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Abstract: Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do
not encode any proteins, yet cause an assortment of symptoms. The following review describes
viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis,
host interactions and detection. The review concludes with a description of future prospects in
viroid research.
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1. Introduction

Viroids are one of the most inscrutable single-stranded, structured, circular RNA
pathogens of plants as well as the smallest infectious agents ever known [1,2]. Despite
being incapable of coding for any proteins, viroids affect susceptible plant hosts with
visually discernible symptoms resembling those induced by several plant viruses. Diener,
1967, 1971 [3,4] discovered and exemplified the Potato Spindle Tuber Viroid (PSTVd), the
first viroid ever known. He coined the term “viroid” to represent this diminutive, naked,
protein-free, circular RNA plant pathogen [4–6]. This conceptualization of the viroid was
further substantiated by Sänger, 1972 [7] as well as Semancik and Weathers, 1972 [8],
who identified the citrus exocortis viroid (CEVd) that is responsible for causing the citrus
exocortis disease. Another viroid, the chrysanthemum stunt viroid (CSVd) is also one
of the viroids initially identified [9,10]. Following the initial identification of the PSTVd,
numerous other viroids have been discovered [11]. There are currently about 32 recognized
species as well as eight putative species of viroids [12]. Some of the most recently identified
viroids include the columnea latent viroid (CLVd) and the pepper chat fruit viroid (PCFVd)
infecting pepper in Vietnam identified by RNA-seq [13].

Viroids are covalently closed circular RNA molecules with rigid rod-like secondary
structure ranging in size between approximately 250 to 400 nucleotides [14,15]. Viroids
undergo autonomous replication and occur as circular and linear forms containing a high
degree of base pairing while parasitizing the host transcriptional machinery [2,15]. Viroids
are totally dependent on host cellular RNA polymerases and processing enzymes for
their replication. They are categorized into two families: the Avsunviroidae (type species,
Avocado sunblotch viroid ASBVd) and the Pospiviroidae (type species, PSTVd) [16–20].
Unlike viruses, viroids do not require to be encapsidated for propagation among host
plants. Viroid RNA moves from infected cells into adjacent cells via plasmodesmata and
then through the phloem to distant sink organs of its host plant [18,21]. Transmittance of
viroids occurs through grafting, mechanical injury, pollen, seed and/or insects [21].

Viroids cause mild to severe diseases in economically significant crops including both
herbaceous and woody plants such as for instance, apple, avocado, coconut, grapevine,

Int. J. Mol. Sci. 2021, 22, 2795. https://doi.org/10.3390/ijms22062795 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6252-3005
https://doi.org/10.3390/ijms22062795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22062795
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/22/6/2795?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 2795 2 of 25

hop, peach, potato and tomato [2,22]. Symptoms induced by viroids range from mild to
severe, some causing even debilitating, lethal infections. Symptoms depend to a large
extent on the strain of the viroid (its nucleotide sequence), the nature of the susceptible
host (genotype), environmental conditions as well as the type and the severity of the
disease they induce [21]. Viroids elicit disease symptoms by interacting directly with host
factors, although the precise molecular mechanisms involved are yet to be completely
understood. Increasing evidence on the viroid-derived small RNAs and their involvement
in RNA silencing pathways has shed light into the molecular machinery involved in
viroid pathogenicity.

It is very intriguing that viroids are able to cause several destructive diseases in their
host plants while being diminutive infectious molecules. This means that the limited
genetic information that they carry is sufficient to induce systemic infection in suscepti-
ble plants [19]. Considering that they are non-coding RNAs, viroids rely on their own
genome information, covalently closed circular RNA composition and structure imposed
by their very nucleotide sequences to replicate and induce diseases in their respective
host plants [23–28]. Thus, they can be considered as “abnormal” regulatory RNAs and
not operative messenger RNAs [4]. The viroid disease symptoms result from a complex
interaction between the pathogenic viroid RNA and the plant genome and the ensuing
changes within the host cellular machinery that translate into alterations of the physiology
of the host plant [20].

Viroids negatively impact the world’s economy by causing the destruction of suscepti-
ble crop plants and cause unbridled spread of infection leading to several important plant
diseases. A majority of the crop devastation associated with infection by plant viruses [29]
largely applies to viroids. Hence, there is a compelling need to study the molecular biology
of viroids as well as their complex interactions with their hosts and the insect species
which are involved in their transmission to design viable intervention strategies towards
improving crop security.

With biotechnological advancements such as microarrays [30] and next-generation
sequencing technologies (NGS) [13], novel viroids, their variants and novel host-pathogen
interactions are being identified in diverse geographical regions. For instance, RNA-seq
technology and computational algorithms have been employed to discover the grapevine
latent viroid (GLVd) and the grapevine hammerhead viroid-like RNA (GHVd-like RNA)
in grapevines and deep sequencing has been useful in identifying the apple hammerhead
viroid-like RNA (AHVd-like RNA) in apples [31,32]. Additionally, grapevines in India
have been recently shown to host viroids such as Australian grapevine viroid (AGVd), hop
stunt viroid (HSVd) and the grapevine yellow speckle viroid 1 (GYSVd-1) indicating wide
geographical distribution of viroids [33,34]. NGS studies have already been executed for
some members of the Pospiviroidae family such as citrus bark cracking viroid (CBCVd) [35],
HSVd [36], hop latent viroid (HLVd) [37] and the PSTVd [38].

Several contemporary reviews have addressed many of the viroid characteristics
such as their structure, replication, trafficking and disease determining modes in host
plants [15,20–22,39–41]. Over the last decade, many technological approaches like biochem-
istry, molecular biology, computational biology and modern sequencing technologies are
increasingly being employed to understand viroid biology, viroid pathogenicity and viroid-
host interactions. However, a comprehensive summary of current literature elucidating
viroid molecular biology, pathogenicity, trafficking, transmission strategies, viroid–insect–
plant interactions and viroid detection technologies in the light of the recent technological
breakthroughs is lacking. Therefore, the major objective of this review is to highlight the
above molecular characteristics of these biological miniatures in the context of the latest
biotechnological advancements. Finally, the review closes with an insightful discussion
regarding the taxonomy and evolution of viroids in the light of recent discoveries in the
viroid field. This review is only focused on discussing the molecular mechanisms involved
in viroid infections and does not address diseases caused by viroids which could be a
subject, albeit a vast one, for another review.
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2. Biology of Viroids

Discovered in 1971, viroids are the smallest and simplest plant pathogens, ranging
from 250 to 400 nucleotides of RNA, and are known as “living fossils of the hypothetical
RNA World” [42]. These autonomous infectious agents are devoid of any protein coding
capability and can survive without any protected membrane around their single-stranded,
circular RNA genomes. Viroids can not only fight the host cellular mechanisms of RNA
degradation but can also successfully replicate themselves using factors from the host plant,
resulting in their spread throughout the plants and disease symptoms [14]. Angiosperms
are reported as the only natural hosts of viroids [43].

