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ABSTRACT Microtubule assembly in vivo was studied by hapten-mediated immunocytochem- 
istry. Tubulin was derivatized with dichlorotriazinylaminofluorescein (DTAF) and microinjected 
into living, interphase mammalian cells. Sites of incorporation were determined at the level of 
individual microtubules by double-label immunofluorescence. The haptenized tubulin was 
localized by an anti-fluorescein antibody and a second antibody conjugated with fluorescein. 
Total microtubules were identified by anti-tubulin and a secondary antibody conjugated with 
rhodamine. Contrary to recent studies (Salmon, E. D., et al., 1984, J. Cell Biol., 99:2165-2174; 
Saxton, W. M., et al., 1984, J. Cell Biol., 99:2175-2186) which suggest that tubulin incorporates 
all along the length of microtubules in vivo, we found that microtubule assembly in interphase 
cells was in vivo, as in vitro, an end-mediated process. Microtubules that radiated out toward 
the cell periphery incorporated the DTAF-tubulin solely at their distal, that is, their plus ends. 
We also found that a proportion of the microtubules connected to the centrosomes incorpo- 
rated the DTAF-tubulin along their entire length, which suggests that the centrosome can 
nucleate the formation of new microtubules. 

How do microtubules grow and shorten in living cells? How 
do they exchange subunits in the steady-state? A determina- 
tion of whether the addition and loss of subunits occur along 
the length of the microtubule or are restricted to its ends 
would be fundamen~tal to our understanding of microtubule 
dynamics in vivo. 

Microtubule dynamics have been analyzed in vitro with 
purified proteins and reconstitution systems, and the results 
are clear. In vitro, microtubules grow and shorten by addition 
and loss of subunits at their ends (1). Treadmilling, which 
occurs in the steady-state (2), results from the differential rates 
of addition and loss at the ends (3). The recently proposed 
model of dynamic instability (4) is also an end-mediated 
process. However, the in vitro studies cannot, by their nature, 
provide the answer for living cells. Intriguingly, efforts to 
study microtubule dynamics in vivo have led to different 
conclusions. 

Observations of the mitotic spindle made with polarized 
light microscopy (5, 6) led Inou~ to propose that the reaction 
mechanism could be represented as a phase transition between 
two states, A ~,~ B, where A denotes oriented material (micro- 
tubules) and B, nonoriented material (tubulin subunits). The 
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microtubule was viewed as a special type of cylindrical micelle 
and would grow or shorten by subunits entering or exiting 
the miceUe. A hallmark of this mechanism is that exchange 
of subunits between the polymer and the solution would occur 
all along the length of the polymer and would not be restricted 
to its ends. 

Recent observations by use of fluorescently derivatized 
tubulin have supported this conclusion (7, 8). Cells microin- 
jected with fluorescent tubulin showed patterns of incorpo- 
ration that were apparently uniform throughout the micro- 
tubule network. Analysis of fluorescence recovery after pho- 
tobleaching also showed apparently uniform recovery. These 
observations were interpreted as being most compatible with 
exchange along the length of a microtubule. The exchange 
could occur by some form of lattice breathing and intercala- 
tion of subunits or, perhaps, by rapid breaking and reanneal- 
ing (7). The disparity between these conclusions and those 
drawn from the in vitro results presents a paradox. 

In this paper, we report results on the mechanism of micro- 
tubule growth in vivo in interphase mammalian cells. Our 
approach differs from previous ones in that we have attempted 
to resolve events at the level of single microtubules rather 
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than at the level of populations of microtubules, as has been 
done in the studies that use birefringence measurement (5, 6) 
or direct fluorescence emission and fluorescence recovery after 
photobleaching (7, 8). We used the approach of microinjec- 
tion and hapten-mediated immunocytochemistry (9, l 0, I l) 
to determine the pattern of incorporation of haptenized tub- 
ulin. Our results show that microtubules in interphase mam- 
malian cells do not incorporate subunits along their length. 
Rather, they grow in vivo as in vitro by addition of subunits 
preferentially at their plus ends. In addition, we present evi- 
dence for nucleation of microtubules from the centrosome. 

