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The conversion of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD)
represented a typical route for high-value utilization of biomass. However, this reaction was
often catalyzed by the noble metal catalyst. In this manuscript, W promoted Ni/Al2O3 was
prepared as a noble-metal-free catalyst for this transformation. The catalysts were
characterized by XRD, XPS, NH3-TPD, TEM, and EDS-mapping to study the influence
of the introduction of W. There was an interaction between Ni andW, and strong acid sites
were introduced by the addition of W. The W promoted Ni/Al2O3 showed good selectivity
to HHD when used as a catalyst for the hydrogenation of HMF in water. The influences of
the content of W, temperature, H2 pressure, reaction time, and acetic acid (AcOH) were
studied. NiWOx/Al2O3-0.5 (mole ratio of W:Ni = 0.5) was found to be the most suitable
catalyst. The high selectivity to HHD was ascribed to the acid sites introduced by W. This
was proved by the fact that the selectivity to HHD was increased a lot when AcOH was
added just using Ni/Al2O3 as catalysts. 59% yield of HHD was achieved on NiWOx/Al2O3-
0.5 at 393 K, 4 MPa H2 reacting for 6 h, which was comparable to the noble metal catalyst,
showing the potential application in the production of HHD from HMF.
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INTRODUCTION

The production of chemicals from a renewable resource is one of the essential tasks for sustainable
chemistry (Corma et al., 2007; Besson et al., 2014; Mika et al., 2017; Fang et al., 2020; Xu et al., 2020).
As the 5-hydroxymethylfurfural (HMF) could be obtained easily by the dehydration of hexoses (Yu
and Tsang, 2017; Fan et al., 2019; Kang et al., 2019; Chang et al., 2021; Das and Mohanty, 2021; Guo
et al., 2021; Tempelman et al., 2021), a class of compounds abundant in nature, the transformation of
HMF is one of the hot topics for sustainable chemistry (Averochkin et al., 2021; Bielski and
Grynkiewicz, 2021; Fang and Riisager, 2021). Many studies had focused on the conversion of HMF to
various products with potential or practice applications. It was reported that fuels (Esteves et al.,
2020) and their additives (Nagpure et al., 2020), polymer monomers (Duan et al., 2017a; Elsayed
et al., 2020; Wang et al., 2020; Fulignati et al., 2021) and other chemicals (Ohyama et al., 2017; Ramos
et al., 2017; Wozniak et al., 2019; Zhang et al., 2019) with the high added value could be produced
using HMF as feedstock through catalytic hydrogenation (Ohyama et al., 2016; Ren et al., 2016; Yang
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et al., 2019a; Long et al., 2019; Han et al., 2020; Wiesfeld et al.,
2020; Gao et al., 2021), oxidation (Neatu et al., 2016; Martínez-
Vargas et al., 2017; Deshan et al., 2020), etherification (Che et al.,
2015) and other catalytic procedures (Karve et al., 2020; Zhang
et al., 2021).

1-hydroxy-2,5-hexanedione (HHD) was one of the high value-
added compounds obtained from HMF through catalytic
hydrogenation (Schiavo et al., 1991; Gupta et al., 2015; Zhu
et al., 2019; Yang et al., 2020). The HHD could be used for
the preparation of polyols, nitrogen and oxygen heterocycles.
Recently, it was reported that the HHD could convert to 2-
hydroxy-3-methyl-2-cyclopenten-1-one (MCP) through an
intramolecular aldol condensation procedure at mild
conditions (Duan et al., 2017b; Wozniak et al., 2018). The
MCP was a commercialized edible essence produced from
petrochemical feedstock by multistep reactions with low yield
and severe pollution. The HHD was a potential feedstock
candidate for the improvement in the production of MCP.

