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Background: Recent studies using magnetic resonance spectroscopy (1H-MRS)

indicate that patients with obsessive–compulsive disorder (OCD) present abnormal

levels of glutamate (Glu) and gamma aminobutyric acid (GABA) in the frontal and

striatal regions of the brain. These abnormalities could be related to the hyperactivation

observed in cortico-striatal circuits of patients with OCD. However, most of the

previous 1H-MRS studies were not capable of differentiating the signal from metabolites

that overlap in the spectrum, such as Glu and glutamine (Gln), and referred to

the detected signal as the composite measure—Glx (sum of Glu and Gln). In

this study, we used a two-dimensional JPRESS 1H-MRS sequence that allows the

discrimination of overlapping metabolites by observing the differences in J-coupling,

leading to higher accuracy in the quantification of all metabolites. Our objective

was to identify possible alterations in the neurometabolism of OCD, focusing on

Glu and GABA, which are key neurotransmitters in the brain that could provide

insights into the underlying neurochemistry of a putative excitatory/inhibitory imbalance.

Secondary analysis was performed including metabolites such as Gln, creatine (Cr),

N-acetylaspartate, glutathione, choline, lactate, and myo-inositol.

Methods: Fifty-nine patients with OCD and 42 healthy controls (HCs) underwent 3T
1H-MRS in the ventromedial prefrontal cortex (vmPFC, 30 × 25 × 25 mm3). Metabolites

were quantified using ProFit (version 2.0) and Cr as a reference. Furthermore, Glu/GABA

and Glu/Gln ratios were calculated. Generalized linear models (GLMs) were conducted

using each metabolite as a dependent variable and age, sex, and gray matter fraction

(fGM) as confounding factors. GLM analysis was also used to test for associations

between clinical symptoms and neurometabolites.

Results: The GLM analysis indicated lower levels of Glu/Cr in patients with OCD

(z = 2.540; p = 0.011). No other comparisons reached significant differences between

groups for all the metabolites studied. No associations between metabolites and clinical

symptoms were detected.
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Conclusions: The decreased Glu/Cr concentrations in the vmPFC of patients with

OCD indicate a neurochemical imbalance in the excitatory neurotransmission that could

be associated with the neurobiology of the disease and may be relevant for the

pathophysiology of OCD.

Keywords: obsessive-compulsive disorder, magnetic resonance spectroscopy, prefrontal cortex, neurometabolic

alterations, Glutamate, GABA

INTRODUCTION

Obsessive–compulsive disorder (OCD) is a psychiatric disease
that affects 1–4% of the population (lifetime) around the
world (1, 2). Although its pathophysiology remains not
entirely understood, there is a consensus that OCD is
characterized by abnormalities in the cortico-striato-thalamo-
cortical (CSTC) circuitry. In the last decade, studies using
proton magnetic resonance spectroscopy (1H-MRS), the only
technique that allows to non-invasively estimate the levels of
brain neurochemicals in vivo, showed that patients with OCD
could present altered glutamatergic (excitatory) and GABAergic
(inhibitory) neurotransmission in the prefrontal cortex and
striatal brain regions (3–8). However, inconclusive findings in
the literature indicate that there is still a need for a thorough
investigation (9).

The role of glutamate (Glu) signaling in the treatment of
OCD has been investigated in therapeutic clinical trials in the
literature (10–14), including positive randomized clinical trials
that used glutamatergic agents as the main outcome or as an
enhancer (15–18). On the other hand, augmentation studies
with glutamatergic agents in patients with OCD did not show
superiority to the simple administration of selective serotonin
reuptake inhibitors (19, 20). In addition, candidate gene studies
showed the involvement of genes coding for the glutamate
signaling cascade, especially the DLGAP/SAPAP family genes
(21, 22). Overall, these studies advanced the field by adding
information on the neurobiological model of OCD, by testing
modulation effects or associated genes, but they did not measure
glutamate directly. Therefore, neurobiological research and,
more specifically, in vivo neurochemical research on patients with
OCD, is important to elucidate the glutamatergic hypothesis in
OCD (11) and the role of other metabolites as well.

