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Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer 
cells and non-tumor cells and such resistance might be a consequence of the difference in 
metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison 
with drug sensitive and normal cell lines is the objective of this research. 
Material and Methods: Metabolism of cisplatin resistant and sensitive A2780 epithelial ovarian 
cancer cells and normal ovarian epithelium has been studied using a generic human genome-scale 
metabolic model and transcription data. 
Result: The results demonstrate that the most different metabolisms belong to resistant and 
normal models, and the different reactions are involved in various metabolic pathways. However, 
large portion of distinct reactions are related to extracellular transport for three cell lines. 
Capability of metabolic models to secrete lactate was investigated to find the origin of Warburg 
effect. Computational results introduced SLC25A10 gene, which encodes mitochondrial 
dicarboxylate transporter involved in exchanging of small metabolites across the mitochondrial 
membrane that may play key role in high growing capacity of sensitive and resistant cancer cells. 
The metabolic models were also used to find single and combinatorial targets that reduce the 
cancer cells growth. Effect of proposed target genes on growth and oxidative phosphorylation of 
normal cells were determined to estimate drug side-effects. 
Conclusion: The deletion results showed that although the cisplatin did not cause resistant cancer 
cells death, but it shifts the cancer cells to a more vulnerable metabolism. 
 

 

Article history: 
Received: Apr 20, 2014 
Accepted: Feb 18, 2015 
 

 

 

Keywords:  
Cisplatin resistance 
Drug target 
Lactate 
Metabolism 
Microarray 
Warburg effect 

 
 

 

 

►Please cite this paper as: 
Motamedian E, Ghavami Gh, Sardari S. Investigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and 
microarray data. Iran J Basic Med Sci 2015; 18: 267-276. 

 
 

 
 
 

Introduction 
Cisplatin is the first-line therapy for the treatment of 

ovarian cancer as the most deadly gynecological 
disease, but resistance to this drug occurs in many 
cases (1). While most patients initially treated with 
surgical debulking and chemotherapy based on 
platinum-based drugs (2), relapse of disease with fully 
chemoresistance is observed for over 80 percent of 
treated patients (3). The cause and mechanism of 
chemoresistance is not well known (4). 

Studying the metabolism of cisplatin resistant 
and sensitive cancer cells may lead to find the causes 
of chemoresistance. Furthermore, metabolism has a 
key role in many epidemic human diseases especially 
cancer, and hence targeting cancer metabolism has 

emerged as a motivating topic for drug discovery            
(5, 6). In recent years, cancer therapy with targeting 
metabolic pathways has been taken into 
consideration by researchers (7). Targeting cancer 
metabolism requires information about human 
metabolic network and how different cancers use 
this metabolic network in comparison with normal 
cells (7). Only a thorough understanding will lead to 
find the targets that can be of therapeutic benefit 
with minimum side-effect on normal cells. 

Metabolic network reconstruction has become a 
common tool for studying the metabolism of the cells 
(8). In the recent years, various human metabolic 
networks have been reconstructed. The first 
genome-scale reconstruction of the global (non- 
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tissue specific) human metabolic network, named 
Recon 1 (9) was reconstructed based on an extensive 
evaluation of genomic and bibliomic data. Recon 1 
was updated to the last global human metabolic 
reconstruction named Recon 2. The model expansion 
was carried out at reconstruction ‘jamboree’ 
meetings (10) that domain experts share their 
knowledge to consider biochemical knowledge from 
existing reconstructions and published literature. 