The processes involved in viroid infection after entry into cells includes [15,24,27,44].

(a) entry into a subcellular organelle (chloroplast or nucleus according to the type of viroid),
(b) rolling circle replication within chloroplast or nucleus,
(c) release out of the cell following replication,
(d) transport into nearby cells,
(e) entry into and within the phloem,
(f) invasion of nonvascular cells from the phloem and,
(g) repeat of the infection cycle.

The viroid genome does not encode for any protein, but instead spreads throughout
the plant by recruiting host proteins using their own RNA folded structure. Functional
motifs within the RNA structure are required for cellular trafficking in host plants [45].
The nucleotide sequence of the viroid is also important for interacting with the genome of
the host. RNA-directed DNA methylation (RdDM) has been reported in viroid-infected
plants [46,47] and examples of silencing of functional genes by individual viroid derived
small RNA (vd-sRNA) have been reported [48–50].

Viroids replicate in host plants using host RNA polymerases that interact with the
viroid RNA template, resulting in a higher than usual rate of errors in comparison to
DNA replication. Hence, a given replicating viroid produces several mutants along with
its original sequence, the mix being termed quasispecies [51,52]. These closely related
quasispecies exhibit vast variation in their host invading capability, demonstrating that
the property of infecting the host depends mainly on nucleotide sequence of the viroids.
Furthermore, the cause of variability in symptoms of viroid infections also depends on
viroid-host-environment interactions.

The cytopathology of family Pospiviroidae include cavity formation within the cell
membrane and cell wall thickening [53]. Peach latent mosaic viroid (PLMVd) infections
were demonstrated to lead to chloroplast malformations [54]. Tracking viroid cytopathic
effects represents a promising approach to understand the links between disturbances at
the cellular level and macroscopic symptoms [55,56].

Viroids are distinguished on the basis of their transmission within host plants following
either vertical or horizontal patterns [57]. Pollen and ovules of a plant are responsible for
transmission of viroid infections from parental plants through seeds and then seedlings to
the next generation in the vertical mode of transmission; an example is the PSTVd. During
horizontal transmission (an example is Tomato planta macho viroid), infection is transmit-
ted to the next generation through the ovaries of a plant getting infected from physical
contact of another plant without fertilization [58]. The degree of vertical and/or horizontal
transmission of viroids depends on the molecular interaction of the viroid with the host
plant, resulting in recognition and elimination of viroid RNA in the male gametophyte [59].

Mediator (MED) is a conserved protein complex in plants. According to recent
reports, MED subunits exhibited differential expression patterns against different viroids,
suggesting that the connection of the MED subunit transcriptional reprogramming with
viroid infections resulted in differences in symptom development for different viroids [60].

3. Taxonomy and Classification of Viroids

According to the International Committee on Virus Taxonomy (ICTV), “rules con-
cerned with the classification of viruses shall also apply to the classification of viroids” [61].
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Viroid classification is based on secondary structure. Currently 32 species of viroids
are recognized by ICTV. The observation of quasispecies poses an important taxonomic
question for considering related viroid variants as of the same or different species. Less
than 90% genome sequence identity was the first criterion taken into consideration and to be
accompanied later by the possession of another distinguishing biological feature, in order to
classify any two viroid species as distinct, as per the ICTV classification requirements [17].
Table 1 highlights the molecular criteria that are considered in the classification of viroids [2].

Table 1. Molecular features of viroids considered for classification.

Molecular Characteristics Family Avsunviroidae Family Pospiviroidae

Viroid structure Y-shaped or branched Rod-like

Structural/Functional domains Not applicable Terminal left (TL), Pathogenicity (P), Central
(C), Variable (V) and Terminal right (TR)

Ribozyme function Yes No

Site of replication within the host Chloroplast Nucleolus

Mode of replication Symmetric rolling circle mechanism Asymmetric rolling circle mechanism

Catalytic enzymes
RNA-templated RNA transcription

Nuclear-encoded chloroplastic
RNA polymerase

RNA-templated RNA transcription
DNA-dependent

RNA polymerase II

Host plant range Narrow Narrow or broad based on viroid species

(Adapted from Adkar-Purushothama and Perreault, 2019 [2]).

Viroids are divided into two families: Avsunviroidae and Pospiviroidae [2,15,24,43,44,62,63]
(Table 2). Family Avsunviroidae contain three genera with members resembling ASBVd
with branched secondary structures chloroplast-based symmetric rolling-circle replication
mechanism and most importantly having ribozyme activities. On the other hand, family
Pospiviroidae with five genera has PSTVd-like members, consisting of five major domains
as secondary structures, asymmetric rolling-circle replication that occurs in the nucleus and
are commonly devoid of any ribozyme activities. Avsunviroidae infect only dicotyledonous
plants, both herbaceous and woody [20] while viroids of the family Pospiviroidae can
infect both monocot and dicot plants [64].

Table 2. Classification of viroids and viroid-like RNAs. Type member of each genus is indicated
in bold. Viroid and viroid-like RNAs unassigned are represented by * symbol. (Adapted from
Adkar-Purushothama and Perreault, 2019 [2]).

Family Genus Species

Avsunviroidae Avsunviroid Avocado sun blotch viroid

Pelamoviroid Peach latent mosaic viroid
Chrysanthemum chlorotic mottle viroid

Elaviroid
Eggplant latent viroid

Grapevine hammerhead viroid-like RNA *
Apple hammerhead viroid-like RNA *

Pospiviroidae Pospiviroid

Potato spindle tuber viroid
Tomato apical stunt viroid

Tomato chlorotic dwarf viroid
Tomato planta macho viroid

Columnea latent viroid
Citrus exocortis viroid

Chrysanthemum stunt viroid
Pepper chat fruit viroid

Iresine viroid I
Portulaca latent viroid *
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Table 2. Cont.