The most prominent neurobiological model of OCD involves
abnormalities (typically hyperactivation) in the multiple and
parallel CSTC circuits (22, 23). Generally, the role of gamma
aminobutyric acid (GABA) in these circuits has been relatively
understudied, but one hypothesis is that diminished levels of
this metabolite in the prefrontal cortex (PFC) would be one
of the reasons for the striatal dopaminergic and glutamatergic
hyperactivity observed in patients with OCD (24). In this sense,
two possible GABA paths are postulated: a direct path, in which
GABA projections from the ventromedial PFC (vmPFC) reach
the striatum, and a second one, indirectly, via projections to the
orbitofrontal cortex.

Brain circuits related to fear and reward that encompass the
vmPFC are relevant for the neurobiology of OCD and have

been previously associated with the disorder both in theory and
practice (25, 26). Structural, but mainly functional, abnormalities
within the vmPFC were detected in imaging studies and could
be related to alterations in the CSTC circuits described in the
neuroimaging literature (22, 27). The vmPFC is thought to be
involved with the “affective system,” participating, for example,
in affective behaviors as processing affects or rewards (26). Of
note, this region has been shown to be crucial to the retention
of extinction learning in fear conditioning paradigms. As the
habituation promoted by one of the main psychotherapeutic
treatments of OCD (cognitive behavioral therapy, with exposure,
and response prevention techniques) is somehow similar to
extinction as evaluated in fear conditioning paradigms, some
authors have proposed that proper activation of the vmPFC
could be implicated in the treatment response to psychotherapy
among OCD patients (28). Therefore, due to its importance in
the neurobiological model of OCD, we investigated the vmPFC
in the present study.

1H-MRS studies evaluating Glu concentrations in the brain of
patients with OCD have foundmixed results. Some of them show
a reduction in Glu concentration in patients when compared to
controls (29) while others have reported increased Glx (Glu +

glutamine) levels (30). However, most of the findings did not
report any differences (4, 6, 8, 9, 31). Therefore, despite the
growing literature in the OCD 1H-MRS field in recent years
(14, 32), there is still no consensus on the role of the glutamatergic
cycle in OCD. Regarding GABA, this is a much more difficult
metabolite to detect, as it requires specific 1H-MRS editing
techniques. In a recent review of the literature that included
only 1H-MRS studies that used scan fields strength of 3 T, the
authors concluded that most studies did not demonstrate any
neurometabolic abnormalities in OCD patients when compared
to healthy controls, although they indicated that altered GABA
levels in the rostral anterior cingulate cortex (rACC) is one
of the most consistent findings (9). Still, while they reported
two studies showing lower GABA concentrations in rACC in
adults with OCD (4, 6), a more recent study has found higher
concentrations of this metabolite in patients with OCD in the
ACC (7). Therefore, the current evidence is not sufficiently strong
for elucidating the role of neurometabolites in OCD, particularly
Glu and GABA, and further research is needed in this field.

Factors that can contribute to results heterogeneity among
different studies include voxel size and anatomical placement
and the inherent variability of the OCD population. Moreover,
since conventional 1H-MRS is not ideal to detect Glu, glutamine
(Gln), and GABA due to their low signal and partial overlap
with other metabolites, this could be considered a limitation
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of the previous studies, since most of them were incapable of
disentangling the specific signal from each metabolite. Hence,
this study used a two-dimensional JPRESS 1H-MRS sequence
that allows the discrimination of overlapping metabolites by
observing the differences in J-coupling (second dimension of the
spectrum), leading to higher accuracy of all metabolites in the
brain, including Glu, Gln, and GABA (33, 34).

The main objective of this study was to quantify specific
metabolites (especially Glu/Cr and GABA/Cr) in the vmPFC of
OCD patients and to compare them with HC. In our statistical
model, we considered demographic data (such as age and
sex) and also the fraction of gray matter (fGM) in the MRS
voxel, aiming to control for possible confounders. Additionally,
since alterations in Glu/Cr levels could be accompanied by
corresponding GABA/Cr alterations [for example, see Scotti-
Muzzi (35), which used the same 1H-MRS technique to acquire
the data], an imbalance in the Glu/GABA ratio between groups
could also add information regarding the neurochemistry of
OCD. Thus, we also explored the Glu/GABA ratio, which has
not been systematically studied previously in the OCD field. We
hypothesized that the current investigation could improve our
comprehension of prior results with mixed findings, by studying
a large sample of OCD patients with a 1H-MRS sequence more
specific for overlapping metabolites.

