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Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit
from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were
proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement
of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-
thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i)
exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results
validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared
error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches.

1. Introduction

Nyquist-Shannon Sampling Theorem (NSST) is a bridge
connecting analogue signals and digital signals [1]. It says any
signal can be completely reconstructed by a series of points
spaced 1/(2𝐹) seconds apart, when 𝐹 represent the largest
frequency of the signal, that is, the bandlimit [2]. Otherwise,
the reconstruction is imperfect causing aliasing [3].

Magnetic resonance imaging (MRI) [4, 5] is prevalently
used in both hospitals and institutes for neuroimaging of
brains, compared to traditional X-ray, CT [6], and so forth.
Technicians usually need to acquire full 𝑘-space data points,
and the acquiring procedure is time-consuming. Hence, it is
necessary to develop rapid MRI approach. In the last decade,
compressed sensing (CS) was applied to accelerate MRI
acquiring [7]. The compressed sensing magnetic resonance
imaging (CS-MRI) consists of two main steps: random

undersampling and image reconstruction. The former gen-
erates aliasing at random, and the latter removes the aliasing
and recovers original image [8]. In this study, we focus on the
latter.

For image reconstruction, Tikhonov regularization em-
ployed the 𝑙

2
-norm of undesirable residues and thus yields

a closed-form linear solution [9]. Total Variation (TV) is
only suitable for piecewise-constant patterns, since it usu-
ally selects finite difference as the sparsifying transform
[10]. Afterwards, scholars proposed the iterative shrink-
age/thresholding algorithm (ISTA) [11]. Nevertheless, it has
a shortcoming of slow convergence speed.

In recent years, variants of ISTA were proposed. Subband
adaptive ISTA (SISTA) seeks the optimal wavelet-subband
related parameters [12]. Fast ISTA (FISTA) aims to speed up
the convergence procedure [13]. SPGL1 is an efficient solver
for large-scale one-norm regularized least squares, developed
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on the platform of Matlab [14]. NESTA is a robust and rapid
first-order approach in order to solve basis-pursuit problems
[15]. Fast composite splitting algorithm (FCSA) combines
operator splitting and variable splitting [16]. C-SALSA is
more general than SPGL1 in the sense that it can be used with
any convex regularizer 𝜑 [17].

Our team focuses on developing more efficient ISTA
based variants. In the past, we have already proposed to
replace conventional wavelet transform (WT) with exponent
of wavelet transform (EWT), which was a more efficient way
for sparse representation than WT. We termed the method
as exponential wavelet ISTA (EWISTA) [18]. Afterwards, we
published a 2-page letter that proposed a rough concept,
which embeds random shift (RS) technique to EWISTA, and
named it as exponential wavelet ISTA with random shift
(EWISTARS) [19]. In this study, we aim to purify the model,
give mathematical support, and offer simulation results for
the EWISTARS.

The rest of the paper is organized as follows: Section 2
offers the state-of-the-art progress on sparse representa-
tion and reconstruction algorithm. Section 3 presents the
proposed methodology. Section 4 contains the experiment
results and discussions. Finally, Section 6 is devoted to
conclusion.

