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INTRODUCTION

Three novel zinc(II) phthalocyanines substituted with one or two 3,4,5-tris(3,6,9-trioxadecoxy)benzoxy group(s) have been
prepared and spectroscopically characterized. These compounds are highly soluble and remain nonaggregated in N,N-
dimethylformamide. Upon excitation, they exhibit a relatively weak fluorescence emission and high efficiency to generate sin-
glet oxygen compared with the unsubstituted zinc(IT) phthalocyanine. These amphiphilic photosensitizers formulated with Cre-
mophor EL are highly photocytotoxic against HT29 human colon adenocarcinoma and HepG2 human hepatocarcinoma cells.
The mono-a-substituted analogue 4 is particularly potent with ICs, values as low as 0.02 yM. The higher photodynamic activity of
this compound can be attributed to its lower aggregation tendency in the culture media as shown by absorption spectroscopy and
higher cellular uptake as suggested by the stronger intracellular fluorescence, resulting in a higher efficiency to generate reactive
oxygen species inside the cells.

Copyright © 2008 Jian-Yong Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

better candidates [4]. Owing to the desirable electronic ab-

Photodynamic therapy (PDT) has emerged as a promising
modality for the treatment of malignant tumors and wet age-
related macular degeneration [1-3]. It is a binary therapy
that involves the combination of visible light and a photosen-
sitizer. Each component is harmless by itself, but in combi-
nation with molecular oxygen, they result in the generation
of reactive oxygen species (ROS) causing oxidative cellular
and tissue damage. This treatment has several potential ad-
vantages including its minimally invasive nature, tolerance
of repeated doses, and high specificity that can be achieved
through precise application of the light with modern fiber-
optic systems and various types of endoscopy [3]. Currently,
only a few porphyrin derivatives including porfimer sodium,
temoporfin, and verteporfin are clinically approved for sys-
temic administration. These compounds, though giving a
positive response in a high percentage of patients, still have
various deficiencies that demand a further development of

sorption and photophysical properties, phthalocyanines are
one of the most promising classes of candidates for this appli-
cation [5]. Over the last few years, we have been interested in
rational modification of this class of functional dyes with the
goal of enhancing their PDT efficiency. Several new series of
silicon(IV) and zinc(II) phthalocyanines have been synthe-
sized and evaluated for their photo-physical and biological
properties; see [6] and the references. As the amphiphilic-
ity of photosensitizers is believed to have a beneficial effect
on their photodynamic activity [7], amphiphilic phthalocya-
nines have been our targets. In this paper, we report the syn-
thesis, photophysical properties, and in vitro photodynamic
activity of three novel zinc(II) phthalocyanines bearing one
or two 3,4,5-tris(3,6,9-trioxadecoxy)benzoxy substituent(s).
Having three or six triethylene glycol chains on one side of
the macrocycle, these compounds are amphiphilic in nature,
exhibiting a high in vitro photocytotoxicity.
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2. MATERIALS AND METHODS
2.1. General

All the reactions were performed under an atmosphere of
nitrogen. Tetrahydrofuran (THF), n-pentanol, dichlorome-
thane, and N, N-dimethylformamide (DMF) were distilled
from sodium benzophenone ketyl, sodium, calcium hydride,
and barium oxide, respectively. Chromatographic purifica-
tions were performed on silica gel (Macherey-Nagel, 70—
230 mesh) columns with the indicated eluents. Size exclusion
chromatography was carried out on Bio-Rad Bio-Beads S-X1
beads (200-400 mesh). All other solvents and reagents were
of reagent grade and used as received. Compounds 1 and 6
were prepared as described [8].

'"H and C{'H} NMR spectra were recorded on a Bruker
DPX 300 spectrometer ('H, 300; 1*C, 75.4 MHz) in CDCl;
or DMSO-dg. Spectra were referenced internally using the
residual solvent ['H: CDCl; (8 7.26); DMSO-dg (8 2.50)] or
solvent [*C: CDCl; (6 77.0); DMSO-dg (8 39.7)] resonances
relative to SiMey. Electrospray ionization (ESI) mass spec-
tra were measured on a Thermo Finnigan MAT 95 XL mass
spectrometer.