MATERIALS AND METHODS

Ethical Issues
This project was approved by the Ethics Committee for Analysis
of Research Projects (CAPPesq) at Faculdade de Medicina da
Universidade de São Paulo (FMUSP). All participants signed a
written informed consent after a thorough description of the
study and the assurance that their decision to participate would
not interfere with their access to treatment. Participants received
financial compensation for transportation and refreshments
during the study.

Participants and Inclusion and Exclusion
Criteria
Participants were recruited from 2014 to 2017, during a period of
3 years and 1month. Inclusion criteria for OCD patients were the
following: (a) age between 18 and 65 years; (b) primary diagnosis
of OCD according to the Diagnostic and Statistical Manual
of Mental Disorders, fourth edition (DSM-IV), confirmed by
the Structured Clinical Interview for DSM-IV Axis I disorders
(SCID-I); (c) Y-BOCS score≥16 or≥10 only for only obsessions
or compulsions; and (d) to be on a stable medication regimen
for the last 6 weeks or off medication. Exclusion criteria were the
following: (a) IQ below 80; (b) comorbidity with schizophrenia
or bipolar disorder; (c) any contraindication to MRI, such
as pacemakers or cochlear implant, etc.; (d) claustrophobia
or not being able to tolerate the exam; (e) past or current
substance abuse or dependence; and (f) head trauma with loss
of consciousness. HC had no history of physical or psychiatric
disorders on the basis of the SCID interview and had to meet
the same inclusion/exclusion criteria, with the exception of the
OCD-related ones.

Clinical Measures
All participants were interviewed by experienced clinical
psychologists and completed the same battery of clinical
assessments with the standardized instruments described below.
All interviews were conducted in person and lasted ∼2 h.
To evaluate psychiatric disorders, the SCID-I (axis I) and an
additional module for impulse-control disorders according to
DSM-IV criteria were used for all participants (36). The OCD
diagnosis was established by clinicians with long experience in
OCD assessment and treatment (ACL, AM, JBD, RMFS, and
RGS). The present Portuguese version of the SCID showed good
interrater reliability (37).

OCD severity was measured using the Y-BOCS severity scale
(38), which is a 10-item semistructured clinician-administered
measure of obsession and compulsion severity. Each item can
score from 0 to 4, with a maximum of 40 (20 for obsessions and
20 for compulsions). The Y-BOCS has been considered the gold-
standard instrument for the assessment of OCD symptoms (38),
with good psychometric properties including Brazilian samples
evaluated in Portuguese (39).

Finally, the 21-item Beck Depression Inventory (BDI)
(40) measures cognitive, behavioral, and somatic symptoms
associated with depression. The Beck Anxiety Inventory (BAI)
is a 21-question multiple choice, each answer being scored on a
scale value of 0 (not at all) to 3 (severely), used for measuring
the severity of anxiety in adults (41). Both scales were applied to
all participants, they are consolidated scales that were translated
into Brazilian Portuguese and validated in our environment
previously (42).