MATERIALS AND METHODS 

Preparation of Dichlorotriazinylaminofluorescein-Tubulin: 
Microtubule protein was prepared from porcine brain by cycles of assembly 
and disassembly (12). Pure tubulin was prepared from the microtubule protein 
by DEAE cellulose column chromatography (13). Dichlorotriazinylamino- 
fluorescein (DTAF) l was synthesized as has been described (14). Pure tubulin 
at 7-8 mg/ml was polymerized into microtubules at 37"C in 5% dimethyl 
sulfoxide (DMSO) in 100 mM PIPES, pH 6.94, 0.1 mM MgCI2, 1 mM GTP. 
DTAF dissolved in DMSO was mixed in rapidly at a final reageut-to-tubulin 
ratio of 20:1 (final DMSO concentration, 10%). After 15 rain at 37°C, micro- 
tubules were sedimented, depolymerized at 0*C, and purified by two cycles of 
polymerization at 37°C in 10% DMSO and depolymerization at 0°C in the 
absence of DMSO with differential centrifugation (12). The assembly properties 
of the DTAF-tubulin were normal by the criteria of temperature dependence 
of polymerization and electron microscopic morphology. Final protein yield 
was ~50% with a fluorochrome-to-tubulin ratio of 0.5 based on an absorption 
coefficient of 6.3 x 10" M -l cm -l at 495 nm for fluorescein. Protein concen- 
tration was determined by the method of Lowry et al. (14a). 

Cells and Microinjection: Human foreskin fibroblasts, type 356, 
were obtained from Dr. R. DeMars, Department of Genetics, University of 
Wisconsin, and cultured in Ham's F-10 medium supplemented with 10% fetal 
bovine serum. Cells were transferred to and microinjected in Leibovitz's me- 
dium (L-15) supplemented with l0 mM HEPES, pH 7.5 and 10% fetal bovine 
serum. DTAF-tubulin was microinjected at 4 mg/ml in 100 mM PIPES, 0.1 
mM MgCI2, and l mM GTP. Microinjection was performed with back-loaded 
glass capillaries by using a Leitz micromanipulator (E. Leitz, Inc., Rockleigh, 
N J) and a Nikon inverted microscope (Nikon, Inc., Garden City, NY), accord- 
ing to the general procedures reviewed by Kreis and Birehmeier (15). With 
these procedures, the injected volume may vary from l to 10% of the cell 
volume, and for the purpose of calculations, was estimated at 5%. 

Three criteria were used to assess that neither the injection buffer nor the 
injection procedure caused evident injury to the cells: (a) cell morphology and 
the microtubule network as determined by immunofluorescence were not 
detectably altered; (b) microinjeeted cells that were cold treated at 40C for 30 
rain, then re-warmed to 37°C, re-formed normal microtubule networks; and 
(c) mitotic cells injected in prophase, metaphase, or anaphase progressed 
through mitosis. Qualitatively similar patterns of DTAF-tubulin incorporation 
were observed over the range of temperatures, 25-37°C, and in the rat kangaroo 
epithelial cell line, PtKl. 

At given time points after microinjection, cells were rinsed briefly in PEM 
buffer (100 mM P1PES, l0 mM EGTA, 2 mM MgCl2, pH 6.94), extracted for 
l min in 0.1% Triton X-100 in PEM supplemented with l0 #g/ml taxol 
(National Cancer Institute, Bethesda, MD), fixed for 2 rain with 0.5% glutar- 
aldehyde in PEM, then treated with 2 mg/ml NaBH4 in H20 for 5 rain to 
quench residual glutaraldehyde. The extraction procedure was used to remove 
DTAF-tubulin not incorporated into microtubules (10). Taxol was included 
to stabilize microtubules during extraction. Controls in which cells were not 
stabilized with taxol but rather were fixed and extracted simultaneously gave 
similar results but with a higher background, presumably because of the soluble, 
nonextracted DTAF-tubulin. 

Immunof luorescence:  Double-label immunofluorescence was per- 
formed sequentially to completely avoid bleed-through of rhodamine tubulin 
staining into the fiuorescein DTAF-tubulin channel. DTAF-tubulin was 
stained and photographed first; then cells were stained for anti-tubulin immu- 
nofluorescence. DTAF-tubulin staining was done as follows: Antiserum to the 
fluorescein hapten was elicited by immunization of rabbits with fluoresceinated 
keyhole limpet hemocyanin as described (16). Cells were reacted with a 1:50 

Abbreviations used in this paper. DMSO, dimethyl sulfoxide; DTAF, 
dichlorotriazinylaminofluorescein; PEM, a buffer that contains 100 
mM PIPES, l0 mM EGTA, 2 m M  MgCl2, pH 6.94. 