2. State of the Art

2.1. Sparse Representation. Discrete WT (DWT) is the most
common sparsifying transform and is widely applied in a
variety of academic and industrial fields [20–22]. In the last
decade, scholars proposed various more efficient variants of
DWT. Plonka [23] presented the easy path wavelet transform
(EPWT). Khalidov et al. [24] proposed “activelets” to extract
the activity-related component. Selesnick [25] studied the
tunable Q-factor wavelet transform (TQWT) and proved
it was suitable for sparsity-based inverse problems. Hao
et al. [26] proposed to use “contourlets” as a new sparse
transform in CS-MRI. Ning et al. [27] suggested to use patch-
based directional wavelets (PBDW) that trained geometric
directions from undersampled data. Qu et al. [28] designed
a patch-based nonlocal operator (PANO), with the aim
of sparsifying MR images. Huang et al. [29] developed
a Bayesian nonparametric model for reconstructing MRIs
based on severely undersampled data in 𝑘-space domain.
Kayvanrad et al. [30] showed that penalizing the coefficients
from translation-invariant stationary wavelet transform can
reduce the visual pseudo-Gibbs artifacts. Srinivas et al. [31]
proposed a sparsity model for histopathological image classi-
fication. Paquette et al. [32] found that the DWTwith Cohen-
Daubechies-Feauveau 9/7 wavelets, random radial sampling,
and uniform angular sampling together gave excellent results.
Pejoski et al. [33] used the discrete nonseparable shearlet
transform (DNST) as a sparsifying transform and the FISTA
for reconstruction. Fang et al. [34] took signals as a sparse
linear combination in fractional Fourier transform domain.
They treated the transform order as unknown. Li et al. [35]
presented a dual-sparsity regularized sparse representation
(DSRSR) model. Wang et al. [36] presented a fractional
Fourier entropy technique.

Nevertheless, these algorithms were reported to cost a
mass of computation resources. Our past work showed that
exponential wavelet transform (EWT) simply calculates the
exponent of WT and they can both increase the sparsity and
reduce computation time [37]. Therefore, EWT was chosen
as the sparse representation of this study.

2.2. Reconstruction Algorithm. Recently, scholars have found
iterative algorithms can get better reconstruction for CS-
MRI problem. Daubechies et al. [11] proposed the iterative
shrinkage-thresholding algorithm (ISTA), which amounts
to a Landweber iteration with thresholding applied every
iteration step. Bioucas-Dias and Figueiredo [38] proposed
a two-step IST (TwIST) algorithm. Beck and Teboulle [13]
considered that ISTA converges quite slowly and presented
a fast ISTA (FISTA). Bayram and Selesnick [12] investi-
gated SISTA which is a subband adaptive version of ISTA.
Guerquin-Kern et al. [39] proposed a variant of ISTA,
which is the combination of recent improvements in convex
optimization. Zhao et al. [40] reported an adaptively iterative
shrinkage-thresholding (AIST) algorithm. Zhang et al. [37]
proposed an algorithm called EWT-ISTA that combines
both EWT and ISTA and demonstrated that their EWT-
ISTA yielded fewer errors than ISTA. Balavoine et al. [41]
studied the capacity of the standard ISTA to perform this
task in real time. Konar et al. [42] proposed a Region
of Interest Compressed Sensing (ROICS). Their method
assumes that better performance is acquired when limiting
the sparsity objective and data consistency in CS to a Region
of Interest (ROI). Muckley et al. [43] proposed a B1-Based,
Adaptive Restart, Iterative Soft Thresholding Algorithms
(BARISTA). Yang et al. [44] presented a novel, two-stage
reconstruction scheme for CS-MRI problem. Lingala et al.
[45] proposed a new deformation corrected compressed
sensing (DC-CS) method so as to recover undersampled
MR images. Wei et al. [46] offered a novel approach for
synthetic aperture radar tomography (TomoSAR) based on
two-step iterative shrinkage/thresholding (TWIST). Liu and
Lu [47] firstly transformed the problem of 𝑙

1
norm data-

fitting to 𝑙
1
norm regularized 𝑙

2
norm data-fitting. Secondly,

they used FISTA to solve the equivalent problem. Hence,
they proposed a rapid 𝑙

1
linear estimation algorithm. Cauley

et al. [48] proposed a hierarchically semiseparable (HSS)
solver to represent the inverse of the CS+SENSE encoding
matrix.

Let us revisit the above literatures; the variants of ISTA are
now attracting more attention than traditional methods not
only in the field of CS-MRI reconstruction but also in other
applications. In this study, we would like to embed newly
proposed concepts (the EWT and RS) into ISTA, in order
to propose a novel and excellent CS-MRI reconstruction
method.