Procedures
Image Acquisition

The entire MRI scan lasted ∼1 h, and the images were acquired
on a Philips 3 T Achieva scanner (Philips Healthcare, Best, The
Netherlands) using a 32-channel head coil. Spectroscopy was
acquired with a two-dimensional JPRESS 1H-MRS sequence (33),
a technique based on a conventional PRESS spin echo (single
voxel) that varies the echo time of the acquisition, encoding
the J coupling evolution in an additional dimension. In other
words, the 1H-MRS signal is measured not only as a function
of the chemical shift (expressed by the Larmor frequency, as
in conventional one-dimensional spectroscopy) but also as a
function of the coupling constant J in Hz. With the coupling
constant J, it is possible to resolve the signals from overlapping
multiplets, such as Glu and Gln. This sequence lasted ∼25min
and was obtained with the following parameters: the voxel was
positioned in the ventromedial PFC (Figure 1) with a size of
30mm (L–R) × 25mm (I–S) × 25mm (A–P); minimum echo
time (TE) used was 31ms, and TE was incremented in 100 steps
of 2ms each; for every time increment 1TE, the maximum-echo
sampling started the acquisition1TE/2 earlier with respect to the
echo top, the repetition time (TR) was 1,600ms, and 8 averages
were acquired for each TE step. One non-water suppressed
spectrum was also acquired at each TE. The number of points per
spectrum was 1,024, and the spectral bandwidth was 2,000Hz.
An automatic second-order B0 shimming routine was used, and
water suppression was achieved by VAPOR (43). Additionally, in
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FIGURE 1 | Axial, coronal, and sagittal images from the voxel position in the ventromedial prefrontal cortex: blue lines are suppression bands, used in the Y- and

Z-axes. We analyzed that only the voxel that was the overlap between the white and red squares in order to reduce effects of chemical shift voxel displacement. The

following rationale was used: the bottom portion of the voxel was aligned with the anterior–posterior commissure; in the anterior/posterior axis, the corpus callosum

was used as reference (just ahead of the genu of corpus callosum); and in the lateral axis, the voxel was situated in the most medial portion of the brain.

order to reduce the effect of chemical shift voxel displacement,
four suppression bands were positioned at the voxel edges along
the Y- and Z-axes, which present a more pronounced chemical
shift artifact due to the use of 180-slice selective pulses (see
Figure 1).

Data Processing

Metabolite quantification was obtained using Prior Knowledge
Fitting (ProFit) version 2.0 running on Matlab R2011b (44).
ProFit (34) works as an extension of LCModel (45) principles
to fit 2D data sets. Fuchs et al. (44) improved the quantification
program (ProFit, version 2.0) by introducing an experimentally
acquired 2D macromolecular baseline into the fitting model and
allowing for a more accurate and precise fit by accounting for
the actual line shape and additional baseline distortions by self-
deconvolution and spline modeling approach. An example of a
1H-MRS JPRESS spectrum can be found in the supplementary
files (Supplementary Figure 1).

Themetabolite basis set used by ProFit includes spectra from a
total of 18 brainmetabolites. Themetabolites of interest that were
analyzed in this study were Glu, GABA, Gln, N-acetylaspartate
(NAA), creatine (Cr), glutathione (GSH), choline (Cho), lactate
(Lac), and myo-inositol (ml). The first two metabolites, and
the ratio among them (Glu/GABA), were the main objective of
this study. All the other metabolites described above were also
extracted and quantified but analyzed as secondary outcomes.
Basis set metabolite spectra were calculated with the GAMMA
library (46) using the chemical shift and J-coupling values from
the literature (47, 48). Quantitative results in ProFit are given in
the form of ratios to Cr signal (met/Cr). These ratios are already
corrected for T2 relaxation effects since ProFit automatically
calculates T2 relaxation times for each metabolite from the signal
obtained at the different TEs.

To determine the brain tissue composition contained in the
MRS voxel of interest, three-dimensional volumetric T1 images
were obtained using the 3D turbo field echo technique [fractional
anisotropy (FA) = 8◦; TE = 3.2ms; TR = 7ms; inversion time
(TI) = 900ms] with an isotropic voxel size of 1 mm3. With

the help of the voxel tissue segmentation tool incorporated into
Gannet 3.0 software (49), percentages of white matter (WM),
GM, and cerebrospinal fluid (CSF) were calculated for each voxel.
The fraction of GM (fGM) contributing to the observed MRS
signal was calculated as fGM = GM%/(GM% +WM%) and was
inserted into the statistical model as a covariate.

The ProFit program also provides a Cramér–Rao lower bound
(CRLB), a measure of the quality of the metabolite quantification
for eachmetabolite (50).Metabolites with CRLBs above 20%were
excluded from the statistical analysis.