Many studies have shown similar metabolic 
states occurring across tumor cells (11-13). For 
example, many types of cancer cells adapt their 
metabolism to facilitate biomass formation to enable 
proliferation (11). According to this characteristic of 
cancer cells, flux balance analysis (FBA) that is a 
constraint-based modeling approach could be 
applicable to predict alterations in cancer 
metabolism using genome-scale metabolic models. 
This approach has been successfully used in the past 
to simulate the growth of fast growing 
microorganisms (14, 15). FBA commonly considers 
growth rate as objective function and it searches for 
metabolic flux distributions that produce essential 
biomass precursors at high rates, and hence this 
approach is appropriate for modeling cancer 
metabolism (14). Warburg effect (a phenomenon 
revealed by Otto Warburg in 1924) is an important 
characteristic of cancer cells that results in changes 
in glucose metabolism and an increase in 
biosynthetic activities such as nucleotide, lipids and 
amino-acid synthesis and is important for cellular 
proliferation (7, 16). This effect indicates an increase 
in the inefficient production of ATP via glycolysis 
resulting in the secretion of non-oxidized carbons in 
the form of lactate, even in the presence of oxygen 
(named aerobic glycolysis) (17). Aerobic glycolysis 
produces only 2 ATP molecules per one glucose 
molecule, whereas oxidative phosphorylation results 
in the generation of 32 ATP molecules per one 
molecule of glucose (17). 

The global models have been used for the 
automated reconstruction of cell-specific and tissue-
specific models using various high throughput data 
(18). Because of the abundance of transcriptomic 
data, several FBA-driven algorithms have been 
proposed that incorporate gene expression profiles 
into metabolic flux constraints such as GIMME (19), 
E-flux (20), iMAT (21) Moxely (22), MADE (23), 
RELATCH (24), INIT (25) and mCADRE (26) and 
improve model predictions by deleting reactions or 
by constraining their activity levels. Each of these 
methods has advantages and disadvantages (18), and 
are selected based on the purpose of modeling. 

According to the key role of metabolism in many 
major human diseases especially cancer, metabolic 
reconstructions have been applied to guide 
experiments. Folger et al (11) built a core metabolic 

model of cancer metabolism for the NCI-60 cancer 
cell lines to propose drug targets. Li et al (27) 
presented a computational method to predict new 
targets for approved anti-cancer drugs using Recon 
1. Jerby et al (28) developed the metabolic 
phenotypic analysis (MPA) method to conduct the 
first genome-scale study of breast cancer metabolism 
and predict the growth rates of cell lines, amino acid 
biomarkers and tumor lipid levels. Despite several 
studies conducted on cancer, metabolic models have 
not been used to predict the metabolic state of drug-
resistant cancers. 

In this paper, GIMME algorithm (29) was used to 
study metabolism of drug-resistant cancer in 
comparison with drug-sensitive cancerous and normal 
cell lines. With considering the proliferative cancer 
cells, the advantage of the GIMME is that it guarantees 
achieving to the cell growth as objective function based 
on gene expression levels. Considering a user-specified 
threshold and removing inactive reactions from the 
model is the main disadvantage of this algorithm. To 
eliminate the need for a user-specified threshold, a 
criterion based on absent/present predictions of MAS5 
algorithm was used (30). 

Recon 2 includes more orphan reactions identified 
using biochemical data for various human tissues in 
comparison with Recon 1. Among 7440 reactions of 
Recon 2, microarray data of HG-U133 Plus 2.0 Array 
used in this research could determine presence of 4194, 
while presence of 2245 of 3743 reactions in Recon 1 is 
determined using these transcription data. Therefore, it 
seems that using only microarray data is not adequate 
to reconstruct tissue-specific metabolic models using 
Recon 2. Hence, Recon 1 was used to reconstruct cell-
specific models. 

In this research, the metabolic models firstly used to 
find the differences in metabolic pathways utilization. 
After comparison of metabolisms, the ability of the 
cancer cells to secrete lactate in comparison                      
with the normal cell was studied and the origins of 
different capabilities of metabolisms were searched. 
Furthermore, single gene deletion analysis to find 
metabolic target genes with minimum side-effect on 
normal cells and double gene deletion analysis to study 
the synergism of genes and to find metabolic target 
genes for combinatorial therapies were carried out. 