3. Methodology

3.1. ReconstructionModel. Suppose𝑈 denotes the undersam-
pling scheme in the 𝑘-space, namely, the incomplete Fourier
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transform. The data model of magnetic resonance imaging
(MRI) scanner is written as

𝑦 = 𝑈𝑥 + 𝑒. (1)

Here, 𝑥 represents the original image, 𝑦 is the measured data
in 𝑘-space, and 𝑒 is caused by either scanner imprecisions or
the noise. Assume that 𝜔 denotes the sparsity coefficients; (1)
can be transformed into the sparsity form as

𝑦 = 𝑄𝜔 + 𝑒. (2)

Here, 𝑄 represents the system matrix that transforms from
wavelet domain to 𝑘-space domain and 𝑄 = 𝑈𝑊 where 𝑊

represents the inverse sparsifying transform.The reconstruc-
tion of 𝑥 is transformed solving the following constrained
optimization problem [49]:

𝜔
∗
= argmin
𝜔

𝑆 (𝜔) , (3)

where 𝑆 represents the cost function with definition of

𝑆 (𝜔) =
𝑦 − 𝑄𝜔



2

2
+ 𝜆 ‖𝜔‖1 . (4)

Here, 𝜆 is a parameter controlling the fidelity degree of the
reconstruction to the measurements.

3.2. Exponential Wavelet Transform. The wavelet transform
(WT) belongs to one of the prevalent tools applied in
compressed sensing magnetic resonance imaging (CS-MRI)
[50]. The reason is the similarity between the brain texture
characteristics and the wavelet functions [18]. TheWT trans-
formed a signal into wavelet domain. Since the coefficients
in wavelet domain are usually sparse, WT is also treated as
a sparsity transform with sparse representation given in the
following:

𝑇
𝑊
(𝑥) = 𝜔, (5)

where 𝑇
𝑊

represents the wavelet transform (note that 𝑇
𝑊

=

𝑊
−1). Equation (5) reflects that 𝑇

𝑊
maps the spatial image 𝑥

to the sparsity coefficients 𝜔.
If the significant coefficients are enhanced and the small

coefficients are suppressed, the sparsity transform will be
enhanced. There are many nonlinear transforms, which can
handle this problem. A latest solution is exponent wavelet
transform (EWT) as

𝑇
𝐸
(𝑥, 𝑘) = 𝑇

𝐸
(𝑇
𝐸
(𝑥, 1) , 1) . (6)

Here, 𝑘 is the number of exponential iterations and 𝑇
𝐸
is

the exponential wavelet transform. A single (𝑘 = 1) EWT is
implemented by

𝑇
𝐸
(𝑥, 1) =

exp (𝑇
𝑊
(𝑥)) − 1

𝑒 − 1
. (7)

In all, the procedures of the standard EWT contained
three steps.

Pseudocode of exponential wavelet transform (EWT) is
as follows:

Step 1. Input the randomly undersampled MRI signal or
image.

Step 2. Repeat 𝑘 times.

Step 2.1. Carry out the wavelet transform (WT).

Step 2.2. Normalize wavelet coefficients to [0 1].

Step 3. Output the EWT coefficients.

3.3. ISTA. The iterative shrinkage/thresholding algorithm
(ISTA) presents a sequence of estimates 𝜔

𝑛
, which gradually

approximates to the optimal result 𝜔
∗. A temporary cost

function 𝑆
 is defined with 𝜔

𝑛+1
as the next estimate:

𝜔
𝑛+1

= argmin
𝜔

𝑆

(𝜔, 𝜔
𝑛
) = argmin

𝜔

𝑆 (𝜔) +
𝜔, 𝜔𝑛



2

Υ−𝑄
𝐻
𝑄
. (8)

Note that (Υ − 𝑄
𝐻
𝑄) is positive definite. Υ serves as a

tuning parameter. We can write the pseudocode of iterative
shrinkage/thresholding algorithm (ISTA) as follows:

𝜔
𝑛+1

← Γ
2𝜆/𝐽

(𝜔
𝑛
+
2

𝐽
(𝑎 − 𝐴𝜔

𝑛
)) , (9)

where

𝑎 = 𝑄
𝐻
𝑦, (10)

𝐴 = 𝑄
𝐻
𝑄, (11)

𝐽 ≥ 2𝜆max (𝑄
𝐻
𝑄) , (12)

where Γ is the shrinkage operator and 𝑏 is the threshold:

Γ
𝑏
(𝑧) = sgn (𝑧) (|𝑧| −min(

𝑏

2
, |𝑧|)) . (13)

3.4. Random Shift. Discrete wavelet transform (DWT) is
translation variant, which means that the DWT of a trans-
lation of a particular signal is not equal to the translation of
its DWT. The reason lies in the fact that only even-indexed
elements are used in the decimation of DWT [51]. Random
shift (RS) is a possible solution to guarantee translation
invariance to a moderate extent. The goal is accomplished
by selecting randomly shifted indexed elements for each
decomposition level [52].

3.5. EWISTARS. We proposed the EWISTARS method with
pseudocode listed in Pseudocode 1. The EWISTARS is com-
posed of three success components: the sparsity of expo-
nential wavelet transform (EWT), the simplicity of iterative
shrinkage/thresholding algorithm, and translation invariance
of RS.
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Input: 𝜔
0

Υ
−1

← diag (𝑏)
Parameter Setting

𝑡
0
= 1, 𝑛 = 0, V

0
= 𝜔
0
,

Produce the sequence of EWT modified by RS
{𝑇
𝐸
(𝑥, 𝑛)}

Repeat
𝑄 ← 𝑈𝑊

𝑛
, 𝐴 ← 𝑄

𝐻
𝑄, 𝑎 ← 𝑄

𝐻
𝑦,

𝜔
𝑛+1

← Γ
𝜆𝑏
(V
𝑛
+ Υ
−1

(𝑎 − 𝐴V
𝑛
))

𝑡
𝑛+1

←

1 + √1 + 4𝑡
2

𝑛

2

V
𝑛+1

← 𝜔
𝑛+1

+
(𝑡
𝑛
− 1)

𝑡
𝑛+1

(𝜔
𝑛+1

− 𝜔
𝑛
)

𝑛 ← 𝑛 + 1

Until termination criterion are met
Output: 𝜔

𝑛+1

𝑥
∗
← 𝑊𝜔

𝑛+1

Pseudocode 1: Pseudocode of EWISTARS.

Table 1: Definitions of reconstruction indicators (𝑥∗ represents the
optimal estimate of original image 𝑥).

Indicator Abbreviation Definition

Mean-squared error MSE 1

𝑁

𝑁

∑

𝑖=1

(𝑥 (𝑖) − 𝑥
∗
(𝑖))
2

Mean absolute error MAE 1

𝑁

𝑁

∑

𝑖=1

𝑥 (𝑖) − 𝑥
∗
(𝑖)



Peak signal-to-noise ratio PSNR 20 log
10
(

255

√MSE
)

3.6. Evaluation. To evaluate the performance of the proposed
method, we employed there measures: mean absolute error
(abbreviated as MAE), mean-squared error (abbreviated as
MSE), and peak signal-to-noise ratio (abbreviated as PSNR).
Those indicators measure the reconstruction performance
between the estimated image 𝑥∗ and the original one 𝑥 (see
Table 1).