Family Genus Species

Hostuviroid Hop stunt viroid
Dahlia latent viroid

Cocadviroid

Coconut cadang-cadang viroid
Coconut tinangaja viroid

Citrus bark cracking viroid
Hop latent viroid

Apscaviroid

Apple scar skin viroid
Apple dimple fruit viroid
Pear blister canker viroid

Citrus bent leaf viroid
Citrus dwarfing viroid

Citrus viroid V
Citrus viroid VI
Citrus viroid OS

Australian grapevine viroid
Grapevine yellow speckle viroid 1
Grapevine yellow speckle viroid 2

Apple fruit crinkle viroid *
Grapevine yellow speckle viroid 3 *

Grapevine latent viroid *
Persimmon latent viroid *

Persimmon viroid 2 *

Coleviroid

Coleus blumei viroid 1
Coleus blumei viroid 2
Coleus blumei viroid 3

Coleus blumei viroid 4 *
Coleus blumei viroid 5 *
Coleus blumei viroid 6 *

The three genera of family Avsunviroidae are: Avsunviroid, Pelamoviroid, and Elavi-
roid. Species in the genus Avsunviroid, have a low content of G + C with rod-like secondary
structure. Species of genus pelamoviroids have high G + C content with branched sec-
ondary structures. The single species of genus elaviroid have intermediate structural
properties that are between those of the other two genera of the family [56].

Five genera of family Pospiviroidae are: Apscaviroid, Cocadviroid, Coleviroid, Hos-
tuviroid and Pospiviroid. Each genus has a characteristic central conserved region (CCR)
with least modifications, while the species of genera apscaviroids and pospiviroids have
terminal conserved regions (TCR) and those of cocadviroids and hostuviroids have termi-
nal conserved hairpins (TCH). The Coleviroid species are devoid of TCR and TCH [65].
Figure 1 exemplifies the various structures adopted by these viroids [66].
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Figure 1. Structural differences among viroids. (Adapted from Adkar-Purushothama and Perreault,
2020 [66]). Primary and secondary structural characteristics considered for classification of viroids:
(A) the PSTVd rod-like secondary structure comprising five functional domains is shown: the
Terminal left (TL), Pathogenicity (P), Central (C), Variable (V) and Terminal right (TR) domains are
separated by solid vertical lines. The nucleotide sequence of the central conserved region (CCR),
a typical feature of the family, Pospiviroidae is shown within the box. (B) The ASBVd branched
secondary structure is shown. Boxes represent the conserved nucleotides of the catalytic core within
the hammerhead, a typical feature of the Avsunviroidae. The red and black boxes, respectively,
indicate the hammerhead self-cleaving structures formed within the (+) and (−) strands. (C) The
HSVd rod-like secondary structure is shown. The black-colored box represents the CCR while the
shadowed box represents the non-functional hammerhead-like domain.

4. Viroid Structure and Replication

PSTVd was the first viroid structure ever determined [4]; electron microscopy revealed
that PSTV forms a secondary structure, and this was confirmed in 1978 [67,68].

Most of the known viroid species belong to the Pospiviroidae family, named after the
type member, the PSTVd [15]. The Pospiviroidae adopt circular, internally base-paired, rod-
like structures and their genomes consist of five distinct domains: The terminal left (TL),
terminal right (TR), central (C), pathogenic (P) and variable (V) domains. The pathogenicity
domain possesses relatively low thermodynamic stability (or pre-melting) due to the
presence of an oligopyrimidine stretch in most of the Pospiviroidae, the V domain is the
most variable region, and the C domain is most highly conserved.

To date, only four viroids have been identified as belonging to the Avsunviroidae family,
named after ASBVd. These types of viroids lack a conserved central region but retain
rod-like and branched regions like Pospiviroidae viroids. However, unlike Pospiviroidae
viroids, Avsunviriodae members can form hammerhead ribozyme motifs in both polarities
which mediate cleavage of their replication intermediates, while RNA cleavage within
Pospiviroidae family members takes place using host enzymes [15].

The replicative mechanism of viroids operates through two alternative pathways
depending in whether it is mediated by one or two rolling circles [21]. The first pathway
is called asymmetric, typical of Pospiviroidae and is mediated by a single rolling circle
wherein the incoming circular positive sense viroid RNA genome is repeatedly transcribed
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to form multimeric, linear (−) strands. Thereupon, in the next step, these (−) sense con-
catemers serve as templates for the synthesis of multimeric, linear (+) strand concatemers
which subsequently are cleaved into monomeric (+) circles. In the alternate second pathway
called symmetric, typical of Avsunviroidae (Figure 2) [69], replication operates through two
rolling circles wherein the multimeric linear (−) strands generated from the (+) sense RNA
genome of the viroid undergo cleavage and ligation to generate circular (−) strand RNA
monomers. These (−) strand circles then act as templates for the subsequent generation of
linear, multimeric (+) strands which then cleave into (+) sense monomer genomes.

Figure 2. Rolling circle model for Avsunviroid replication (adapted from Clark et al., 2019 [69]).

For PSTVd, the type member of Pospiviroidae, the absence of circular monomeric
(−) sense RNA in plants after natural infection supports the asymmetric model of replica-
tion [70,71]. On the other hand, for the ASBVd (the type member of Avsunviroidae) it has
been shown by in vitro studies that both (+) and (−) dimeric RNAs are able to self-cleave
(Figure 2), thus supporting the model of symmetric replication [72,73]. Additionally, it
has been observed in ASBVd-infected avocado that both monomeric circular (+) and (−)
strands occur in multistranded complexes substantiating that ASBVd replication occurs
through two rolling circles [74,75].

Members of the Pospiviriodae replicate in the nucleus [76]. Replication is initiated from
a precise site, thus implying the possibility of existing viroid promoters. The processes
of cleavage and ligation in the Pospiviroidae family are thought to be catalyzed by a host
enzyme similar to RNase III and an RNA ligase that supports the circularization process.
The two enzymes can circularize the viroid by covalent fusion of both 5′ and 3′ termini.
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Researchers have not identified whether chloroplastic RNA ligase is necessary for the
circulation process or whether autocatalysis takes place.

Avsunviroidae replication takes place within chloroplasts. The mode of entry and exit
into the chloroplasts is still debatable as it is not well identified [76].