 
Model and computational methods 
Genome-scale model 

Recon 1 (9) including 3742 reactions, 1905 genes 
and 2766 metabolites was used to construct a 
stoichiometric model. The model was integrated               
with gene expression data using GIMME (Gene                   
Inactivity Moderated by Metabolism and Expression) 
algorithm (19) to construct cisplatin resistant and 
sensitive A2780 epithelial ovarian cancer models,  
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Table 1. Number of different reactions in the three metabolic 
models. For example, 42 reactions exist in the resistant model that 
are absent from sensitive model 
 

 Not in the model 
In the model Resistant Sensitive Normal 
resistant - 42 202 
sensitive 38 - 179 
normal 157 134 - 
 

and also normal ovarian surface epithelium model. 
The GIMME algorithm first uses FBA to find the 
maximum possible flux through the required 
functionality (for example growth). Subsequently, 
GIMME compares the experimental mRNA levels to a 
user-specified threshold and removes reactions with 
mRNA levels below the given threshold from the 
model. However, if the reduced model is unable to 
achieve the required functionality, GIMME solves a 
linear programming problem that adds sets of the 
removed reactions back into the model, so that 
minimizes deviation from the expression data. 

Used biomass formula of Shlomi et al (16) was 
added to the model and used as objective function to 
calculate growth rate. Details of the objective 
function are presented in the supplementary file 1 
(Table S1). This objective function is appropriate for 
proliferative cancer cells. However, objective 
function of normal ovarian cells is not the 
maximization of growth rate and unlike cancer cells; 
they do not have rapid proliferation. However, 
growth rate was considered to compare growth 
ability of its network with two cancerous metabolic 
networks. For cancer models, microarray data of Li 
et al (1) (GSE15709), which performed five 
replicates for resistant and sensitive cells have been 
used. Construction of normal ovarian surface 
epithelium model was carried out based on the 
microarray data of Stany et al (31) (GSE29450) with 
ten replications. 

Instead of using a user-defined threshold, active and 
inactive reactions were determined using detection call 
generated by MAS5 algorithm (30). Present, marginal 
and absent genes in each replicate were identified using 
an MAS5 algorithm (scores were given as present=2, 
marginal=1 and absent=0). If a gene was detected to be 
present in all replicates of cancer (normal) cells, sum of 
the values in 5 (10) replicates will be 10 (20). 
Therefore, we determined presentation of a gene in the 
cell based on the following rules. 

1- If sum of the values in 5 (10) replicates was more 
than or equal to 7 (14), the corresponding gene is 
present. 

2- If sum of the values in 5 (10) replicates was less 
than 7 (14) and more than or equal to 4 (8), the 
corresponding gene is marginal. 

3- If sum of the values in 5 (10) replicates was less 
than 4 (8), the corresponding gene is absent. 

Automatic reconstructed models include all present 
and marginal genes and minimum number of absent 
genes that are required for growth. Reduced models 

including 3279, 3278 and 3241 reactions and 2638, 
2639 and 2649 metabolites for resistant, sensitive and 
normal cells were specified. All metabolic models are 
presented in supplementary file 2. 
 
Simulation conditions and in silico experiments 

RPMI-1640 medium was considered in all 
simulations (11), and the COBRA toolbox and GLPK 
package (32) was used for solving the model in the 
MATLAB software. Metabolites and maximum uptake 
of the growth medium are presented in the 
supplementary file 1 (Table S2). The medium values 
were applied in the model by limiting the lower 
bound of exchange reactions. To study on Warburg 
phenomenon, effect of lactate secretion rate on 
growth was determined. Also, growth rate was fixed 
at optimal value and maximum oxygen uptake rate 
and ATP synthase activity (for energy production 
using oxidative phosphorylation) were calculated by 
changing the objective function. 

Six sets of in silico experiments were carried out 
to investigate the effect of single and double gene 
deletions on cells growth using FBA approach. A 
gene deletion in the model results in removal of the 
associated reactions. In single gene deletion, relative 
growth rate (GR) (growth rate predicted after gene 
knockout per growth rate predicted for wild type) 
was calculated for each gene, and lethal (GR=0), sick 
(growth reducing) (GR<1), and ineffective (GR=1) 
genes were determined. In double gene deletion, 
interactions between genes have been studied. Two 
genes have interactions if the calculated growth rate 
of strain with double deletion results in less growth 
rate than growth rate of either of single deletion 
strains. Two genes are synthetic lethal while their 
double deletion causes to GR equals to zero. In 
addition, two genes are named synthetic sick if their 
double deletion causes to GR less than one. In double 
deletion analysis, number of genes that interact with 
each gene has also been determined. 
 