The transformation of HMF to HHD had been reported by
several groups. The reaction was usually conducted in water
under H2 pressure. The formic acid could also be used as the
hydrogen source when a homogeneous catalyst was used (Xu
et al., 2017). Acid additives such as HCl, Amberlyst-15 or H3PO4

was usually necessary for this conversion (Liu et al., 2014). To
avoid acid additives, the introduction of acid sites in the catalyst
was a good choice. For example, the reaction could conduct
without the addition of acid additives when acid supportMIL-101
(Yang et al., 2019b), zeolite (Ramos et al., 2019) or Nb2O5 (Duan
et al., 2017b) was used for the preparation of Pd catalyst. The
supported Pd was found to be an effective heterogeneous catalyst
for this transformation while the Ir complexes were a good
homogeneous catalyst candidate (Xu et al., 2017). The Ru
(Gupta et al., 2015) complex and supported Au (Ohyama
et al., 2014) could also catalyse this reaction. The employment
of noble-metal was a barrier for the further application of the
conversion of HMF to HHD. To reduce the use of noble-metal,
high-performance catalyst with low noble-metal load, high

dispersion and activity was designed and applied for this
transformation.

The application of noble-metal-free catalyst for the conversion
of HMF to HHDwithout acid additives was a better choice for the
improvement. However, there was only one report that HMF in
water (~0.3 wt%) could be converted to HHD by Ni2P
nanoparticles up to now (Fujita et al., 2020). In this
manuscript, the tungsten promoted Ni/Al2O3 was simply
prepared and used as a noble-metal-free catalyst for the
transformation of HMF to HHD. The catalyst showed high
activity and stability in the reaction. The introduction of
tungsten in the catalyst improved the activity and selectivity to
HHD greatly.

RESULTS AND DISCUSSION

Characterization
The X-ray diffraction (XRD) patterns of NiWOx/Al2O3 with
different content of W was displayed in Figure 1. Figure 1A were
the results of samples after calcined. Except for the diffraction
peaks for γ-Al2O3, Ni/Al2O3 had additional two peaks at 37.3o

and 43.4o. This should be ascribed to (111) and (200) diffraction
peaks of NiO (PDF#47-1049). The two peaks decreased as the
content of W increased for NiWOx/Al2O3 and almost
disappeared for NiWOx/Al2O3-0.7 and NiWOx/Al2O3-0.9. The
WOx/Al2O3 showed (001) (020) (200) (111) (021) (201), and
(220) peaks of WO3 without NiO peaks (Supplementary Figure
S1). W species mainly existed as WO3 after the calcination.
However, no diffraction peaks ascribed to WOx could be
found for NiWOx/Al2O3 showed that the W had a reasonable
degree of dispersion on the support. After the Ni/Al2O3 was
reduced in H2, the diffraction peaks ascribed to NiO disappeared
(Figure 1B). Two new peaks corresponding to Ni (111) and (200)
were immersed at 44.5o and 51.9o (PDF#04-0850). This showed
that most of the NiO could be reduced to Ni by H2 reduction,
which was consistent with the results of H2-Temperature

FIGURE 1 | The XRD patterns of NiWOx/Al2O3 with different content of W before (A) and after (B) H2 reduction.
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programmed reduction (H2-TPR) (Supplementary Figure S2
and Table S1). After the introduction of W, NiWOx/Al2O3 still
had the diffraction peaks of Ni. The diffraction peaks moved to a
smaller angle with increasedW content. This should be caused by
the W atoms entering the lattice of Ni.

The surface chemical state was characterized by X-ray
photoelectron spectroscopy (XPS) and the results were shown
in Figure 2 and Supplementary Figure S3. After deconvolution
operation, the Ni/Al2O3 showed two peaks centered at 856.7 and
855.3 eV, which should be ascribed to NiAl2O4 and NiO,
respectively (Figure 2A) (Yang et al., 2016). No peaks
(853.0 eV) ascribed to metallic Ni could be found in the XPS
spectra. This should be caused by the oxidation of surface Ni
when exposed to air. The binding energy shifted to higher energy
when W was introduced. The binding energy peaks of NiAl2O4

and NiO were 857.4 and 855.8 eV, respectively for NiWOx/
Al2O3-0.5. This decrease indicated that the W had interaction

with Ni. This interaction between Ni and W should weaken that
between Ni and Al. Consequently, the relative content of NiAl2O4

decreased after the introduction of W revealed by the result of
XPS (Figure 2A). The interaction between Ni and W was further
proved by the XPS spectra of W (Figure 2B). The WOx/Al2O3

had peaks at 37.4 and 35.4 eV corresponding to the binding
energy of WO3 of 4f5/2 and 4f7/2 (Cao et al., 2014). This value
decreased to 37.3 and 35.3 for NiWOx/Al2O3-0.5. The interaction
between Ni andW was also consistent with the results of H2-TPR
that the reduction temperature peak was changed after the
introduction of W (Supplementary Figure S2; Table S1).