UV-Vis and steady-state fluorescence spectra were taken
on a Cary 5G UV-Vis-NIR spectrophotometer and a Hi-
tachi F-4500 spectrofluorometer, respectively. Fluorescence
quantum vyields (®r) were determined by the equation:
(DF(sample) = (Fsample/Fref) (Aref/Asample)(”samplez/nrefz)CDF(ref)
[9], where F, A, and n are the measured fluorescence (area
under the emission peak), the absorbance at the excita-
tion position (610 nm), and the refractive index of the sol-
vent, respectively. The unsubstituted zinc(II) phthalocyanine
(ZnPc) in DMF was used as the reference [®ppery = 0.28]
[10]. To minimize reabsorption of radiation by the ground-
state species, the emission spectra were obtained in very
dilute solutions where the absorbance at 610 nm was less
than 0.03. Singlet oxygen quantum yields (®,) were mea-
sured in DMF by the method of chemical quenching of
1,3-diphenylisobenzofuran (DPBF) using ZnPc as reference
(®Op =0.56) [11].

2.2. Syntheses

2.2.1.  Preparation of 3-[3,4,5-tris(3,6,9-

trioxadecoxy)benzoxylphthalonitrile (2)

To a mixture of 3-nitrophthalonitrile (1.73 g, 10 mmol) and
compound 1 (2.97 g, 5mmol) in DMF (30 mL) was added
anhydrous K;COj3 (6.90 g, 50 mmol). The resulting mixture
was stirred at 80°C for 4 days. The solvent was then evapo-
rated under reduced pressure and the residue was mixed with
CHCI; (60 mL) and water (60 mL). The aqueous layer was
separated and extracted with CHCl3; (60 mL x 3). The com-
bined organic layers was dried over anhydrous MgSQOy, then
evaporated to dryness. The residue was purified by silica-
gel column chromatography using CHCl3/MeOH (60 : 1 v/v)
as eluent to give compound 2 as a colorless liquid (1.41g,
39%). '"H NMR: 6 7.61 (vt, ] = 8.7Hz, 1 H, ArH), 7.37 (d, ]
=7.5Hz, 1H, ArH), 7.25 (d, ] = 7.5Hz, 1 H, ArH), 6.66 (s,
2 H, ArH), 5.17 (s, 2 H, ArCH,), 4.13-4.18 (m, 6 H, CH,),

3.85(t,] = 4.8Hz, 4H, CH;), 3.79 (t, ] = 5.1 Hz, 2 H, CH,),
3.70-3.74 (m, 6 H, CH,), 3.62-3.68 (m, 12 H, CH,), 3.53—
3.57 (m, 6 H, CH;), 3.37 (two partially overlapping s, 9H,
CH3); BC{'H} NMR (DMSO-ds): § 160.9, 152.4, 137.7,
136.0, 130.7, 126.2, 119.3, 116.0, 115.6, 113.9, 107.1, 103.6,
72.0, 71.5, 71.2, 70.2, 70.0, 69.9, 69.8, 69.1, 68.5, 58.2 (some
of the CH, signals are overlapped); MS (ESI): an isotopic
cluster peaking at m/z 743 100%, [M + Na]*; HRMS (ESI):
m/z calcd for C36H5,N,NaOi3[M + Nalt: 743.3362, found
743.3365.