Results 
Comparison of the metabolisms 

Table 1 indicates the number of reactions present 
in each metabolic model in comparison with the 
other model. Furthermore, supplementary File 3 
represents metabolism comparison of three cells. 
Maximum difference of the metabolisms belongs to 
resistant and normal models and they are distinct in 
359 reactions, while number of different reactions 
for normal and sensitive models is 313. Sensitive and 
resistant cancer models with 80 distinct reactions 
are the most similar metabolic models as could be 
predicted. In fact, comparison of the models shows 
that resistance to cisplatin caused adding 42 
reactions to the metabolism and removing 38 
reactions from the metabolism. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29450
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Difference in metabolism activation of cells has 
been studied by comparing difference in used 
reactions and their metabolic pathways. Figures 1 (a) 
and (b) indicate distribution of different reactions for 
resistant and sensitive cancers in the metabolic 
pathways. The most differences belong to the 
exchange of the metabolites with extracellular 
environment, and extracellular exchange is more 
limited in resistant model. Genes belonging to 8 and 
12 transport reactions were activated and 
inactivated, respectively in resistant model. The eight 
added reactions transport alanine, asparagine, 
glutamine and serine based on sodium-proton 
coupled system (associated gene: SLC38A5 or 
SLC38A3), biotin, pantothenate and lipoate via 
sodium symport channel (associated gene: SLC5A6) 
and urea and water co-transport (associated gene: 
SLC5A1). Removed exchange reactions include 
bicarbonate transport (Na/HCO3 1:2 and 1:3 co-
transport), 5-hydroxy-L-tryptophan, adrenaline, 
dopamine, histamine and noradrenaline secretion 
via secretory vesicle (ATP driven), dopamine and 
histamine uniport and chloride (which there is in 
cisplatin structure) uptake via formate and iodide 
counter-transport. Amino acids metabolism 
especially tyrosine metabolism is the other 
importantly different metabolism in cancers. In 
central metabolism, glucose 6-phosphate 
dehydrogenase is active in normal and resistant 
models while it is inactivated in sensitive model. 

Figures 1 (c) and (e) compare pathway usage of 
the resistant and normal models. The most 
important difference of these metabolic models 
belongs to transportation of metabolites similar to 
difference of resistant and sensitive models, but in 
addition to extracellular transport, they are distinct 
in lysosomal and mitochondrial transport. Genes 
belonging to 8 lysosomal and 21 mitochondrial 
transport reactions are active in resistant compared 
with normal metabolic model. Furthermore, this 
discrepancy could be observed by comparison of 
sensitive and normal models presented in Figures 1 
(d) and (f). Hence, capability of metabolites 
transportation between cytoplasm and three 
extracellular medium, lysosome and mitochondria in 
cancer cells is developed. All eight lysosomal 
transport reactions were activated due to the 
SLC29A3 gene (ID: 55315) over expression. Deletion 
of this gene does not affect on cancer models growth. 
Five genes SLC29A1 (ID: 2030), SLC25A2 (ID: 
83884), SLC25A15 (ID: 10166), SLC25A10 (ID: 
1468) and ATP10A (ID: 57194) are responsible for 
different mitochondrial transport of cancerous cells. 
Genes SLC25A10 and SLC29A1 have the most 
contributions of 9 and 6 reactions, respectively, 
among 21 reactions. 

Sector of other metabolisms in Figure 1 indicates 
the reactions belong to the other pathways. Generally, 
the Figure demonstrates that cancer cells usage of 
metabolism is very different from normal cells, and 
reactions from various pathways are activated or 
deactivated. This difference for resistant and sensitive 
cells is commonly identical. For example, three 
reactions in Glycolysis/Gluconeogenesis including fruc- 
tose-bisphosphatase, phosphoenolpyruvate carboxy-
kinase and acetyl-CoA synthetase have been omitted in 
both cancer cells. In some pathways, deviation of 
resistant metabolism from the normal metabolism is 
more evident. For instance, nucleotides pathway is 
more different in resistant and normal cells, and it may 
be due to the cisplatin effect on chromosome.  
 