The accumulation of Avsunviriodae (+) and (−) strands in the chloroplast indicates the
involvement of enzymatic machinery of the chloroplast in the replication cycle; in contrast,
accumulation of the Pospiviroidea RNA strands in the nucleus suggests the involvement of
nuclear RNA polymerase and other cellular enzymes in their replication cycle [21].

5. Movement and Systemic Trafficking of Viroid RNAs

Viroids are subviral pathogens that cause infection in several crop plants, leading
to considerable yield losses [77]. Within the plants, viroid RNA moves to adjacent cells
through plasmodesmata and, via the phloem, to distant sink organs [23]. Viroids have
recently emerged as ideal model systems to study RNA transport within and between
cells [23]. Conventional viroid infection of a host plant comprises a series of coordinated
steps that involve both intracellular movement and intercellular movement.

Mutational experiments of viroids have identified RNA motifs within the viroid
genome that are important for cell-to-cell trafficking. For PSTVd, this consists of 27 RNA
loop motifs separated by short helices [74,78,79]. An RNA motif of PSTVd was found to be
essential for trafficking from bundle-sheath cells into mesophyll cells when the viroid was
exiting in the phloem of young tobacco leaves [26]. Whereas in Nicotiana benthamiana, a
different RNA motif was required for movement of PSTVd from the bundle sheath cells
into the phloem [80]. Furthermore, 11 out of 27 loops of PSTVd RNA motifs are important
for cell-to-cell movement and intercellular spread and these RNA motifs could also be
involved in the trafficking of viral and cellular RNAs [81]. Loop 19 was identified for viroid
movement from palisade to spongy mesophyll cell of N. benthamiana [82], while loop 6 had
previously been shown to be essential for palisade-to-spongy mesophyll trafficking [83].
These studies enlighten the potential functions of plasmodesmata (PD), as different RNA
motifs are required to transit PD at different cell-to-cell interfaces. It was also identified
that different RNA motifs can be used to transit across the same cellular interface.

Various experiments have been performed to identify viroid RNA movement. Mi-
croinjection experiments using infectious RNA transcripts and labeled with the fluorescent
dye TOTO-1 iodide have shown that PSTVd can move rapidly from cell to cell via the
plasmodesmata in tobacco mesophyll cells [84]. It was also observed that PSTVd RNA
accumulates in the nuclei of both the injected cell and neighboring cells. Using dot-blot
hybridization to monitor PSTVd distribution in infected tomato seedlings, it was found
that the movement pattern of PSTVd was indistinguishable from that of most plant viruses
at the whole plant level [84].

6. Seed, Pollen and Insect Transmission of Viroids

Most of the viroids are disseminated through human activities during planting and
through trade in materials of the plants, such as seeds and tissue culture stocks, but some
viroids have evolved specific mechanisms exploiting the plants′ processes of reproduction
and are transmitted via seed and/or pollen [85–87]. Pollen is an important breeding
biological tool of germplasm naturally found to be associated with number of viroids,
known as being pollen-transmitted [88]. Transmission of viroids by pollen can be horizontal,
contaminating a fertilized flower, or can be vertical which is more common when infected
pollen fertilize and infect the resulting seed [89]. Pollen transmitted PSTVd and PCFVd
have been detected in tomato (Solanum lycopersicum) crops [90].

The rate at which infected seeds produce infected plants is called the seed transmission
rate. The lower rate of seed-transmission in PSTVd could be due to the restricted movement
of viroids in floral organs. In Nicotiana benthamiana and Solanum lycopersicum, the accumula-
tion of PSTVd was not observed in the petals, ovary and stamens, but detected only in the
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sepals [91]. In petunia, PSTVd is seed-transmitted either through viroid-carrying pollen
grains or embryo sacs.

Tomato chlorotic dwarf viroid (TCDVd) of the genus Pospiviroid infects Solanum
lycopersicum and is distributed in the ovary and ovules but not in the shoot apical meris-
tem [92,93]. Matsushita et al. [93] reported that TCDVd was found on the surface of the
seed coat.

In Capsicum annuum L. PCFVd, another Pospiviroid, was reported to be seed-transmitted [94].
The presence of the Pospiviroids GYSVd 1 and HSVd were found in Vitis vinifera seedlings [95].

ASBVd is an example of Avsunviroid transmitted from infected trees to the seeds of
the next generation [96–98]. Another species of family Avsunviroidae genus Pelamoviroid,
PLMVd, is not reported to be pollen transmitted and is not seed-transmitted [99–101]. The
only known species of genus Elaviroid in the family Avsunviroidae Eggplant latent viroid
(ELVd), which is reported to be seed-transmitted via eggplants [102,103].

Additionally, insect-transmitted mechanical inoculation of viroids was demonstrated
to be a source of infection through plants via pollen [104]. Insect pests are known for
their tendency to transmit PSTVd to Solanum tuberosum (potato) [105]. Myzus persicae,
commonly known as green peach, aphid-transmitted PSTVd from other plants coinfected
with viruses [106–108]. Apple scar skin viroid (ASSVd) was found to be transmitted by
Trialeurodes vaporariorum (whitefly) from viroid-infected plants to cucumber, bean, tomato
and pea plants [109].

7. Pathogenicity of Viroids

The first complete sequence of the PSTVd was reported by Gross et al. [67]. However,
it was assumed that viroid pathogenicity was due to direct interaction with one or more
of the host cellular constituents and or by indirect interaction via RNA silencing. Viroid
pathogenesis has been shown to be increased due to the interaction with nuclear and
cytoplasmic RNAs which results in the activation of protein kinases. It has been reported
by Hiddinga et al. [110] that a 68-kDa protein extracted from viroid infected tissues is
differentially phosphorylated, and that dsRNA dependent protein kinases similar to their
equivalents in mammalian cells are involved in the regulation of viroid synthesis. In this
case, the binding of protein kinases enhanced viroid pathogenicity. The PSTVd strains
produced different symptoms with only 3–4 nucleotides changed [111] and this change
could alter the protein binding site resulting in abnormal function [112]. Infectious cDNA
clones were first constructed for PSTVd [113] and then for other viroids to determine
their pathogenic determinants [114–116]. It is also noticeable that in some cases, viroid
accumulation to high titers is observed although the plants are asymptomatic or while
on the contrary, other viroids at low titers cause severe symptoms, which represents the
contribution of alternative mechanisms [117].