4. Results and Discussions

4.1. Algorithm Comparison. First, the proposed EWISTARS
was compared with ISTA [11], SISTA [12], FISTA [13], and
FCSA [16]. We use a partially collapsed vertebrae image and
a brain image. Both images are of the same sizes of 256 ×

256. For fair comparison, the coefficients normalization is
implemented.

The acceleration factor is assigned with a value of 5.
Parameter 𝑘 of EWISTARS is assigned with a value of 6
(see Section 4.3). We choose 5-level bior4.4 wavelet (see
Section 4.4). Noise is inevitably contained in 𝑘-space. White
Gaussian noise with standard deviation of 0.01 is mixed to the
data points in 𝑘-space. The maximum iteration number was
set to 100. Figure 1 shows the comparison results. Detailed
data of two images are listed in Tables 2 and 3.

Table 2: CS-MRI algorithm comparison over brain image (bold
means the best).

MAE MSE PSNR Time
ISTA [11] 2.72 17.74 35.64 10.47
SISTA [12] 2.68 16.90 35.85 8.23
FISTA [13] 2.67 16.98 35.83 8.49
FCSA [16] 3.50 40.66 32.04 4.66
EWISTARS (proposed) 2.63 16.31 36.01 9.43
PSNR is in unit of dB and time is in unit of second.

Table 3: CS-MRI algorithm comparison over vertebrae image (bold
means the best).

MAE MSE PSNR Time (s)
ISTA [11] 1.43 7.16 39.58 9.57
SISTA [12] 1.37 5.91 40.42 7.19
FISTA [13] 1.38 6.22 40.19 7.40
FCSA [16] 1.49 8.38 38.90 5.17
EWISTARS (proposed) 1.30 4.92 41.21 7.68
PSNR is in unit of dB and time is in unit of second.

Table 4: PSNR values of different wavelets (bold represents the
best).

Wavelet Brain Vertebrae
db1 34.49 38.63
db2 35.41 40.82
db3 35.40 40.89
bior2.2 35.79 40.76
bior3.3 34.88 39.94
bior4.4 36.01 41.21

4.2. Convergence Analysis. Here, we analyzed the conver-
gence performance of EWISTARS over 50 steps. The error
map was obtained by the difference between reconstruction
image and original image. The error maps are brightened for
better view. The results are shown in Figure 2.

4.3. Parameter Setting. How to optimize the parameter 𝑘 in
formula (6) remains a problem. We used the 256 × 256 brain
MR image and changed the value of 𝑘 from 1 to 10 with equal
increment of 1. Figure 3 shows the PSNR changes with 𝑘.

4.4. Optimal Wavelet Selection. In the fourth experiment, we
compared six different wavelets on both images, in order to
select the optimalwavelet.The6wavelets are introduced from
both Daubechies family (db1, db2, and db3) and bior family
(bior2.2, bior3.3, and bior4.4). Simulation setting is equal to
that in Section 4.1. Table 4 lists the corresponding PSNR
results.

4.5. Explanation of Superiority of Bior4.4. To further explore
the superiority of bior4.4 wavelet, Figure 4 draws its wavelet
function (WF), scaling function (SF), low-pass filter (LPF),
and high-pass filter (HPF) under two conditions: decompo-
sition and reconstruction.
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Figure 1: Comparison to state-of-the-art approaches.

5. Discussions

Figure 1 shows the reconstruction results by five different
methods over the vertebrae and brain images. Visually, those
figures suggest that our EWISTARS yields more efficient

performances than other approaches in suppressing noises
and preserving brain tissues.

Table 2 offers the detailed evaluation of all algorithms over
brain image. Our EWISTARS obtains the least MAE of 2.63,
which is less than ISTA [11] of 2.72, SISTA [12] of 2.68, FISTA
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Figure 2: Convergence analysis of EWISTARS.