dilution of the rabbit antiserum in 20% normal goat serum in phosphate- 
buffered saline (PBS); (150 mM NaCl, l0 mM NaH:PO4, pH 7.6) for 30 rain 
at 37"C. The secondary antibody was a 1:30 dilution of fluorescein-conjugated 
goat anti-rabbit lgG (Cappel Laboratories, Inc., Malvern, PA) in 10% normal 
goat serum in PBS for 30 min at 37"C. Tubulin staining was done as follows: 
Cells were reacted with a 1:1,000 dilution of an ascitic fluid of the YL 1/2 rat 
monoclonal antibody to yeast tubulin (gift of Dr. J. V. Kilmartin, Medical 
Research Council, England) in 10% bovine serum albumin in PBS for 30 min 
at 37"C. The secondary antibody was a 1:30 dilution of rhodamine-conjugated 
goat anti-rat IgG (Cappel Laboratories, Inc.) in PBS for 30 rain at 37"C. 
Coverslips were mounted in 2% N-propyl gallate in 90% glycerol, pH 8.0 07), 
examined with a Zeiss Universal microscope (Carl Zeiss, Inc., Thornwood, 
NY) by use of a 63x planapochromat (1.4 numerical aperture), and photo- 
graphed on Kodak Tri-X film, pushed 1 stop with Kodak HC-I l0 developer. 

Microtubule Length Distributions: Immunofluorescence micro- 
graphs were enlarged photographically, and microtubules were traced manually 
onto clear acetate. Lengths of individual microtubules were then determined 
by use of the Distance subroutine of an Apple Graphics Tablet coupled to an 
Apple II plus microcomputer (Apple Computer, Inc., Cupertino, CA). 

RESULTS 

Fluorescein was used as the hapten (18) and tubulin was 
conjugated with DTAF. This conjugate has been used by 
others for the direct visualization of microinjected tubulin in 
living cells by use of fluorescence microscopy and video 
intensification (7, 8, 19, 20). We found the direct fluorescence 
emission of this fluorophore useful to identify injected cells 
and to observe generalized fibrous patterns, but the signal-to- 
noise ratio was too poor to record single microtubules in 
living cells. We improved the signal-to-noise ratio both by 
amplifying the signal and by reducing the noise level. Ampli- 
fication of the fluorescence signal was achieved by indirect 
immunofluorescent staining for the haptenic group. Noise 
was reduced by extracting the cells before fixation to remove 
the DTAF-tubulin not incorporated into microtubules. 

Briefly, our procedure was to lyse and fix cells at given 
times after microinjection. The cells were then stained with 
the antibody to the fluorescein moiety and a secondary anti- 
body conjugated with fluorescein. The relationship between 
newly incorporated tubulin and preexisting microtubules was 
determined by the staining of cells with anti-tubulin and a 
secondary antibody conjugated with rhodamine. Newly 
formed microtubule domains, which contained DTAF-tub- 
ulin, would give a signal in the fluorescein channel and appear 
green. The total microtubule distribution (preexisting as well 
as newly formed microtubule domains) would give a signal 
in the rhodamine channel and appear red. If the DTAF- 
tubulin exchanged with subunits all along the length of mi- 
crotubules, as was suggested by recent studies (7, 8), then all 
microtubule domains would label both green and red. If, 
however, addition of DTAF-tubulin was restricted to the ends 
of microtubules, then we would expect to see green and red 
label coincident only over domains at the ends of microtu- 
bules, with the remainder of the microtubule lengths appear- 
ing red only. Newly formed microtubules, however, would 
appear green and red along their entire length. 

Over the course of these experiments, -350 cells were 
microinjected. Of these, -3/4 were photographed in fluores- 
cence microscopy, the others being either underinjected by 
volume (giving low fluorescence emission) or overinjected 
(generally did not survive long term) and therefore were 
disqualified. Of the photographed cells, most presented a 
fibrous pattern that was interpretable at the level of single 
microtubules at least in some, generally peripheral, regions of 
the cell. Principal variations in the pattern were in the length 
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of labeled microtubules and in the number focusing at the 
centrosome. 

Figs. 1 and 2 show the distribution of incorporated tubulin 
and total microtubules in cells 7 and 14 min, respectively, 
after microinjection. Parts (a) and (b) show the signals in the 
fluorescein and rhodamine channels, respectively, which even 

though are both white on black, will be referred to as green 
and red that represent DTAF-tubulin and total microtubules, 
respectively. Similar pairs of micrographs are presented in 
Figs. 3-8. 

