated, IPD from multiple studies give excellent opportunities to investigate, quantify, and report any heterogeneity
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in the baseline risks, predictor effects, predictions, and performance of a prediction model. We expect that such IPD
meta-analyses will increasingly be performed and advocate the presented approaches to assessing heterogeneity for model
selection and presentation of uncertainty in the chosen model.
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APPENDIX A

EXTENSION TO SURVIVAL DATA

If we have individual survival data and assume proportional hazards for predictor effects, we can estimate the regression
parameters β (from the partial likelihood) and the baseline hazard h0(t) (by the Breslow estimator) in each study separately.
This will give an estimate of cumulative survival probability S(t0| x) at any time t0 of interest. It also possible to obtain
the covariance matrix of (ln(𝐻̂0(𝑡0)), β̂). The implication is that a prognostic MA for fixed t0 can be carried out along the
lines as described in the main paper. The structure is identical, only the link function is different. Note that censoring is
implicitly handled by standard Cox regression analysis.

This analysis can be extended to a set of fixed time points (t1, t2, … , tl). In analogy with the aforementioned, we use
the notation (𝛼1, … , 𝛼l) for (ln(H0(t1)),… , ln(H0(tl)). A model for (𝛼1, … , 𝛼l) can be based on models for time-varying
frailties51 and generalized further.52 Such a meta-model provides insight in a prognostic survival model and the
between-study heterogeneity under the assumption of proportional hazards within each study. It can also be used to
obtain conditional survival probabilities P(T > t + w ∣ T ≥ t, x) under proportional hazards.

Conditional prognostic models that relax the proportional hazards assumption can be obtained by applying the land-
mark approach.53 Using a fixed prediction window, the models are similar to the model with fixed t0 described above
and can be analyzed in the same way. Moving the landmark point of prediction gives insights in the development of
heterogeneity over time.
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APPENDIX B

META-ANALYSIS WITH AGGREGATED DATA

B.1 Individual patient data from one study, same predictors
Rather than having access to IPD from all studies considered for a MA, we only may have access to IPD from a single
study.54,55 We first consider the hypothetical situation that several studies have reported the same prediction model. In
that case, the key missing piece of information is the within-study correlations Sj (Section 5.1).

The simplest approach to develop a global model is to simply derive common effect estimates for each predictor using
separate random effect MA methods, ignoring dependencies between regression coefficients within studies. A more
refined method is to fit a generalized random effects model that accounts for within-study and between-study covariance
of the regression coefficients. A practical difficulty is that the variance-covariance matrix is only available for the IPD,
and usually not reported for the published models. Assuming homogeneous correlations between predictor effects across
studies, we may collapse the missing covariance matrices to the observed covariance matrix ŜIPD. Simulation studies have
shown that multivariate MA models are fairly robust to errors made in approximating within-study covariances when
only summary effect estimates are of interest. In a third approach, we may apply a Bayesian framework where a summary
of the previously published regression coefficients serves as prior for the regression coefficients in the IPD.

In an empirical study, all three aggregation approaches performed similarly, and yielded better predictions than models
that were based solely on one study with IPD.56 This was specifically the case if the IPD set was relatively small. Assessing
the degree of heterogeneity between IPD and literature findings is crucial for any of these approaches to work, ie, the more
homogeneity of predictor effects, the better the MA of previous studies allows for the development of a global model that
provides better predictions for the setting where the single IPD data set originates from.

B.2 Individual patient data from one study, models with different predictors
The situation that multiple studies considered the same prediction model may be rare. A more common situation is that
multiple studies provide models with different but overlapping sets of predictors. We may consider various approaches
for aggregating previously published prediction models, while at least one IPD data set is available.

A first step is to assess the validity of previously developed models for the setting where we have IPD available. Only
the most promising models are then further considered for the development of a global model.

An attractive approach is a variant of ensemble learning. We then use stacked regressions to treat the predictions
of each published model as a predictor variable of the meta-model and subsequently create a linear combination of
model predictions.57 Models with a negative contribution on the combined prediction are omitted from the meta-model.
This approach works if the models are not strongly collinear; if they are collinear, dropping the correlated but poorer
performing model is advisable.57

Finally, MA approaches may be used to develop a global model if multiple studies have reported only on the univariable
relations of predictors to an endpoint, rather than multivariable relations. Considering prior information from published
studies is particularly relevant when the IPD sample is relatively small and predictor effects are homogeneous. This was
the motivation for such an approach in a case study of aortic aneurysm patients.58,59 We may first meta-analyze the esti-
mates of the univariable regression coefficients, with standard assessment of heterogeneity in a random effect model.
Second, we may estimate the change from univariable to multivariable coefficient in the IPD. This change may then be
used as a simple adaptation factor for the pooled univariable regression coefficients.

B.3 No IPD, models with different predictors
Alternative approaches have been proposed that do not even require the availability of IPD.60 A global model is then
developed by using information from published associations between predictors of interest, and from correlations between
each pair of the predictors of interest. Here, it is assumed that predictor values from the overall population follow a
multivariate normal distribution, ignoring any between-study heterogeneity.
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