Statistical Analysis
Two-sided independent t-tests and two-sided asymptotic
Pearson chi-square, at the 5% significance level, were performed
comparing demographic data between patients and HC. In
addition, each metabolite was entered as a dependent variable
in a univariate Generalized Linear Model (GLM) with group as
the fixed factor and age, sex, and fGM as covariates. Finally, we
performed GLM analyses only at the OCD group to investigate
eventual associations between metabolic values and clinical
data covarying for sex, age, and fGM. Statistical analysis was
performed using Python version 3.6, and Bonferroni correction
was applied considering the number of comparisons/metabolites
analyzed in the study: separate corrections were performed for
the main outcomes (three comparisons) and for the secondary
outcomes (seven comparisons). The same rule was applied for
the GLM seeking to evaluate the clinical associations; however,
once we had three scales (Y-BOCS, BDI, and BAI) for each
metabolite, corrections were performed for nine comparisons
regarding the main outcomes and 21 comparisons for the
secondary ones.

RESULTS

Demographic Group Comparisons
One hundred forty-five volunteers were scanned with the two-
dimensional JPRESS 1H-MRS sequence. Forty-four participants
were excluded due to excessive movement or bad quality
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TABLE 1 | Clinical and demographic variables in patients with

obsessive-compulsive disorder and healthy controls.

Patients Controls t/X2 p-value

(n = 59) (n = 42)

Age (SD) 35.1 (10.0) 33.4 (11.5) 0.78 0.435b

Sex, female (%) 37 (62.7) 23 (57.5) 0.80 0.427b

Y-BOCS (SD) 29.3 (6.7) – – –

BDI (SD) 17.7 (10.1) – – –

BAI (SD) 16.0 (9.9) – – –

Medications SSRI or SRI1 (%) 37 (62.7) – – –

Other antidepressants2 (%) 4 (5.1) – – –

Benzodiazepines3 (%) 4 (5.1) – – –

Neuroleptics4 (%) 12 (20.3) – – –

Anticonvulsants5 (%) 1 (1.7) – – –

Stimulants6 (%) 1 (1.7) – – –

fGM (SD) 0.69 (0.07) 0.71 (0.09) −1.20 0.234ª

Y-BOCS, Yale-BrownObsessive–Compulsive Scale; BDI, Beck Depression Inventory; BAI,

Beck Anxiety Inventory; fGM, fractioned gray matter.
1Fluoxetine, fluvoxamine, paroxetine, sertraline, citalopram, escitalopram, clomipramine.
2Mirtazapine, venlafaxine, duloxetine.
3Clonazepam.
4Olanzapine, ziprasidone, quetiapine, aripiprazole.
5Gabapentin.
6Ritalin.
aStudent’s t-test for two independent samples (patients and healthy controls).
bTwo-sided asymptotic significance, Pearson chi-square.

spectroscopy data. The final sample consisted of 101 participants:
59 patients with OCD and 42 healthy controls. Descriptives of
demographic and clinical characteristics of both groups can be
seen in Table 1: groups did not differ in age, sex, or gray matter
fraction (fGM) in the voxel. It is worth mentioning that the
mean Y-BOCS score was 29.3, which indicates a moderate to
severe level of symptomatology according to Storch et al. (51)
criteria. Regarding previous treatments, 42 patients have failed
at least one selective serotonin reuptake inhibitor (SSRI), and 34
have failed to improve symptomatology after cognitive behavior
therapy (CBT).

1H-MRS Results
Meanmetabolite ratios relative to Cr are listed in Table 2 for each
group. Due to CRLB above 20%, it was necessary to exclude 10
subjects for GABA and Gln and 62 subjects for Lac evaluation.
Mean CRLB were 10.66% for GABA, 2.73% for Glu, 0.68% for
Cr, 13.08% for Gln, 0.65% for NAA, 4.88% for GSH, 0.80% for
Cho, 14.75% for Lac, and 2.99% for mI.

Generalized Linear Model
A summary of the group effect in the Generalized Linear Model
(GLM) for each metabolite, together with the average for each
group, is shown in Table 2. Multivariate regressions using GLM
aimed to predict the variation in metabolites quantities using the
following set of explanatory variables: (1) group, (2) sex, (3) age,
and (4) fGM. We found a significant group effect for Glu/Cr,
indicating that patients presented a lower concentration of this
metabolite (z = 2.540; p = 0.011), a result that persisted after

TABLE 2 | Ventromedial PFC metabolites levels in patients with

obsessive-compulsive disorder and healthy controls.