2.2.2. Preparation of 4-[3,4,5-tris(3,6,9-
trioxadecoxy)benzoxy]phthalonitrile (3)

According to the above procedure using 4- instead of 3-
nitrophthalonitrile as a starting material, compound 3 was
obtained as a colorless liquid (1.71g, 47%). 'H NMR
(CDCl3): 8 7.70 (d, ] =8.7Hz, 1 H, ArH), 7.31 (d, ] = 2.4 Hz,
1 H, ArH), 7.22 (dd, ] = 2.4, 8.7Hz, 1 H, ArH), 6.60 (s, 2 H,
ArH), 5.02 (s, 2H, ArCH,), 4.11-4.15 (m, 6 H, CH,), 3.82
(t,J=4.8Hz,4H, CH,),3.76 (t,] =5.1 Hz, 2 H, CH,), 3.68—
3.71 (m, 6 H, CH,), 3.60-3.65 (m, 12 H, CH;), 3.50-3.53 (m,
6 H, CH,), 3.34 (s, 9H, CH3); *C{'H} NMR (CDCl;): §
161.5, 152.9, 138.7, 135.2, 129.7, 120.0, 119.6, 117.3, 115.5,
115.1, 107.5, 107.2, 72.2, 71.8, 71.0, 70.7, 70.6, 70.4, 69.6,
68.9, 58.9 (some of the CH, signals are overlapped); MS
(ESI): an isotopic cluster peaking at m/z 743 100%, [M
+ Na]*™; HRMS (ESI): m/z calcd for CssHs,N,NaO3[M +
Na]*: 743.3362, found 743.3361.

2.2.3.  Preparation of phthalocyanine (4)

A mixture of phthalonitrile 2 (0.26 g, 0.36 mmol), unsub-
stituted phthalonitrile (0.46 g, 3.59 mmol), and Zn(OAc),-
2H,0 (0.22g, 1.00mmol) in n-pentanol (15mL) was
heated to 100°C, then a small amount of 1,8-diazabicy-
clo[5.4.0Jundec-7-ene (DBU) (0.5 mL) was added. The mix-
ture was stirred at 140-150°C for 24 hours After a brief cool-
ing, the volatiles were removed under reduced pressure. The
residue was dissolved in CHCl3 (120 mL), then filtered to
remove part of the unsubstituted zinc(II) phthalocyanine
formed. The filtrate was collected and evaporated to dryness
in vacuo. The residue was purified by silica-gel column chro-
matography using CHCl3/CH3OH (30 : 1 v/v) as eluent, fol-
lowed by size exclusion chromatography using THF as elu-
ent. The crude product was further purified by recrystalliza-
tion from a mixture of THF and hexane (0.11g, 26%). 'H
NMR (CDCl; with a trace amount of pyridine-ds): § 9.41—
9.46 (m, 5H, Pc-H,), 9.16 (d, ] = 7.5Hz, 1 H, Pc-H,), 9.13
(d, ] = 6.9Hz, 1H, Pc-H,), 8.07-8.15 (m, 7 H, Pc-Hg), 7.69
(d, J = 7.8 Hz, 1 H, Pc-Hp), 7.30 (s, 2H, ArH), 5.80 (s, 2 H,
ArCH,), 4.31 (t, J = 5.1 Hz, 2H, CH,), 4.19 (t, ] = 5.1 Hz,
4H, CH;), 3.90 (t, ] = 5.1 Hz, 2H, CH;), 3.78-3.82 (m, 2H,
CH,), 3.66-3.75 (m, 8 H, CH,), 3.55-3.59 (m, 6 H, CH,),
3.47-3.51 (m, 8 H, CH,), 3.38-3.41 (m, 7 H, CH, and CH3;),
3.24 (s, 6H, CH;); BC{'H} NMR (DMSO-d¢): & 155.6,
152.7, 152.6, 152.3, 152.2, 140.3, 138.4, 137.9, 137.7, 137.6,
133.5, 130.6, 129.1, 125.3, 122.5, 122.4, 122.1, 115.3, 114.0,
107.8, 72.3, 71.6, 71.5, 71.0, 70.2, 70.0, 69.9, 69.8, 69.3, 68.8,
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58.3, 58.2 (some of the signals are overlapped); MS (ESI):
an isotopic cluster peaking at m/z 1191 100%, [M + Nal™;
HRMS (ESI) m/z calcd for C60H64N8Na013Zn [M + Na]*:
1191.3777, found 1191.3783.