The acidic properties of Ni/Al2O3, NiWOx/Al2O3-0.5 and
WOx/Al2O3 were investigated by the temperature-
programmed desorption of ammonia (NH3-TPD), and the
results were shown in Figure 3 and Supplementary Figure
S4. The Ni/Al2O3 showed a sharp peak at 570 K which was
ascribed to the weak to medium acid site of Al2O3. The NH3-TPD
of NiWOx/Al2O3-0.5 showed three wide peaks centered at 442,
544, and 700 K corresponding to the weak acid, medium acid, and
strong acid sites respectively. The NiWOx/Al2O3-0.5 posed a
relatively strong acid site except for the weak to medium acid site
compared to Ni/Al2O3. This desorption curve was similar to
WOx/Al2O3 (Supplementary Figure S4). Hence, the strong acid
site was produced due to the introduction of W in NiWOx/
Al2O3-0.5.

The morphology of Ni/Al2O3 and NiWOx/Al2O3-0.5 was
characterized by transmission electron microscopy (TEM). The
TEM images (Figure 4) showed that the Ni was distributed on the
surface of the support in granular or rod form for both Ni/Al2O3,
NiWOx/Al2O3-0.5 in nanoscale. To get a clearer distribution of
elements, the energy-dispersive spectrometer (EDS) mapping was
taken for both catalysts. The results were shown in Figures 4C,D,
Supplementary Figures S5–8 and Supplementary Table S2. The
Supplementary Table S2 summarized the percentage of each
element in Ni/Al2O3 and NiWOx/Al2O3-0.5. The content of Ni,
W was close to the theoretical value. It could be seen that the
distribution of Ni could be divided into two categories for Ni/
Al2O3. Some of the Ni gathered together to formmetal particles as

FIGURE 2 | The XPS spectra of Ni 2p (A) and W 4f (B).

FIGURE 3 | The NH3-TPD profiles of Ni/Al2O3 and NiWOx/Al2O3-0.5.
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shown in TEM images. While the other Ni did not agglomerate
and dispersed on the support evenly. This should be ascribed
to the unreduced Ni species with high interaction between Al.
After the introduction of W, the NiWOx/Al2O3-0.5 had a
similar Ni distribution as Ni/Al2O3 (Figure 4D). The EDS
mappings of W showed that the Ni and W did not have a
separated distribution. The W always distributed followed the

distribution trend of Ni. This was advantageous for the synergistic
effect between Ni and WOx.

Hydrogenation of HMF
The hydrogenation of HMF was conducted in water under a
hydrogen atmosphere. We first checked the effect of W for the
reaction, and the results were shown in Figure 5. 46% conversion of

FIGURE 4 | The TEM images and EDS mappings of Ni/Al2O3 (A,C) and NiWOx/Al2O3-0.5 (B,D).
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HMF was obtained when Ni/Al2O3 without W was used as the
catalyst. HHD was detected as one of the products, proving that the
reaction could be catalyzed by Ni catalyst. However, the selectivity to
HHD was only 29% accompanied by 19% selectivity to 3-
(hydroxymethyl)cyclopentan-1-one (HCPO) and 12% selectivity to
2,5-Bis(hydroxymethyl) furan (BHMF). Deep hydrogenation
products reported in the literature (Yao et al., 2013; Pomeroy
et al., 2021; Zhang et al., 2022) for Ni and Ru based catalysts
(Ni–Ce/Al2O3, Ni-Co-Al mixed oxide, and Ru/C) such as 2,5-
bis(hydroxymethyl) tetrahydrofuran, 1,2,6-hexanetriol and 1,2,5-
hexanetriol were not found, showing that the catalyst had
moderate hydrogenation activity. When a small amount of W was
introduced to the Ni/Al2O3, the conversion of HMF increased to 68%
while the selectivity to HHD decreased a little to 25% for NiWOx/
Al2O3-0.1. A small amount of W had no promoting effect for the
selectivity to HHD. However, as the amount of W increased, the
selectivity to HHD had a sharp increase to 66% for NiWOx/Al2O3-
0.5 with a little increase in the conversion of HMF. When continued
to increase the content of W, the selectivity to HHD maintained
around 60% while the conversion of HMF decreased to 59%. An
appropriate amount of W was needed for the high performance for
hydrogenation ofHMF toHHD.WhennoNiwas used in the catalyst
(WOx/Al2O3), the HMF was almost unchanged showed that the W
did not have the function for hydrogenation. The increased activity
for the conversion of HMF could be caused by the interaction
between Ni and W which was clued by the XRD, XPS, and H2-
TPR. Firstly, the electronic state of Ni was changed by the addition of
W. Secondly, the interaction betweenNi andWweaken that between
Ni and Al. So, the content of NiAlO4, a species that had no
hydrogenation activity, decreased. Therefore, the hydrogenation
activity increased after the introduction of W. The high selectivity
to HHD should be ascribed to the strong acid site introduced by the
addition of W. It was reported that the acids play a key role in the
isomerization of furan rings in the conversion of HMF to HHD. The