N OCD HC Group-effect GLM

Mean (SD) Mean (SD) z p-value

Primary outcomes

Glu/Cr 101 0.70 (0.36) 0.77 (0.37) 2.540 0.011

GABA/Cr 91 0.29 (0.19) 0.30 (0.20) −1.015 0.310

Glu/GABA 91 3.71 (3.68) 4.58 (5.37) 0.353 0.724

Secondary outcomes

Gln/Cr 91 0.29 (0.15) 0.27 (0.13) −0.658 0.511

Glu/Gln 91 2.96 (1.87) 3.23 (1.92) 1.821 0.069

NAA/Cr 101 1.05 (0.17) 1.04 (0.12) 1.578 0.110

GSH/Cr 101 0.26 (0.09) 0.26 (0.09) 0.028 0.977

Cho/Cr 101 0.16 (0.02) 0.16 (0.02) 0.021 0.983

Lac/Cr 39 0.15 (0.15) 0.14 (0.13) −0.206 0.837

mI/Cr 101 0.43 (0.13) 0.43 (0.13) 0.096 0.923

Glu, glutamate; GABA, gamma aminobutyric acid; Gln, Glutamine; NAA,

n-acetylaspartate; GSH, glutathione; Cho, choline; Lac, lactate; ml, myo-inositol,

z, t-stats.

Bonferroni correction (Figure 2). On the other hand, GABA/Cr
and the Glu/GABA ratio did not present any difference between
groups (Table 2).

Regarding the secondary outcomes, none of the following
models reached statistical significance or presented group effects:
Gln/Cr, Glu/Gln, NAA/Cr, GSH/Cr, Cho/Cr, Lac/Cr, and mI/Cr
(Table 2).

Association With Clinical Symptoms
None of the clinical measures were associated with the
metabolites for the primary or secondary outcomes: severity of
OCD (Y-BOCS scores) and depressive or anxiety symptoms (BDI
and BAI scores) (Supplementary Table 1).

DISCUSSION

The present study used a two-dimensional JPRESS 1H-MRS
sequence to investigate specific metabolites in the ventromedial
PFC (vmPFC) in one of the largest samples of patients with
OCD reported to date. We found lower levels of Glu/Cr in
patients compared with HC but no alterations in GABA/Cr or
Glu/GABA ratio. We also did not observe any association of the
metabolites with age or clinical symptoms nor group differences
in the secondary outcomes.

Up to now, the literature regarding 1H-MRS of vmPFC in
patients with OCD has presented inconclusive findings. Results
are especially inconsistent when metabolites are reported as Glx:
some studies reported higher levels of Glx in OCD compared
with controls (8, 30), while others showed lower levels of Glx
in patients (52). However, the vast majority of studies reported
no differences (4, 6, 53). One explanation for the mixed findings
could be related to the fact that most studies could not separate
the spectral peaks of Glu and Gln, leading to ambiguity. Recent
1H-MRS techniques (as JPRESS) at high-field scanners (3T)
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FIGURE 2 | Boxplots showing the distribution of Glu/Cr in healthy controls (HCs) and patients with obsessive–compulsive disorder (OCD).

are able to disentangle each metabolite concentration due to
better spectral resolution, offering more precise results, i.e., Glu
minimally contaminated by precursors and other metabolites.

Studies measuring Glu levels in adults with OCD and
evaluating regions similar to ours have also found inconsistent
results. While most of the literature found no differences in Glu
values when comparing patients and controls (30, 53, 54), one
study has found lower levels in the mPFC of OCD patients (29).
Our results replicated, in a larger sample, the previous findings
of Zhu et al. (29), who evaluated 13 patients with OCD. At
first, these findings may seem contradictory, once the postulated
hyperactivation of the CSTC would demand increased levels of
Glu in frontal areas. However, it is noteworthy that no study
using a 3T scan observed higher Glu values in the mPFC [for
a review see Vester et al. (9)]. Moreover, the small sample size
of previous studies (n = 16, 30, and 40) and the fact that only
one study (53) used a JPRESS sequence could also account for
the inconclusive results.