At the microscopic level, the cytopathogenic effects of viroids on host cellular struc-
tures have been reported. For example, for some viroid infections, there is an abnormal
development of cytoplasmic membranes to form “plasmalemmasomes”, irregular thick-
ening of cell walls [118], chloroplast abnormalities and electron-dense deposits in the
cytoplasm and chloroplasts [55].

In recent studies, various molecular mechanisms are involved in the induction of
viroid diseases and in this context, RNA silencing has a crucial role in viroid pathogenesis.
RNA silencing was first identified in plants and then in other eukaryotes, where it provides
other novel regulatory roles in addition to translation. There is very strong evidence that
the combined action of the structure-specific dicer-like proteins and the sequence-specific
RNA induced silencing complex curb plant RNA and DNA virus infections as well as
viroid infections [36,38,119–122]

8. Viroid-Host Interactions

Being naked, noncoding RNA molecules, viroids induce disease through direct interac-
tion of their genome with some of the host factors. Despite their simplicity in both genome
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and structure, viroids elicit complex responses in their host plants wherein even with minor
changes in their nucleotide sequence, they can induce entirely different symptoms in their
host plants based on the cultivar [35]. In general, all viroids elicit “pathogenesis-related”
[PR] proteins during their infection cycle [37].

Earlier, the PSTVd was shown to associate with several nuclear and histone proteins
of tomato [123]. Initial investigations of the leaf proteins of tomato plants infected with
PSTVd revealed a significant increase in the levels of the PR protein, P14 [124]. Introspection
into the expression of genes involved in stress response, defense response, chloroplast
function and cell wall structure revealed altered expression depending on severity of
PSTVd infection [125,126]. In another study, the wheat germ RNA polymerase II was
shown to interact with terminal loops of the PSTVd [127]. Martínez de Alba et al. [128],
demonstrated that the tomato Virp1 bromodomain-containing protein bound to the PSTVd
71-nucleotide bulged TR hairpin structure and that this association played a significant
role in systemic spread of the PSTVd [129]. The tomato protein, p68 involved with the
ds-RNA-induced protein kinase activity was shown to be differentially phosphorylated
by the PSTVd [130,131]. Moreover, the PSTVd was demonstrated to differentially activate
the p68 protein based on the severity of the viroid strain, thus implicating the p68 protein
in viroid pathogenesis. Interestingly, this differential p68 activation was detected with
strains of PSTVd that varied only by a single two-nucleotide inversion within the lower
pathogenicity domain of the PSTVd which caused minor variations in their secondary
structures. Hammond and Zhao, [132] reported increased transcription of a novel protein
kinase (PKV protein) in tomatoes infected by PSTVd depending on the severity of infection.
Additionally, they also showed down-regulation of genes responsible for chloroplast
biogenesis as well as impacts on the mRNA levels involved in gibberellin biosynthesis and
those of some of the signaling hormones. The PSTVd replicates in the nucleus for which
the replication start site is present within the hairpin loop of the TL region of its secondary
structure and transcription is mediated by the host DNA-dependent RNA polymerase
II [133]. In Arabidopsis thaliana, the transcription factor IIIA [TFIIIA] and the ribosomal
protein L5 [RPL5] have been shown to play a role in PSTVd replication by binding to the
(+) strand of the viroid [134]. Additionally, in Nicotiana benthamiana, the canonical 9-zinc
finger [ZF] Transcription Factor IIIA [TFIIIA-9ZF] as well as its variant TFIIIA-7ZF were
demonstrated to interact with the PSTVd (+) strand while only the latter recognized the
PSTVd (−) strand. Plus, the expression levels of TFIIIA-7ZF directly correlated with viroid
replication [135]. PSTVd reportedly recruits the RPL5 splicing regulator to interact with
the CCR that plays a critical role in its replication [136,137].

The Cucumis sativus Phloem Protein 2 RNA binding protein [CsPP2] was shown to be
associated with long distance movement of HSVd RNA by forming a ribonucleoprotein
complex [138,139]. The CsPP2 was also demonstrated to enhance the efficiency of transfer
of the ASSVd through the Trialeurodes vaporariorum [Tv] Whitefly [109]. To-date, the Virp1
and CsPP2 proteins are the best elucidated factors shown to be involved in translocation of
the Pospiviroidae. Among Avsunviroidae, the ASBVd infection in avocado revealed the
involvement of PARBP33 and PARBP35 chloroplast RNA-binding proteins with the self-
cleavage of ASBVd multimer transcripts mediated through hammerhead ribozyme [140].

Tomato plants infected with CEVd showed changes in levels of proteins involved
in translation [141]. Additionally, CEVd reportedly induced as well as reduced in vitro
phosphorylation of a wide range of proteins when infecting its host plants particularly,
at the beginning of symptom appearance [142]. These changes in phosphorylation were
enhanced in the presence of Mn2+, demonstrating the significance of Mn2+-dependent
protein kinase action on the varied phosphorylation patterns. In this context, Hidding et al.,
1988 [110] reported enhancement in the phosphorylation of a 68 kDa host protein homol-
ogous to the human ds-RNA-dependent protein kinase in tomato plants infected with
PSTVd. Cottilli et al., 2019 [143] demonstrated changes in the translational machinery of
tomato plants infected with the CEVd. They detected the presence of the CEVd within the
ribosomal fractions and the CEVd impacted the polysome profiles, specifically causing the
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accumulation of the 40S ribosomal subunit. The CEVd was also shown to alter ribosome
biogenesis and 18S rRNA maturation. Further, the levels of the ribosomal stress mediator
NAC082 was increased in infected leaves. These changes correlated with the extent of
disease symptoms caused by CEVd. Therefore, these findings showed that in tomato plants
CEVd causes defective ribosome biogenesis and impacts the machinery of translation
resulting in ribosomal stress.

Viroids, even without having any ability to code for proteins, impact the translational
machinery. The CEVd has been demonstrated to cause changes in the accretion of riboso-
mal proteins such as S3, S5 and L10 in tomato plants [141]. It also impacts the levels of the
eEF1A, eEF2 and eIF5A eukaryotic translation factors in these plants. Certain viroids have
been reported to associate with the eIF1A or with the L5 ribosomal protein [134,141,144].
The HSVd elicits alterations in the DNA methylation patterns of the rRNA genes in host
plants and results in increased accumulation of some of the rRNA-derived sRNAs [145].
HSVd caused demethylation of some of the rRNA genes leading to transcriptional reac-
tivation of these genes, suggesting a novel molecular mechanism putatively involved in
viroid pathogenicity. Moreover, it has been shown that the PSTVd induces degradation of
ribosomal protein S3a-like mRNAs in infected tomato plants [146].