The first important result is that, at these early times after 
microinjection, only a small proportion of the total microtu- 

FIGURES I and 2 Double-label immunofluorescence of microinjected lubulin and the total microtubule profile. After microin- 
jeclion of DTAF-tubulin, cells were lysed, fixed, and stained. (a) Fluorescein channel, antibody to OTAF-tubulin (b) Rhodamine 
channel, antibody to tubulin. (Fig. 1) 7 rain after microinjection. (Fig. 2) 14 rain after microinjection. Three regions enclosed in 
Fig. 2 are shown in Figs. 5, 6, and 8. Bar in a, 10 #m. x 1,670. 
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bule profile was labeled green (had incorporated DTAF- 
tubulin). In the 7-min cell, most of the DTAF-tubulin was 
incorporated at the leading edge and was conspicuously absent 
from the side margins of the cell. Microtubules are known to 
end in the vicinity of the leading edge, and this pattern of 
labeling is consistent with incorporation at the ends of micro- 
tubules. In addition, a number of DTAF-microtubules were 
seen at the centrosome, which suggests that the centrosome 
had nucleated the formation of some new microtubules. 
However, most of the centrosomal microtubules were red but 
not green, which indicates that they had not incorporated 
label by this time. Finally, we noted the presence of short 
DTAF-tubulin segments scattered through the cytoplasm. 
These may have resulted from end addition to microtubules 
that did not extend to the edge of the cell or from new self- 
assembly in the cytoplasm. Because of the congestion of 
microtubules in this region, we could not distinguish between 
these alternatives in this cell. In the 14-min cell, prominent 
growth at the centrosome was observed, with some microtu- 
bules > 10-pm long. However, as in the 7-rain cell, the number 
of microtubules at the centrosome that incorporated DTAF- 
tubulin was significantly less than the total number of centro- 
somal microtubules. 

In peripheral regions of cells, the relationship between the 
newly incorporated tubulin and the preexisting microtubules 
was more evident. Fig. 3 shows a striking example of a short 
bundle of intense green labeling at the end of a long, loosely 
organized bundle of microtubules, which suggests that assem- 
bly of the entire green bundle was seeded at its base. Despite 
the high number of microtubules in the bundle, virtually no 
incorporation of DTAF-tubulin along its length was observed. 
Presumably, this was due to the lack of microtubule ends 
except at the cell periphery. Another region at the edge of a 
cell (Fig. 4) shows microtubules running parallel to each other. 
Here, a one-to-one correspondence may be made between the 
green and red fibers. Every cellular microtubule in this field 

(red) was seen to have its distal tip green, which indicates that 
incorporation had occurred at the end. However, the conges- 
tion in the field was too great to permit tracking of the green 
domains proximally to determine if, in fact, they were co- 
linear with red fibers that extended toward the cell center. 

In some regions of the cell periphery or over the nucleus, 
the sparsity of cellular microtubules permitted us to track 
individual microtubules along their length and to determine 
more precisely the domain of incorporation. Figs. 5-7 show 
three such regions with interpretative diagrams of the labeling 
patterns. Figs. 5 and 6 are higher magnification micrographs 
of two of the enclosed regions in the cell shown in Fig. 2. In 
each of these examples, most DTAF-labeled domains were 
identifiable as being co-linear with a microtubule and occur- 
ring at the end closest to the cell periphery. Fig. 6 also shows 
a rare example of a microtubule in which both ends may be 
seen. This apparently is a free cytoplasmic microtubule. Com- 
parison of the fluorescein and rhodamine channels shows that 
the microtubule end closest to the cell periphery is red and 
green, whereas the opposite end is solely red. This is consistent 
with polar assembly onto a preexisting microtubule in vivo. 
No free microtubules labeled green and red along their entire 
length were observed, which suggests no self-assembly after 
the microinjection had occurred. 

Fig. 8 is a high magnification micrograph of the nuclear 
region of the cell shown in Fig. 2 and shows microtubule 
growth from a centrosome. Approximately 15 microtubules, 
both green and red along their length, radiate from the cen- 
trosome, which is also the focus for perhaps a hundred micro- 
tubules that are red but not green. This suggests that the green 
and red microtubules were the result of new nucleation at the 
centrosome. The lengths of the green microtubules exceeded 
10 pm and were comparable to the lengths of green domains 
seen at the periphery of the same cell. 