Metabolic origin of Warburg effect 

The Warburg effect is one of the known phenotype 
in most of the cancer cells, and hence the metabolic 
models used to find the origin of this discrepancy in 
metabolism. As mentioned, cancer cells try to have 
maximum proliferation; hence, lactate secretion should 
not be in contrast to the high growth. To study this 
hypothesis, the models were forced to secrete lactate 
and its effect on growth was analyzed. Calculations 
presented in Figure 2 clearly indicate the robustness of 
cancer models’ growth to lactate secretion compared 
with normal model. For cancer models, there is a range 
of lactate secretion rates between 0 and 6 mmol/gDWh 
in which their growth will be optimal. However, 
maximum growth occurs in zero lactate secretion rate 
for normal model that is equal to optimal growth of 
sensitive model, and increment of secretion sharply 
decreases the growth. 

It can be seen in Figure 3 that cancer cells 
consume more oxygen at zero lactate production. 
Increase of lactate excretion results in reduction of 
oxygen demand especially for cancer cells. In fact, 
cancer cells select metabolisms that are able to 
reduce oxygen demand by more production of 
lactate, while growth is not affected. Oxygen demand 
with more lactate secretion in normal cells decreases 
along with lower intensity of cancer cells. 

Figure 4 indicates that lactate secretion causes 
lower activity of ATP synthase. Indeed, tumors could 
produce ATP via oxygen-independent process of 
oxidative phosphorylation due to the lactate secretion. 
This phenotype is not observed for normal cells. 

It is interesting that phenotype of cancer cells for 
lactate secretion is similar although their 
metabolisms are different. Therefore, there are some 
identical genes in both cancer cells in which they are 
responsible for this phenotype of cancer cells. These 
genes are absent from the normal model, and it is 
valuable to find them. 
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Figure 1. Number of reactions in each pathways which are present a) in resistant model and absent from sensitive model, b) in sensitive 
model and absent from resistant model, c) in resistant model and absent from normal model, d) in sensitive model and absent from normal 
model, e) in normal model and absent from resistant model, b) in normal model and absent from sensitive model 
 
 

 

For this purpose, omitted genes from normal model 
were found. Among them, the genes that are 
expressed in sensitive and resistant models and their 
associated reactions were determined. There are 165 
reactions that are expressed in the resistant and 
sensitive models, while they are not expressed in the 

normal model. These reactions were deleted from 
cancer models, and ability of the models to secrete 
lactate was investigated. There were eight groups of 
seven reactions that their deletion resulted in the 
lack of robustness of cancer models’ growth to lactate 
secretion. 

b) a) 

d) c) 

e) f) 
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Figure 2. Growth rate sensitivity to lactate secretion rate for 
various cell lines 

 

In Table 2, responsible reactions for lactate secretion 
in cancer cells have been presented. All of them 
exchange malate or succinate, for phosphate or 
sulfate, based on antiporter system. The same gene 
(SLC25A10) encodes all proteins of the seven 
reactions. Results are identical for sensitive and 
resistant models. 

Eight combinations of four reactions from Table 2 
that their deletion causes the disability of cancer 
cells to secrete lactate at optimal growth have been 
presented in Table 3. Reaction 4 exists in all reaction 
sets, and therefore it is very important for lactate 
secretion in cancer cells based on the model 
predictions. 

According to the model results, deletion of 
SLC25A10 gene reduces the growth of sensitive and 
resistant cells to 78 percent of wild type, while it is 
absent from the normal model. This gene encodes a 
member of a family of proteins that translocate small 
metabolites across the mitochondrial membrane. 
The encoded protein exchanges dicarboxylates, such 
as malate, fumarate and succinate, for phosphate, 
sulfate, and other small molecules and thereby 
providing substrates for metabolic processes 
including the TCA cycle and fatty acid synthesis. 
 