Further, an augmented number of differentially regulated genes was observed in peach
plants doubly infected with both PLMVd and Prunus necrotic ringspot virus (PNRSV)
when compared to those of single infections with either of the two viroids. The double
infection also caused a synergistic impact on the peach fruit transcriptome [147]. The
PLMVd (that replicates in chloroplasts) upon infection of Prunus persica (peach) induced
the expression of six potential RNA-binding polypeptides, one of which is the elongation
factor 1-alpha [eEF1A].

9. Impact of Viroid Infection on Gene Silencing and Indirect Influence of Viroids on
Host Genes and miRNAs

Being noncoding RNAs, viroids do not possess silencing suppressor activities found
in viruses [148]. However, several research studies reported the accumulation of 21–
24 nucleotide-long viroid-derived small RNAs [vd-sRNAs] in viroid-infected plants. Gen-
eration of vd-sRNAs impacts disease symptom expression in host plants (Figure 3 [69]).
This induction of vd-sRNAs was observed irrespective of the site of viroid replication and
showed that viroids can induce RNA silencing of host genes [149–151]. This induction of
the vd-sRNA was observed in response to both (+) and (−) strands of the viroid RNA,
although the genomic (+) strands induced more vd-sRNA than the antigenomic (−) strands
as detected by next-generation sequencing [152–154]. The difference in vd-sRNA accu-
mulation could be due to the lesser levels of accumulation of the (−) strands compared
to that of the (+) strands as the former only act as replication intermediates [73,155,156].
However, the PSTVd replication was found to be resistant to RNA silencing and could
be so by virtue of its inherent secondary structure that renders it recalcitrant to RISC-
mediated cleavage. The occurrence of vd-sRNA hot spots in viroids reveals the presence
of RNA silencing susceptible regions within the secondary structure of the viroids [157].
Deep sequencing of the vd-sRNA from tomato plants [cv. Rutgers] infected with PSTVd
showed that most of the vd-sRNAs generated were derived from the PSTVd pathogenicity-
modulating domain [49]. PSTVd mutants unable to target host callose synthase mRNAs
failed to induce disease symptoms. In PSTVd-infected tomatoes, using algorithms for
computer-based target prediction, Adkar-Purushothama and Perreault, 2018 reported a
single vd-sRNA capable of promoting RNA silencing of more than one host gene involved
in defense mechanisms [158].

Equivalent findings were observed with the Avsunviroid PLMVd [159]. Malfitano et al. [116]
reported a PLMVd variant containing a specific 12–13-nt hairpin insertion that causes
albinism in susceptible plants. This sequence-dependent induction of disease symptoms is
associated with the ability of the PLMVd to targetedly cleave the mRNA that codes for the
chloroplast heat-shock protein 90 as evident from deep sequencing, rapid amplification
of cDNA ends (RACE) analysis and semi-quantitative reverse transcription-polymerase
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chain reaction (RT-PCR). This implicates the involvement of RNA silencing in symptom
expression induced by viroids (Figure 4 [2]). Besides, several other studies showed the role
of vd-sRNAs in downregulating host genes [160–162].

Figure 3. Viroids induce disease by generating viroid small RNA (vsRNA) that elicit RNA interference.
(Adapted from Clark et al., 2019 [69]).

Figure 4. Mechanism of viroid symptom induction. (Adapted from Adkar-Purushotama and
Perreault, 2019 [2]).



Int. J. Mol. Sci. 2021, 22, 2795 13 of 25

PSTVd-infected plants compromised for the host RNA-dependent RNA [RdR] polymerase-
6 showed enhanced amounts of both vd-sRNAs and PSTVd [163]. In another study,
RdR6-silenced line of N. benthamiana plants infected with HSVd showed symptoms in
stock plants whereas its scions were bereft of symptoms despite the accumulation of
HSVd [164]. Viroid infection induces the generation of secondary siRNAs capable of
impacting host mRNAs that are not the direct targets of vd-sRNAs. This phenomenon
induced widespread cleavage and destruction of the host plant mRNAs. Earlier studies
reported that as part of an antiviroid defense process, the RdR1 polymerase of the host
tomato plants was triggered upon PSTVd infection [165]. Additionally, host plant miRNAs
involved in leaf development were shown to be accumulated in tomato plants infected
with PSTVd. Tsushima et al. [166] used deep sequencing to demonstrate changes in the
profile of miRNAs involved in functions such as leaf curling, leaf development and disease
resistance in PSTVd-infected tomato plants.

10. Viroid Detection and Identification

Viroids can be identified using various techniques. A popular viroid identification
method uses biological indexing of a specimen plant on a variety of indicator hosts [21].
The indicator host shows diagnostic symptoms if infected by a particular pathogenic viroid.
For better results of biological indexing, a researcher should be able to identify both the
host range and the symptoms produced on the host by a specific viroid. Therefore, prior
knowledge of the indicator host is necessary before attempting to identify any viroid.
Several analytical assays such as RT-PCR, polyacrylamide gel electrophoresis (PAGE) and
RT-Loop mediated isothermal AMPlification (RT-LAMP) have been applied for higher-scale
sample testing and viroid indexing [21]. Nevertheless, these molecular techniques cannot
detect the biological characteristics of the viroids such as their pathogenicity and infectivity.
It is therefore evident that biological assays are required to bridge the gap.

There are levels of complexity in viroid identification that depend on knowledge
of their molecular properties [21]. The traditional methods of viroid detection involve
an assortment of native and denaturing polyacrylamide gel electrophoresis; the method
relies on some properties of the viroid RNA such as its circular form to distinguish it from
other RNAs. These older methods are still applied to identify the presence of new viroids;
however, they cannot be used to identify each specific viroid, since the electrophoretic
movement may be common over a wide range.