Fig. 9 shows a quantitative analysis of the lengths of labeled 
microtubules at the periphery of a cell 9 min after microin- 

FIGURES 3 and 4 (Fig. 3) Distribution of DTAF-tubulin within a loosely organized microtubule bundle that extends upwards to 
the cell periphery. Cell 15 rain after microinjection. (a) DTAF-tubulin microtubules; (b) total microtubules. Arrows mark the base 
of a peripheral bundle in a that appears seeded from preexisting microtubules. Bar in b, 10/~m. x 1,670. (Fig. 4) Correspondence 
between microtubule ends that incorporate DTAF-tubulin and total microtubule ends at a cell periphery. Cell 19 rain after 
microinjection. (a) DTAF-tubulin microtubules; (b) total microtubules. Bar in b, 10/Lm. x 2,840. 
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jection. Microtubules nucleated by the centrosome were not 
included in this analysis. The histogram shows a range of 
labeled lengths with a mean of 5.45 tzm; maximum length 

was 15.5 #m. By assuming a uniform rate of incorporation 
after microinjection, we calculate that these lengths suggest 
an average elongation rate for microtubules in vivo of ~0.6 

FIGURES 5-7 Distal incorporation of microinjected tubulin relative to preexisting microtubules. (a) DTAF-tubulin microtubules; 
(b) total microtubules; (c) interpretative diagrams that show end assembly of DTAF-tubulin (blackened segments) onto preexisting 
microtubules (open segments). In c, microtubules in b that do not show an end were omitted. Also, preexisting microtubules are 
incompletely depicted when pathways in b were uninterpretable. Figs. 5 and 6 are from two enclosed regions of the cell in Fig. 
2 (14 min postinjection). Cell in Fig. 7 is 12 min after microinjection. Bar in 5b, 5 #m. x 4,000. 
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FIGURE 8 Centrosomal incorporation of DTAF-tubulin relative to total microtubules at the centrosome. (a) DTAF-tubulin 
microtubules; (b) total microtubules. One of the microtubules that originates at the centrosome in a and is identifiable in b is 
denoted with arrows. This figure is the enclosed nuclear region of the cell in Fig. 2. Bar, 5 #m. x 4,000. 
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FIGURE 9 Microtubule length distribu- 
tions of DTAF-tubulin in vivo. (a) DTAF- 
tubulin incorporation at the edge of a 
cell 9 min after microinjection. (b) His- 
togram of the lengths of 58 microtubule 
segments measured from a where two 
ends were clearly identifiable. Mean was 
5.45 ~m. Bar in a, 10/zm. x 1,600. 

#m/min. Because we have not attempted to quantitate pre- 
cisely the amount of DTAF-tubulin microinjeeted, rates of 
elongation as determined in different cells are not directly 
comparable. 

DISCUSSION 

The rationale behind our approach was to combine microin- 
jection of haptenized tubulin and hapten-mediated immu- 
nocytochemistry (9, 10, 1 l) to determine directly the site and 
directionality of microtubule assembly in vivo. Hapten-me- 
dinted immunocytochemistry was essential to amplify signals 
sufficiently to permit the location of added tubulin subunits 
in individual microtubules. FIuorescein was a convenient 

hapten (18) and also allowed immediate confirmation by 
fluorescence microscopy of the microinjection. 

Current understanding of microtubule polymerization in 
vitro indicates three classes of microtubule growth are possible 
in living cells: (a) elongation of preexisting microtubules by 
addition of subunits at their ends; (b) nucleation of microtu- 
bules by specialized structures such as the centrosome; and 
(c) self-assembly leading to the formation of free microtu- 
bules. 

Our studies demonstrate clearly the incorporation in vivo 
of subunits at the distal ends of microtubules. Structural 
polarity studies (21, 22) have shown that microtubules in 
animal cells radiate from the centrosomal region with their 
plus ends distal. Thus, we can identify the distal labeling in 
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vivo as signifying incorporation at the plus end. Analysis of 
occasionally observed free microtubules also show incorpo- 
ration only at one end, which indicates that growth is polar 
in vivo as it is in vitro (3). No newly self-assembled microtu- 
bules were observed, although their existence cannot be ruled 
out. 

The second category of growth, nucleation by the centro- 
some, is also strongly indicated, although there is some diffi- 
culty in tracing labeled microtubules to their end points. The 
distal tip labeling described previously is presumably at the 
plus ends of preexisting centrosomal microtubules or other 
long microtubules that trace to the nuclear region. Interest- 
ingly, in every case when red microtubules could be traced to 
their distal tips, their ends were observed to be green, which 
indicates that none of the preexisting microtubules was incap- 
able of assembly or "capped" at its plus ends. Such microtu- 
bules may exist, but we have found none under our experi- 
mental conditions. In contrast, at early times after microin- 
jection, most microtubules at the centrosome were unlabeled. 
This indicates that most microtubules at the centrosome do 
not incorporate subunits at their minus end, and, therefore, 
are "capped." We conclude that the centrosomal microtubules 
labeled along their length represent newly formed microtu- 
bules, which grow by addition of subunits at their plus ends. 