Lower levels of Glu in the vmPFC were also detected in
children with OCD when compared to control youths (55, 56).
While a straightforward comparison with these studies is difficult
because of twomain reasons, (1) a developing brain can be totally
different in terms of functioning and neurochemistry from an
adult brain and (2) both studies assessing children have used
1.5 T scans (and their samples were 20 and 14, respectively), it is
possible that the brainmechanisms that underlie OCD symptoms
could present similar pathophysiology, independently of age or
developmental stage (57). In fact, our results support this view:
even without having youth in our sample, we had participants
with a wide age range. Although we tried to observe a pattern
of association (reduction or increase) over the lifespan, we could
not find age influences in any metabolite. In addition, this was

a cross-sectional design study, which is not appropriate for this
type of investigation.

The Glu alterations mentioned above and reported in our
results may underlie the abnormalities in the frontostriatal
circuits detected in OCD patients. The imbalance in Glu
concentrations, especially in this frontal region, may reflect
changes in the excitatory/inhibitory neurotransmission of the
frontostriatal circuits, crucial in OCD pathophysiology, or
even a compensatory mechanism. Finding similar results to
ours, Rosenberg and colleagues (55), speculated that the
pathophysiological model of OCD was associated with tonic–
phasic dysregulation of Glu in CSTC circuits. Translating this
hypothesis to our results, reduced tonic Glu levels in vmPFC
could predispose to phasic Glu hyperactivity in the striatum and
OFC. Although we did not measure metabolites concentrations
in other areas, future studies should assess more than one voxel
to have a greater view of the neurochemistry balance behind
the CSTC circuitry in OCD patients. The clinical implication
of a better understanding of the neurobiological model of
the disease is relevant and useful. For example, a disrupted
excitatory or inhibitory system in the vmPFC could be related to
dysregulations in affective (26, 28) and cognitive systems (58), as
reported in patients with OCD.

Overall, the lower levels in Glu/Cr presented by OCD patients
support the glutamatergic hypothesis for OCD (10). The evidence
for glutamatergic dysregulation in OCD has been increasingly
strong in the literature (22), with alterations being detected in
studies that analyzed neurochemical levels in the cerebrospinal
fluid of unmedicated patients (59, 60) and also in 1H-MRS
studies (29), as previously mentioned. Therefore, even with most
1H-MRS studies presenting negative results regarding Glu in
several regions of the brain, we remember once more that most
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of the previous studies were underpowered and did not have a
proper 1H-MRS sequence capable of separating Glu from Gln.

Regarding GABA/Cr, our findings are in line with other
studies reporting no differences in vmPFC (5), including more
recent studies that have used newer 1H-MRS sequences capable
of measuring those metabolites more precisely (9). Although
part of the literature emphasizes GABAergic abnormalities in
the vmPFC of patients with OCD, with two studies reporting
lower levels (4, 6) and a more recent one reporting higher levels
(7) of this metabolite, we could not find any difference between
groups. In fact, looking at the means for each group, they were
impressively similar. Comparing the studies, our sample was
larger than two of the previous studies (4, 7), and although the
study of Zhang et al. (6) had a larger sample than ours, the
voxel position was not exactly in the same region: while they
preferred to evaluate the orbitofrontal cortex, in our study, we
positioned the voxel in a more superior location, delimited by
a straight line between the anterior and posterior commissures.
These factors may have influenced and diverged our results from
the previous studies.

Our JPRESS sequence allowed us to measure the Glu/Gln
ratio, differently from previous studies that mainly reported
only Glx (4, 6, 29, 30). Although we could not find differences
between patients with OCD and HC, this ratio is particularly
informative and was previously shown to be associated with other
psychiatric disorders, like depression (61), autistic traits (62), and
schizophrenia (63). Therefore, new 1H-MRS studies using pulse
sequences that can distinguish Glu signals from Gln in OCD are
warranted, not only to study their ratio but also to have a more
precise and clear measure of each metabolite.