[13] of 2.67, andFCSA [16] of 3.50.TheEWISTARSobtains the
least MSE of 16.31, compared to ISTA [11] of 17.74, SISTA [12]
of 16.90, FISTA [13] of 16.98, and FCSA [16] of 40.66. Besides,
the EWISTARS obtains the largest PSNR of 36.01 dB, higher

than ISTA [11] of 35.64 dB, SISTA [12] of 35.85 dB, FISTA
[13] of 35.83 dB, and FCSA [16] of 32.04 dB. All those three
measures indicate the superiority of EWISTARS in terms of
reconstruction. For the computation time, FCSA expenses
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Figure 3: PSNR varies with 𝑘 for 256 × 256 brain MR image.

the least time of 4.66 seconds, ISTA [11] costs 10.47 seconds,
SISTA [12] costs 8.23 seconds, FISTA [13] costs 8.49 seconds,
and our EWISTARS costs 9.43 seconds.

Table 3 gives quantified results of all algorithms over
vertebrae image. The ISTA [11] obtains MAE of 1.43, MSE of
7.16, and PSNR of 39.58 dB and costs 9.57 seconds. SISTA [12]
obtains MAE of 1.37, MSE of 5.91, and PSNR of 40.42 dB and
costs 7.19 seconds. FISTA [13] obtains MAE of 1.38, MSE of
6.22, and PSNR of 40.19 dB and costs 7.40 seconds. FCSA [16]
obtains MAE of 1.49, MSE of 8.38, and PSNR of 38.90 dB and
costs 5.17 seconds. Finally, the proposed EWISTARS obtains
MAE of 1.30, MSE of 4.92, and PSNR of 41.21 dB and costs
7.68 seconds. In summary, the EWISTARS again shows better
reconstruction quality than other four algorithms.

Why does the proposed EWISTARS success? The reason
may lie in three points. First, the exponential wavelet trans-
form gives enhanced sparsifying transform than other sparse
representations. Second, our model inherits the simplicity
and rapidness of traditional iterative shrinkage-thresholding
algorithm. Finally and most importantly, the introduced
random shift technique alleviates the translational vari-
ance of discrete wavelet transform used in state-of-the-art
approaches. All those three reasons help to enhance the
performance of our EWISTARS.

We can find in Figure 3 that the optimal value of 𝑘 is 6,
since it corresponds to the highest PSNR. As we discussed,
increase of 𝑘 from 0 leads to the sparsity enhancement;
hence, the PSNR will also increase. However, calculation
error accumulates when 𝑘 is too large (𝑘 is greater than 5 in
this situation).Therefore, 6may be themost appropriate value
of 𝑘. For the vertebrae image, the result is the same.

PSNRs in Table 4 show that db1 wavelet yields 34.49
decibels (dB) for brain image and 38.63 dB for vertebrae
image, which is the worst among all wavelets.The db2wavelet
yields 35.41 dB and 40.82 dB for brain and vertebrae images,
respectively. The db3 yields 35.40 dB and 40.89 dB for brain
and vertebrae images, respectively. For the bior family, the
bior 2.2 yields 35.79 dB and 40.76 dB for brain and vertebrae
images, respectively.The bior3.3 yields 34.88 dB and 39.94 dB
for brain and vertebrae images, respectively. Finally, the
bior4.4 yields 36.01 dB and 41.21 dB for brain and vertebrae
images, which are the highest PSNR values.

In Figure 4, we find that WF and SF of bior4.4 are
similar to gray-level texture changes of the human tissues.

Those texture changes are abundant in either human brains
or vertebrae parts. Therefore, bior4.4 is more effective than
other wavelets.

6. Conclusion and Future Research

In this study, a novel EWISTARS algorithm was proposed.
Experiments validated its superiority to state-of-the-art tech-
niques. Our contribution is twofold: (i) we presented a
purifiedmathematical model for EWISTARS and gave its fast
reconstruction algorithm and (ii) we tested its superiority
to state-of-the-art approaches with regard to three different
measures.

Future work is to test and include more efficient sparsify-
ing transform and more efficient ISTA variants, to improve
the effectiveness and efficiency of reconstruction of CS-
MRI. Meanwhile, this proposed EWISTARS method may be
used in combination with other postprocessing techniques,
such as classification [53], detection [54], and recognition
[55]. Privacy [56] is another topic to be researched during
scanning.
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