Gene deletion effect 
Table 4 demonstrates the results of single and 
double gene deletion analysis on three metabolic 
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Figure 3. Change of maximum oxygen uptake rate in different 
lactate secretion rates for various cell lines at optimal growth 
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Figure 4. Change of maximum ATP synthase activity in different 
lactate secretion rates for various cell lines at optimal growth 

 

models using FBA approach. Computations predict 
that sensitive cell has one more essential gene       
and one less growth reducing gene compared to 
resistant cell. Gene FH which encodes fumarate 
hydratase is lethal for sensitive cells, while it is 
growth reducing for normal and resistant cells. 
Based on computational results, genes CDS1, HPRT1 
and PTDSS1 encoding CDP-diacylglycerol synthase 
(phosphatidate cytidylyltransferase) 1, hypoxanthine 
phosphoribosyltransferase 1 and phosphatidylserine 
synthase 1, respectively, are essential only for 
normal cells. Deletion of most of the growth reducing 
genes affects less than 20 percent on growth.   
Growth reducing genes with GR≤0.8 are identical for 
 
Table 2. Responsible reactions for lactate secretion in cancer cells 
(c, cytoplasmic; m, mitochondrial) 
 

Reaction 
no. 

Reaction 
associated 

Gene 

1 
fumarate[c] + so4[m] <==> fumarate[m] + 

so4[c] 
SLC25A10 

2 
fumarate[c] + thiosulfate [m] <==> 

fumarate[m] + thiosulfate [c] 
SLC25A10 

3 
fumarate[c] + pi[m] <==> fumarate[m] + 

pi[c] 
SLC25A10 

4 
malate-L[c] + so3[m] <==> malate-L[m] + 

so3[c] 
SLC25A10 

5 
malate-L[c] + so4[m] <==> malate-L[m] + 

so4[c] 
SLC25A10 

6 malate-L[c] + pi[m] <==> malate-L[m] + pi[c] SLC25A10 

7 
malate-L[c] + thiosulfate [m] <==> malate-

L[m] + thiosulfate [c] 
SLC25A10 

 
 
Table 3. Eight combinations of four reactions that their deletion 
causes to disability of cancer cells to secrete lactate at optimal 
growth (reaction numbers are based on Table 2) 
 

Group No.  Reaction no. 

1  1 2 3 4 

2  1 2 4 6 

3  1 3 4 7 

4  1 4 6 7 

5  2 3 4 5 

6  2 4 5 6 

7  3 4 5 7 

8  4 5 6 7 
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Table 4. Results of single and double gene deletion analysis on three metabolic model using flux balance analysis approach 
 

Cell line 

 

Number of genes 

Lethal Sick 
Sick with 
GR≤0.8 

With 
interaction 

With ≥5 
interactions 

Synthetic 
lethal 

Snthetic 
sick 

Synthetic 
sick with 
GR≤0.8 

Resistant  74 48 9 158 57 38 738 107 

Sensitive  75 47 9 150 47 22 664 94 

Normal  77 64 18 178 60 36 687 183 

 
resistant and sensitive cells although there is twice 
growth reducing genes with GR≤0.8 in normal cells. 
Therefore, there are more targeting points in normal 
cells metabolism to reduce the growth. This result 
was expected because the genes expression in 
normal cells has not been regulated for further 
growth against cancer cells. 

Double gene deletion analysis demonstrates that 
resistant cells have the maximum synthetic lethal 
and sick genes even more than normal cells. The 
results indicate that there are more synthetic target 
points in resistant cells to reduce the growth. Similar 
to single deletion, most of the synthetic sick genes 
have effect on growth less than 20 percent. 
Interaction between genes which indicates a 
measure of synergism between the genes is higher in 
normal cells, and it is notable that interactions in 
resistant cells have increased in comparison with 
sensitive cells. Metabolism variation of resistant 
cancer from sensitive is more obviously in double 
gene deletion. Synergism between genes has 
increased and the metabolism is more vulnerable for 
growth similar to normal cells, although the 
difference of resistant metabolism from normal is 
more than sensitive metabolism. Hence, it seems that 
resistant cancer cells have been forced to choose a 
less robust metabolism with more synergisms and 
synthetic targeting points; however, this metabolism 
is resistant to cisplatin drug. These new target points 
introduced by the model could be used to design a 
new drug and break down the chemoresistance. 