Viroid detection can also be performed using molecular hybridization. Owens et al. [167]
were the first to show how this method can be applied for viroid detection. The technique is
useful for detecting viroids from a known sequence; therefore, it relies on the availability of
sequence information and is not suitable for the identification of new viroids. On the other
hand, RT-PCR can be used for detecting several different viroids and has proven useful in
identifying carrier plants that do not show any symptoms. For instance, some researchers
used Pospiviroid primers based on a specific sequence to identify several viroids in a
natural infection of tomato. A few viroids had not been earlier reported to be found in
this crop, and research conducted by Verhoeven et al. [94] demonstrated that this method
could be used for detecting new viroids. Additionally, this method is more reliable than
those earlier discussed and hence is most used for the detection of viroids. However, the
method is extremely sensitive and depends on the knowledge of nucleotide sequence; it is
also affected by even a single mutation, which may limit the number of strains detected.

Among the various plant pathogens, viroids are the pathogenic organisms detected
for the first-time using RT-PCR [168]. Subsequently, various amplification tools such as
real-time RT-PCR [169], RT-PCR- Enzyme-Linked Immuno Sorbent Assay (ELISA) [170],
(RT-LAMP) [171], multiplex bead-based array [172], multiplex RT-PCR [173,174] and in
situ RT-PCR have been applied for the detection and identification of viroids [175].

End point RT-PCR has been applied for viroid detection in one- [176–178] or two-step
reactions [168]. Additionally, polyvalent identification has been employed by multiplex
amplification using a mix of specific sets of primers [173,174,179,180]. Results for this
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method can be observed through gel electrophoresis or by fluorescent [181] and standard
or multiplex RT-PCR-ELISA [170,182]. Boubourakas et al. 2011 [175] adopted a modified
RT-PCR technique using SYBR Green for in situ localization and detection of PLMVd.

Real-time RT-PCR has been used for viroid detection, assessment of plant resistance,
viroid transmission and genotyping [169,183–188]. Additionally, qRT-PCR helps in quanti-
tating the amounts of the concerned viroids.

Notomi et al. 2000 [189] first formulated the Loop-mediated isothermal AMPlifica-
tion (LAMP) technique in which at least four primers specifically capable of recogniz-
ing six distinct nucleotide sequences on the target template under isothermal conditions
(60–65 ◦C) [189,190] were used. Prior to the LAMP amplification procedure, RT reaction
was carried out separately [191,192] or along with the LAMP reaction [193,194] using re-
verse transcriptase enzymes that can withstand 60–65 ◦C reaction temperature. The LAMP
technique is based on the DNA strand-displacement activity of the Bst DNA polymerase
and the reaction components include dNTPs in high amounts, magnesium sulfate and
betaine used to diminish base stacking and to enhance target sequence selectivity [195].
The end products of LAMP are obtained as DNAs that are double-stranded stem-loops
containing many inverted repeats of the target sequence as well as multiple loops forming
cauliflower-like structures [189,190]. Therefore, the RT-LAMP reaction generates high
DNA yield and the increased quantity of the produced by-product magnesium pyrophos-
phate enables direct visualization as a white-colored precipitate in positive samples [194].
Additionally, end point measurements or real-time turbidity assessments can be assayed
at 400 nm [192,193]. Upon gel electrophoresis, the RT-LAMP reaction products appear
ladder-like because of the cauliflower-like structures [196]. Thus, RT-LAMP technique by
virtue of its simplicity, ease of use and power of detection helps in translating research
in the laboratory to the field level. Table 3 lists some of the viroids for which RT-LAMP
procedures have been adopted.

Table 3. Viroid species for which RT-LAMP protocols were developed. (Adapted from Panno et al.
2020 [197]).

Species Acronym Family Genus Reference

Apple scar skin viroid ASSVd Pospiviroidae Apscaviroid [198]

Chrysanthemum chlorotic
mottle viroid CChMVd Avsunviroidae Pelamoviroid [191]

Chrysanthemum stunt viroid CSVd Pospiviroidae Pospiviroid [199]

Coconut cadang-cadang viroid CCCVd Pospiviroidae Cocadviroid [192]

Columnea latent viroid CLVd Pospiviroidae Pospiviroid [200]

Peach latent mosaic viroid PLMVd Avsunviroidae Pelamoviroid [193]

Pepper chat fruit viroid PCFVd Pospiviroidae Pospiviroid [201]

Potato spindle tuber viroid PSTVd Pospiviroidae Pospiviroid [194]

Microarrays serve as an optimal platform for one-step diagnosis of multiple viroid
infections [30]. The numerous viroid nucleotide sequences obtained from public databases
can be used to generate microarrays that enable detection of all of these viroids simultane-
ously. Additionally, related viroids can be identified by their unique hybridization patterns.
Further, microarrays can be used for discovering new viroids by incorporating microarray
elements derived from highly conserved sequences of viroid families, genera or species,
particularly in cases involving plant diseases of unknown etiology.

The advantage of microarrays lies in their ability to detect a wide range of viroids using
just a single test in addition to enabling highly specific oligonucleotide-based identification
and ease of in silico design. Thus, mixed infections due to various viroids as well as
related strains can be identified. However, the main caveat of this method is its complex
and expensive detection process. Microarrays have been used in the identification of
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Pospiviroidae such as Tomato apical stunt viroid (TASVd) in tomato [202,203], PSTVd in
potato [203,204], ASSVd in apples [203] and Citrus dwarfing viroid (CDVd) in citrus [203] as
well as Avsunviroidae such as ASBVd in avocado [203], CChMVd in chrysanthemum [203]
and PLMVd in peach [203].

NGS biotechnologies and bioinformatics were initially used for the detection and anal-
ysis of viroids in 2009 [205]. NGS can provide sequence information on the multitudes of
the viroid-derived sRNAs in infected plant materials. Thus, depending on the abundance
of vd-sRNAs the molecular fragments of the viroid can be assembled. Due to the small
size of the vd-sRNAs (21–24 nucleotides), their sequences can be directly used as primer
sequences in RT-PCR amplification of viroid fragments. Detection of plant infections of
unknown etiology could be attributed to viroids among other plant pathogens. Two new
viroids, the persimmon viroid 2 [206] and GLVd [32] were discovered using NGS. Addition-
ally, the infections of fig and hops trees with the apple dimple fruit viroid (ADFVd) [207]
and CBCVd [208], respectively, were discovered using NGS and this showed their wide
host range. Table 4 lists some of the viroids and their variants detected by NGS techniques.

Table 4. Examples of novel viroids and variants discovered by next-generation sequencing (NGS)
technologies. (Adapted from Hadidi, 2019) [12].