Regarding the secondary outcomes, our results also extend
previous investigations of the involvement of these metabolites
in the physiopathology of OCD: except for some studies that
reported lower concentrations of NAA in the PFC of OCD
patients (6, 64), most studies reported no alterations of Gln,
NAA, GSH, Cho, Lac, or mI in the ventromedial PFC (29–
31, 54, 65). Although this region is thought to be one of the
most important of the cortico-striatal circuits involved with
OCD symptoms, it seems that the evidence so far is insufficient
to demonstrate alterations in other metabolites except Glu or
GABA. Nevertheless, future studies with larger samples should
investigate the longitudinal role of specific metabolites in OCD,
whether they could be valid predictors of treatment response or
if they could play a role in OCD symptoms improvement, as
suggested in a recent umbrella review of biomarkers in OCD (58).

Even though we have found group effects in the Glu/Cr in
this sample, none of the metabolites correlated with clinical
symptoms, as measured by the Y-BOCS, BAI, or BDI, after
a strict multiple comparisons correction, indicating that their
levels are independent of clinical presentation or severity. Before
correcting for multiple comparisons, GABA/Cr was associated
with the severity of OCD symptoms and Glu/GABA with
depression scores (regarding the mains outcomes), while Cho
was associated with OCD and anxiety symptoms (secondary
outcomes). With a sample of 59 patients with OCD, we cannot
say that we were underpowered to observe correlations. On the
other hand, the elevated number of comparisons does not allow

us to interpret results without multiple comparison corrections.
The literature offers mixed findings in this regard, with studies
showing both positive (52) and negative (6) correlations of Glu
(or Glx) and GABA in the vmPFC. However, previous studies did
not control for multiple comparisons, and most 1H-MRS studies
in the OCD literature did not findmetabolic–clinical associations
(4, 7, 54, 65). Therefore, it is difficult to establish a pattern, as
concluded by a recent review of the literature (9), but our results
reinforce these negative findings.

Limitations of this study should be observed. First, we
did not exclude patients with comorbid depression. On the
other hand, BDI scores definitely differed between groups and
were not associated with metabolites levels, suggesting that
depressive symptoms were independent of those measures.
Second, although most of our patients were medicated at the
time of the scan, we admitted patients taking medications only
if they were stable for at least 6 weeks. Nevertheless, this could
have influenced our findings. Thus, we ran analyses without
patients taking anticonvulsants and benzodiazepines, and the
results remained the same. Finally, we used a unique and non-
commercial pulse sequence of MRS that could separate Glu/Cr
and Gln/Cr, which strengthens our study. However, this was
a very long sequence (lasting ∼25min), and thus, there was a
higher chance that some subjects needed to be excluded from the
analysis, simply because they moved their heads during this very
long scanning. In addition, the voxel size was relatively large and
positioned at the midline (as opposed to bilateral), encompassing
diverse cortical subregions. Inevitably, the voxel contained also
some white matter, which could affect results. In order to control
for that, we verified that white matter portion was equal for
both groups, and the gray matter fraction was considered in the
statistical analysis.

To conclude, we found a group effect in the Glu/Cr
concentration, which may indicate a neurochemical imbalance in
the vmPFC of patients with OCD that could be associated with
the corticostriatal dysregulation consistently implicated in the
neurobiology of this disorder. It is hard to establish if the lower
Glu/Cr levels found in patients with OCD in this study could be
the cause or consequence of the disease or even related to any
other pathophysiological process. They also could be the result
of a compensatory system, as hypothesized before. Moreover,
clinical severity of OCD, depression, and anxiety symptoms did
not associate with metabolites levels, replicating previous studies.
Our study sheds light on the relevance of further studying the
glutamatergic system for understanding the neurobiology of the
disease, for example, studies designed to test the predictive value
of this metabolite and if/how it is affected by first-line treatments.
It is possible that different OCD subtypes or patients that exhibit
different clinical profiles would present different metabolite levels
in the brain. Finally, future studies should evaluate other areas
of the brain, particularly related to the CSTC circuits in patients
with OCD.
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