What does growth of new microtubules from the centro- 
some indicate? It could indicate that, in interphase cells, the 
centrosome is normally not saturated in terms of its nucleating 
capacity. Microinjection of tubulin might have shifted the 
subunit/polymer ratio sufficiently away from steady-state to 
drive the formation of microtubules onto unoccupied nuclea- 
tion sites, which leads to an increase in the number of centro- 
somal microtubules. A second possibility is predicted by the 
recently proposed model of dynamic instability (4). The new 
microtubules may represent nucleation at sites where micro- 
tubules have recently disappeared. Thus, the net number of 
microtubules would remain unchanged, and the rate of ap- 
pearance of new microtubules would then indicate the steady- 
state rate of turnover of the microtubule population. 

Microinjection of labeled tubulin and observation of incor- 
poration at times after injection is by nature a perturbation- 
relaxation experiment. How significant might this perturba- 
tion be? Based on the concentration of the microinjected 
tubulin (4 mg/ml), the injected volume (~5%), and the con- 
centration of cellular tubulin in subunit form (1.3 mg/ml) 
(23), we calculate that microinjection would elevate the sub- 
unit pool by ~ 15%. The observation that free microtubules 
grew only at one end suggests that the increase in concentra- 
tion of free subunits was less than that necessary to cause 
minus end growth. Therefore, the results indicate that the 
concentration of free subunits initially after microinjection 
(~1.5 mg/ml) lay between the steady-state value and the 
critical concentration at the minus end. 

The period of microtubule growth and subunit depletion 
to the steady-state level would constitute the relaxation phase. 
Based on kinetic parameters determined in vitro (1, 3), esti- 
mates of microtubule numbers in vivo (23), and a reversible 
equilibrium model, 2 we estimate the half-time for relaxation 

2 The kinetics of assembly of microinjected tubulin can be analyzed 
on an equilibrium perturbation model as a pseudo-first order reaction 
in which the time required to complete half the reaction, t~, is given 
by t~ = ln2/k÷ [M], where k÷ is the association rate constant for the 
plus end, and [M] is the molar concentration of microtubule ends. 
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to be ~ 16 min, similar to the time scale of our experiments. 
Thus, the distal tip labeling observed may be accounted for 
simply in terms ofsubunit addition when the subunit concen- 
tration is above its equilibrium value. The observations do 
not exclude treadmilling, although other studies (8, 24) indi- 
cate that this process in interphase mammalian cells, if it 
occurs at all, is slow. Iftreadmilling occurred, we would expect 
the labeled zone to increase in length linearly with time, 
whereas if the mechanism of tip labeling were solely equilib- 
rium perturbation, the length would increase asymptotically 
to a value equal to the proportion of total microtubule length 
represented by the injection tubulin. 

It is useful to estimate the sensitivity of our detection system 
for incorporation of DTAF-tubulin. Based on a fluoro- 
chrome-to-tubulin ratio for the DTAF-tubulin of 0.5, the 
estimated concentration of microinjected tubulin of 0.2 mg/ 
ml, and the estimated concentration of cellular tubulin in 
subunit form of 1.3 mg/ml, we may calculate the proportion 
of labeled subunits in the cellular pool after microinjection to 
be 1 in 15. By assuming that labeled and unlabeled tubulin 
incorporate into microtubules equally and that there are 1,625 
subunits/~m of microtubule, we calculate that this value 
corresponds to 108 labeled subunits/um. We have not yet 
determined precisely our threshold for detection, but we 
estimate it to be ~fivefold lower or ~20 labeled subunits/~m. 

In summary, our studies demonstrate that the sites of 
microtubule assembly in interphase mammalian cells are at 
the plus ends of preexisting microtubules and at centrosomes. 
These are both end-dependent mechanisms and are fully 
consistent with in vitro results. However, our results do not 
distinguish among the possible end-dependent mechanisms 
of assembly: equilibrium perturbation, treadmilling, and dy- 
namic instability. Now that it is possible to study the activity 
of individual microtubules in cells, we expect kinetic analyses 
to resolve the open issues in vivo as they have in vitro. 
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