Among the all proposed knockouts, drug targets 
with minimum side-effect on normal cells that only 
damage the cancer cells metabolism will be 
appropriate. Therefore, effect of all sick, lethal, 
synthetic lethal and sick knockouts for the cancer 
cells on growth of normal cells was calculated. 
Furthermore, effect of gene knockout on ATP 
synthase activity (which is a vital biochemical 
reaction for energy production using oxidative 
phosphorylation and must be preserved in every 
cell) was studied (11). The results which introduce 
some appropriate drug targets for resistant and 
sensitive cancer cells have been presented in 
supplementary File S4. 

It can be seen that all lethal genes of resistant 
model are also essential for normal cells growth. For 
lethal genes of sensitive cells, only FH (ID: 2271) is 
nonessential gene for the normal cells and its 
deletion reduces the growth to GR=0.61. Lethal 
genes of both cancer cells have a low impact on ATP 
synthase activity. All of the genes which properly 
reduce the cancer cells growth have side-effect on 
growth and oxidative phosphorylation of normal 
cells, and hence they are not proposed as an 
appropriate target. Among predicted synthetic lethal 
genes for cancer cells, there are two gene pairs 
(ALDH18A1 and SLC5A1; SLC20A1 and SLC20A2 for 
resistant cells, GATM and ALDH18A1; SLC20A1 and 
SLC20A2 for sensitive cells) which have not any 
impact on normal cells growth and energy 
production. Among synthetic sick genes, there are 
some appropriate double knockouts. For instance, 
deletion of SLC25A10 and DBT reduces the cancer 
cells growth to GR=0.75 and their deletion effect on 
normal model is negligible. 
 

Discussion 
As mentioned, Warburg proposed that aerobic 

glycolysis in cancer cells is the combined result of a 
variety of factors for instance oncogenes, tumor 
suppressors, a hypoxic microenvironment, mtDNA 
mutations, genetic background in addition to 
permanent impairment of mitochondrial oxidative 
phosphorylation. Currently, the Warburg effect is 
generally described by alterations in signaling 
pathways that govern glucose uptake and consumption, 
which are also involved in the regulation of 
mitochondrial activity rather than by mitochondrial 
defects; though, some aggressive cancer cells do display 
mitochondrial deterioration. Not only mitochondrial 
function in cell metabolism is restricted to ATP 
production for cellular demands, but also mitochondria 
generates reactive oxygen species (ROS), which usually 
participate in the regulation of multiple physiological 
procedures; however, it might be hurtful if produced 
extremely (33).  

In fact, the mitochondria are potent producer of 
superoxide as a by-product of internal oxidative 
procedures such as fatty acid β-oxidation or respiratory 
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chain function (34). Cancer cells can change their 
energy supply by switching from active glycolysis to 
fatty acid oxidation with an associated amplify in Krebs 
cycle activity and oxidative phosphorylation. An 
induced rate of electron transport across the 
respiratory chain leads to a reduced steady-state level 
of reductive intermediates, the electron donors for 
superoxide generation. Apparently, the result of this is 
the preventing mitochondrial overload, and excessive 
ROS production in addition to apoptosis. It would 
appear that mitochondrial overload resulting in 
excessive ROS production and initiation of apoptosis is 
inhibited by high energy substrates inducing UCP’s as a 
gearing mechanism that maintains the balance between 
energy productions coupled to respiration versus 
energy dissipation as heat (35), thereby evading the 
significant point of ROS excess triggering cell death. 
Furthermore, this finding is confirmed by the 
observation that methylmalonate (36) and malonate 
(37) as critical intermediate metabolites of fatty acid 
metabolism inhibit dicarboxylate transporter and 
complex II SDH respiratory chain function (38), yet 
increase ROS leading to apoptosis. Additionally, it has 
been investigated that fatty acids by themselves can 
operate as mitochondrial uncouplers and inhibitors of 
pyruvate oxidation (39).  