introduced strong acid sites by W were conducive to the
rearrangement of furan rings during the reaction. Thus, the
selectivity to HHD was enhanced.

The hydrogenation of HMF to HHD was a multistep reaction
including hydrogenation and isomerization. The temperature was
very important for this multistep reaction. We studied the
effect of temperature by conducting the reaction at a
temperature between 333 and 453 K and the results were
shown in Figure 6. Generally, the conversion should be
increased with the rise in temperature. However, the
conversion of HMF experienced a process of falling first
and then rising. As shown in Figure 6A, the temperature
range was divided into three distinct parts. In each
temperature range, the conversion of HMF increased
smoothly with the rise in temperature. However, there had
a sharp descent in the conversion when the temperature
increased from 353 to 363 K and a sharp ascend in the
conversion when the temperature increased from 403 to
413 K. We first checked the change of catalysts after
reacting at different temperature by XRD (Supplementary
Figure S9). It could be seen that, both the NiWOx/Al2O3-0.5
and Al2O3 had no obvious change after reacting at different
temperature. This showed the catalysts was stable at the
reaction condition. The changes in conversion could be
interpreted by the different reaction pathways revealed by
the change in selectivity (Figure 6B). At a temperature lower
than 363 K, the main product was BHMF which was the
hydrogenation of aldehyde in HMF. Both the selectivity to
HHD and HCPO, which should be produced by the
isomerization of furan rings, was very low. As the reaction
temperature raised from 333 to 363 K, the selectivity to BHMF
decreased while the selectivity to HHD increased. The
maximum increase in the selectivity to HHD was observed
when the temperature increased from 353 to 363 K. The
hydrogenation active center only required the
hydrogenation of aldehyde group for BHMF. However,
both the aldehyde group and intermediates needed to be
hydrogenated by the hydrogenation active center for the
production of HHD. As a result, there had a decline in
conversion when the temperature increased from 353 to
363 K. A similar phenomenon also occurred at
temperatures increased from 403 to 413 K. The selectivity
to HHD decreased sharply when the temperatures increased
from 403 to 413 K. At the same time, the selectivity to HCPO
began to increase. In a word, the hydrogenation active center
should play the role of hydrogenation function in multiple
steps that led to the low conversion in the transformation of
HMF to HHD. The suitable temperature range for high
selectivity to HHD was from 363 to 413 K.

The effect of H2 pressure and reaction time was studied to
optimize the reaction conditions. The conversion of HMF
increased with the increase in H2 pressure (Figure 7). When
the H2 pressure was lower than 4 MPa, the selectivity increased
with the increase in pressure. The highest selectivity to HHD was
achieved at 4 MPa H2. The conversion increased with the
extension of time (Figure 7B). When the reaction was
conducted at a shorter time, there had a low selectivity to

FIGURE 5 | The hydrogenation of HMF on different catalyst. Reaction
conditions: catalysts (20.0 mg), HMF solution (2.00 g, HMF: 1 mmol), H2

(4 MPa), 413 K, 2 h.
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HHD and BHMF, the intermediate for HHD, was found as the
main products. However, as the reaction prolonged to 2 h, the
selectivity to HHD increased to 72% while that to BHMF
decreased to 3%. The selectivity to HHD kept around 65%
when further extension of time. The highest yield of HHD was
59% which was obtained after 6 h reaction.