Viroid Description Reference Source

Persimmon viroid-2 A novel apscaviroid Ito et al. 2013 [206]

Grapevine latent viroid A novel apscaviroid Zhang et al. 2014 [32]

Apple dimple fruit viroid A novel variant that naturally
infects fig Chiumenti et al. 2014 [207]

CBCVd

A novel variant that naturally
infects hops

Two novel citrus variants
closely related to hop variants

Jakse et al. 2015 [208]
Wang et al. 2018 [209]

Importantly, NGS has become a powerful tool for viroid detection and amplification
without prior knowledge of the viroid nucleotide sequence. NGS affords a quick, accurate and
sensitive detection technique for identifying viroids affecting several host species and even
detecting infections of woody perennials having low titers of these pathogenic organisms.
Thus, the detection of newer viroids and their variants has become possible while helping to
extend the host range of these viroids. NGS-based diagnosis of viroids has become important
for quarantine and certification schemes in addition to operations aimed at elimination of
viroid contamination from vegetatively propagated plant material [210–213]. This makes NGS
an efficiently powerful tool to control and contain viroid diseases. If the NGS technology
were used in combination with genome engineering methods such as the CRISPR/cas9
system, this will enable better control of these viroids [214–216].

Plant pathology necessitates the practice of Koch’s postulates wherein a given RNA
molecule with the physicochemical characteristics of a viroid can be cloned and properly
assessed in terms of its ability to cause infection upon inoculation and thus determine
its biological activity. Therefore, bioassays will invariably have a pivotal role in viroid
research. It is obvious that the biological and molecular assays when used synergistically
can provide an efficient means for detection, identification and characterization of viroids.

11. Origin and Evolution of Viroids

Viroid evolutionary history was proposed to have started independently and earlier
than the evolution of DNA and protein in the original RNA world [217]. It is a unique
example to study the complex processes of evolution in an extremely simple biological
system where expression of phenotype depends directly on the genotype [218]. Infectious
agents such as RNA viruses are considered to be directly related to viroids and it has been
hypothesized that viroids are the primitive form of RNA viruses [219]. However, there
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is an alternative hypothesis which suggests that viroids originated from either nuclear
RNAs [219], introns [220,221], transposable elements [222] or mitochondrial retroplasmids,
which were dismissed based on investigative evidence. Therefore, as suggested by Di-
ener [223], viroids are better candidates to be considered as “living fossils” of a pre-cellular
RNA world than introns.

Viroids are subject to strong selection pressure to maintain the internal base pairing
of their secondary structure in order to avoid host defense cellular degradation by RNA
silencing or plant nucleases. The secondary structure of the viroid RNA is a classic ex-
ample of an optimal compromise between the essential need for survival against the host
defense mechanism and the requirement to recruit host cellular network for replication
and transfer [14,224].

Wassenegger and his team [225] demonstrated that a single nucleotide change within
the viroid genome can affect its ability to infect the host. This generates a closely resembling
sequence variants of viroids exhibiting different host invading properties. On the other
hand, some of the plants become host to a number of viroids of distinct genera and even
get infected with a mixture of viroids and viruses, which facilitates the swift evolution
of viroids [19]. Experiments of site-directed mutagenesis resulted into different disease
outcomes indicating that when viroids are exposed to selective pressures, extremely rapid
evolution is observed. Under stressful environments for one viroid species, another more
suitable and fit quasispecies with variant nucleotide sequence becomes dominant within a
very short time period. This extreme capability of genome plasticity distinguishes viroids
as the most promptly evolving biological system.

12. Future Perspective and Research

Earlier research was directed towards understanding the roles of the structural/functional
motifs within the viroid responsible for the induction of viroid-associated symptoms. Then,
attention turned towards investigating viroid-host protein interactions. More recently, vi-
roid research has focused on the analysis of the transcriptome of viroid-infected host plants
using RNA-seq and other next-generation sequencing technologies and bioinformatics
analyses [226]. The viroid-derived small RNA (vd-sRNA) discovered in plants infected
with viroids [150] and its role in subverting host gene expression through RNA silencing
have implicated the involvement of the vd-sRNA in the expression of viroid-induced
disease symptoms. This vd-sRNA-mediated sequence-specific modulation of host gene
expression could explain why even a minor sequence change between viroid strains could
elicit a wide array of symptoms in susceptible plant cultivars. This calls for further research
to explain the molecular mechanism(s) behind the extensive genome degradation seen in
the viroid-infected host plants.

Viroids have also been implicated in affecting the host translational machinery. Inves-
tigation of the polysome fractions of tomato plants infected with CEVd or PSTVd have
identified the presence of the viroid molecule within the ribosomal fraction which show the
involvement of viroids in inducing ribosomal stress by direct intervention of the plant trans-
lational machinery [143]. However, which viroid regions are involved in such translational
interference is yet to be identified. Advancements such as deep sequencing of the extracted
polysomes in viroid-infected plants are called for. This could shed further light into our
knowledge of viroid–host interactions and their role in determining viroid pathogenicity.

In vitro molecular modeling using thermodynamic folding-based structure predic-
tions as well as direct visualization of the viroid genome by atomic force microscopy are
increasingly employed to identify the most stable viroid structure occurring within the
cell [227]. This will shed light into the how the mature viroids escape the RNA silencing
machinery of their hosts despite triggering the silencing of the host genes. Evidently,
the past five decades of viroid research have led to better discernment of viroid struc-
ture, molecular biology, pathogenicity and viroid-host interactions. The recent interest
in research on coding and noncoding circular RNAs in mammalian cells [228] and their
respective functions has resulted in implicating the roles of circular RNAs in diseases such
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as cancer in humans. Further introspection into the molecular nature and impact of viroids
could reveal valuable insights into the nature of circular RNAs in systems other than plants.
Thus, viroids despite being minuscule and simple in terms of genomic composition and
structure are far more complex than was originally envisioned.

13. Conclusions

The literature described above demonstrates that viroid research is flourishing and has
uncovered novel methods to characterize various population structures of viroids and how
they undergo replication, movement, plant-to-plant transmission and perform host-specific
interactions. Considering the appearance of new and recombinant viroids, there is a com-
pelling need to evolve more efficient detection and identification techniques on a continual
basis. This will definitely help in the discovery of new intervention techniques to preclude
viroid replication and movement and ultimately quell/control viroid-induced diseases.
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