Consequently, these sides of fatty acid metabolism 
must be overcome if cancer cells are to survive, and this 
is one function of UCP-2. In addition, it was suggested 
that fatty acid oxidation in cancer cells was linked to 
chemoresistance and mitochondrial uncoupling by UCP 
that Warburg’s observations cleared the preferential 
oxidation of fatty acids by cancer cell mitochondria. 
Therefore, targeting fatty acid oxidation or anaplerotic 
pathways that support fatty acid oxidation could offer a 
new efficient tumor therapy (40).  

Based on pointed investigations, inhabitation of 
dicarboxylate transporter, which encoded by 
SLC25A10 may play critical role in preventing the 
flow of citrate or succinate and then inducing of the 
oxidative stress, ROS production excessively and 
inducing apoptotic cascade in cancer cells. The 
mentioned findings can support the significance of 
dicarboxylate transporter as the product of 
SLC25A10 gene in increasing maintenance and 
growth capacities of cancer cells via involving 
Warburg phenomenon.  

Hence, SLC25A10 gene knockout helps to 
eliminate one of the important ability of cancer cells 
for high proliferation. It may solve how diverse 
cancers adapt the procedures to complete their 
metabolic requirements. In addition to elimination of 
Warburg effect, targeting the SLC25A10 gene is 
valuable because this gene is unexpressed in normal 
cells, and hence its knockout does not have side-
effect for them. 

According to the results, metabolic models are 
capable to truly show cancer cells ability to secrete 

lactate, while they are growing fast and the models 
introduced a target gene to omit this phenotype. 
Therefore, the metabolic models could be used to 
propose the new drug targets, which prevent the 
rapid growth of cancer cells. The metabolic models 
were used to propose single and double gene 
knockouts that result in death of cancer cells. The 
effect of these gene knockouts on growth and energy 
production of normal cells was estimated using the 
normal model. 

 

Conclusion 
In this research, transcription data was used to 

determine absent and present genes in cancer and 
normal cell lines. Then, the generic human metabolic 
model was reduced to the resistant and sensitive 
cancer and normal ovarian cells specific model by 
removing the absent genes using the GIMME algorithm. 
Cell line specific metabolic models were studied to 
determine the effect of various gene expressions of cells 
on the metabolism. Algorithmic reconstructed 
metabolic models present various metabolism usages, 
especially for normal and cancer cells. Reactions from 
various pathways were activated or deactivated to form 
the cancerous metabolism. 

The models were used to study the aerobic 
glycolysis and Warburg effect in cancer cells as a 
known phenotype. Based on simulation of cancer and 
normal cells growth, this hypothesis can be 
considered that secretion of lactate may be due to 
the oxygen limitation in tissue for proliferation with 
maximum rate. In fact, cancer cells against normal 
cells are able to reduce oxygen demand with 
secretion of lactate, while this secretion do not affect 
on proliferation rate. In addition, our results identify 
that cancer cells reduce activity of ATP synthase 
enzyme with lactate secretion, while normal cells are 
not able to do it. Comparison of metabolisms 
identified that SLC25A10 gene is responsible for this 
phenotype of cancer cells. The experimental facts 
that inhibiting dicarboxylate transporter (as the 
SLC25A10 product) can exhibit ROS production, and 
ROS are critically involved in the regulation of cell 
death pathways, apoptosis as well as necrosis can 
validate the current in silico model in addition to 
importance of targeting of mitochondrial alterations 
in tumor cells for the development of novel efficient 
chemotherapy. 

After studying the Warburg effect and clarifying 
the model ability to illustrate cancerous and normal 
cells metabolism difference, the model was used to 
study the effect of single and double gene deletion on 
growth. New single and double drug targets were 
proposed, which could reduce the cancer cells 
growth. Furthermore, computational data indicate 
that double gene knockout proposes more 
appropriate targets with minimum side-effect on 
normal cells growth and energy production. The 
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double knockout analyses also indicate that cisplatin 
cause a more vulnerable metabolism for resistant 
cells compared with sensitive cells although it does 
not cause apoptosis. 
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