To verify the effect of acid for the conversion of HMF toHHD, the
Ni/Al2O3was used as the catalyst for this transformationwith different
amounts of acetic acid (AcOH). The results were shown inTable 1. As
mentioned above, the selectivity to HHD was 29% without the
addition of AcOH. The byproduct or intermediate were HCPO
and BHMF. This result was in accordance with the previous report
(Perret et al., 2016) that the HHD was one of the products when

FIGURE 6 | The effect of temperature on the conversion (A) and selectivity (B) for HMF conversion. Reaction conditions: NiWOx/Al2O3-0.5 (20.0 mg), HMF solution
(2.00 g, HMF: 1 mmol), H2 (4 MPa), 333-453 K, 2 h.

FIGURE 7 | The effect of H2 pressure (A) and reaction time (B) for the hydrogenation of HMF. Reaction conditions: NiWOx/Al2O3-0.5 (20.0 mg), HMF solution
(2.00 g, HMF: 1 mmol), H2 (1-5 MPa), 393 K, 0.5-6.0 h.

TABLE 1 | Effect of AcOH on the conversion of HMF to HHD catalyzed by Ni/
Al2O3.

Entry AcOH (mg) Conversion (%) Selectivity (%)

HHD HCPO BHMF

1 0 46 29 19 12
2 10 40 59 2 2
3 20 42 52 3 1
4 30 39 58 1 3
5 40 45 61 1 3
6 50 59 56 2 3

Reaction conditions: Ni/Al2O3 (20.0 mg), HMF solution (2.00 g, HMF: 1 mmol), AcOH,
H2 (4 MPa), 413 K, 2.

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8571996

Duan et al. Ni Catalyzed HMF to HHD

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


nickel/alumina was used for the hydrogenation of HMF in water.
However, the selectivity to HHD was typically low (less than 15%)
when no acid was used.When 10mg ofAcOHwas added, there had a
little decline in the conversion of HMF. However, the selectivity to
HHD increased from 29 to 59% (Table 1, Entry 2). This showed that
the acid was conducive to improving the selectivity to HHD rather
than the conversion of HMF. Further to increase the amount of acetic
acid, there was no significant further improvement in the selectivity to
HHD (Table 1, Entries 3-6). The highest selectivity forHHDwas 61%
which was acquired with 40mg of AcOH. These experiments proved
the role of acid for the high selectivity to HHD.

Based on the characterization and the hydrogenation of HMF,
the reaction pathway and the role of catalyst was proposed as shown
in Figure 8. The HMF was firstly hydrogenated to BHMF on Ni.
Based on the literature and our previous work (Duan et al., 2017b;
Martínez-Vargas et al., 2017; Ramos et al., 2017; Fujita et al., 2020),
the BHMF was ready to isomerize to 1-hydroxyhex-3-ene-2,5-dione
(HHED) catalyzed by acid. This was the crux for the reaction. In this
work, the WOx played the role of acid to catalyze this
transformation. At last, the HHED was hydrogenated to HHD
on Ni. The suitable acidity of WOx and the moderate
hydrogenation activity was the key for this multistep tandem
reaction. The adjacent distribution of Ni and WOx accelerated
the conversion of intermediates thus avoiding possible
polymerization side reactions.

CONCLUSION

In conclusion, the conversion of HMF to HHD was achieved by
noble-metal-free W promoted Ni/Al2O3. The Ni and W
uniformly dispersed on the surface of the support. The
interaction between W and Ni increased the activity of Ni/
Al2O3 for the hydrogenation of HMF. The introduction of W
generated strong acid sites, which were the key for the high
selectivity to HHD. The role of acid was proved by the addition of
AcOH to unpromoted Ni/Al2O3. A suitable temperature was
needed for the transformation of HMF to HHD smoothly. After

the optimization of the conditions, a 59% yield of HHD was
acquired at 393 K, 4 MPa H2 reacted for 6 h on NiWOx/Al2O3-
0.5. This work provided the idea for high selectivity to HHD from
HMF by the introduction of suitable acid and improved the
feasibility of putting this reaction into practical application by
using a non-noble metal catalyst.

MATERIALS AND METHOD

Materials
HMF (98%, C6H6O3) was bought from Zhengzhou Alpha
Chemical Co. Ltd. Aluminum oxide (99.99% metals basis,
≤20 nm, Crystal form: γ-Al2O3), n-decane (99.8%, C10H22)
and ammonium metatungstate [99.5% metals basis
(NH4)6H2W12O40·xH2O] were purchased from Aladdin
Chemistry Co. Ltd. Nickel (II) nitrate hexahydrate [98%,
Ni(NO3)2·6H2O] and AcOH (99.5%, C2H4O2) was got from
Anhui Zesheng Technology Co., Ltd.

Characterization
A Rigaku D/Max 2500/PC powder diffractometer was used to
collect the X-ray diffraction (XRD) patterns. Cu Kα radiation at
40 kV was used as the X-ray source. Thermo Escalab 250Xi
spectrometer with Al Kα was used to characterize the X-ray
photoelectron spectroscopy (XPS) spectra. The sample powder
was overspread on a double-faced adhesive tape on aluminum
foil. The sample was pressurized to 8 MPa for 30 s and used for
measurement. Before measurement, the chamber pressure was
vacuumized to <1 × 10−10 mBar. The binding energy (BE) was
adjusted by the binding energy of C1s. The transmission electron
microscopy (TEM) images and energy-dispersive spectrometer
(EDS) elemental mappings were taken on a JEOL JEM-2100 F
field emission transmission electron equipped with An Oxford
80T detector. The temperature-programmed desorption of
ammonia (NH3-TPD) and H2-Temperature programmed
reduction (H2-TPR) was conducted on the Micromeritics
AutoChem II 2920 Instrument. Typically for NH3-TPD,

FIGURE 8 | The proposed reaction pathway on NiWOx/Al2O3.
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60.0 mg of sample were loaded into the sample tube. The sample
was heated to 773 K under He flow (10 mL/min) and kept for 2 h.
The tube was cooled to 373 K and 10NH3-He (30 mL/min) was
introduced for 0.5 h. Then the atmosphere was switched to He
(10 mL/min) and kept for 1 h to remove the physical adsorbed
NH3. After that, the temperature was increased (10 K/min) from
373 to 973 K in an atmosphere of He (10 mL/min). The desorbed
NH3 was detected by the thermal conductivity detector (TCD).
For H2-TPR, the calcinated catalyst (85.0 mg) was degassed at
573 K under an atmosphere of Ar (10 mL/min) for 2 h. The
sample was cooled to 373 K. The temperature was increased
(10 K/min) from 373 K to 973 k under the atmosphere of
10H2-Ar (30 mL/min). The H2 consumption was monitored
by a TCD detector.

Preparation of Catalysts
In a typical procedure, Ni(NO3)2·6H2O (2.50 g) and
(NH4)6H2W12O40·xH2O (1.05 g) were dissolved in water
(10.00 g). Then Al2O3 was added to the solution. The mixture
was stirred evenly to form a paste and kept standing for 24 h.
Then, the paste was dried at 393 k overnight. Followed by calcined at
823 K in the air for 4 h. The obtained solid was ground to pass
through 100 mesh sieve and reduced at 773 K in H2 to afford the
NiWOx/Al2O3-0.5. The 0.5 referred to the mole ratio of W to Ni.

Catalytic Hydrogenation
The hydrogenation reaction was conducted in a 20 mL stainless
steel reactor. Typically, the HMF aqueous solution (2.00 g,
HMF: 126.0 mg), catalyst (20.0 mg), and magneton were put
into a glass lining. The lining was set in the reactor and sealed
and purged with H2 for 4 times to displace the air. Then the
reactor was filled with H2 at a specified pressure and put in an
oil bath set at a certain temperature. After the reaction, 0.5 mL
ethanol solution of the internal standard (n-decane) was added
and the mixture was diluted to 10 mL by ethanol. After
centrifugation, the liquid was used for analysis. The
qualitative analysis was conducted by GC on a Shimadzu

GC-2014 equipped with a SH-Rtx-1701 column (30 m ×
0.32 mm × 0.25 µm). The oven temperature was started
from 353 K for 2 min and raised to 523 K with 20 K/min
heating rate. The oven was kept at 523 K for 1.5 min. The
GC-MS was performed on Shimadzu GC/MS-TQ8040
equipped with an SH-Rxi-5Sil MS column (30 m × 0.25 mm
× 0.25 µm). The oven temperature was started from 323 K for
1 min and raised to 473 K with 40 K/min heating rate and then
raised to 553 K and kept at the temperature for 5 min.
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