2.2.4. Preparation of phthalocyanine (5)

According to the above procedure, phthalonitrile 3 (0.26 g,
0.36 mmol) was treated with unsubstituted phthaloni-
trile (0.46g, 3.59mmol) and Zn(OAc),-2H,O (0.22g,
1.00 mmol) to give phthalocyanine 5 as a blue solid (0.09 g,
21%). 'H NMR (CDCl; with a trace amount of pyridine-ds):
d 9.20-9.35 (m, 6 H, Pc-H,), 9.05 (d, J] = 7.8 Hz, 1H, Pc-
H,), 8.66 (s, 1 H, Pc-H,), 8.06-8.12 (m, 6 H, Pc-Hg), 7.62
(d, J = 8.4Hz, 1 H, Pc-Hg), 6.99 (s, 2 H, ArH), 5.46 (s, 2H,
ArCH,), 4.33 (t, ] = 4.8 Hz, 4H, CH,), 4.24 (t, ] = 5.1 Hz,
2H, CH;), 3.94 (t,] =4.8 Hz, 4 H, CH,), 3.86 (t, ] = 4.8 Hz,
2H, CH,), 3.76-3.80 (m, 6 H, CH,), 3.62-3.71 (m, 12H,
CH,), 3.53-3.57 (m, 6 H, CH;), 3.38 (s, 3H, CH3), 3.36 (s,
6 H, CH3); BC{'H} NMR (DMSO-dg): § 159.9, 152.6, 152.4,
152.3, 152.2, 152.0, 151.7, 151.6, 139.5, 137.8, 137.5, 132.7,
130.7, 129.0, 128.9, 123.0, 122.2, 117.8, 107.2, 105.6, 72.1,
71.5,70.3,70.1, 70.0, 69.9, 69.4, 68.8, 58.3, 55.1 (some of the
signals are overlapped); MS (ESI): an isotopic cluster peak-
ing at m/z 1191 95%, [M + Na]™; HRMS (ESI): m/z calcd for
CeoHgsNgNaO;37Zn [M + Na]*: 1191.3777, found 1191.3771.

2.2.5. Preparation of 3,6-bis[3,4,5-tris(3,6,9-
trioxadecoxy)benzoxylphthalonitrile (7)

A mixture of compound 6 (2.06 g, 3.36 mmol), 2,3-dicyan-
ohydroquinone (0.27 g, 1.69 mmol), and K,CO; (1.17g,
8.47mmol) in DMF (10mL) was stirred at 100°C for
24 hours The volatiles were then removed under reduced
pressure. The residue was mixed with water (50 mL) and
the mixture was extracted with CHCl; (50mL x 3). The
combined organic extracts was dried over anhydrous MgSO4
and evaporated under reduced pressure. The residue was
then purified by silica-gel column chromatography using
CHCI3/MeOH (20:1v/v) as eluent to give the product as
a pale yellow transparent liquid (1.95g, 88%). 'H NMR
(CDCl3): 6 7.13 (s, 2H, ArH), 6.64 (s, 4H, ArH), 5.07 (s,
4H, ArCH,), 4.12-4.17 (m, 12H, CH,), 3.84 (t, ] = 4.8 Hz,
8H, CH,),3.78 (t,] =5.1 Hz, 4 H, CH,), 3.71-3.74 (m, 12 H,
CH,), 3.62-3.67 (m, 24 H, CH,), 3.52-3.57 (m, 12 H, CH,),
3.37 (two partially overlapping s, 18 H, CH3); *C{'H} NMR
(CDCl3): § 154.7, 152.8, 138.2, 130.3, 119.4, 112.9, 106.4,
105.7,72.2,71.7,71.6, 70.6, 70.5, 70.3, 69.5, 68.7, 58.8 (some
of the CH, signals are overlapped); MS (ESI): an isotopic
cluster peaking at m/z 1336 100%, [M + Na]*; HRMS (ESI):
m/z calcd for CgyHi9oN2NaOye [M + Na]*t: 1335.6457, found
1335.6462.

2.2.6. Preparation of phthalocyanine (8)

According to the procedure described for 4, phthaloni-
trile 7 (0.50 g, 0.38 mmol) was treated with unsubstituted
phthalonitrile (0.49g, 3.82mmol) and Zn(OAc),-2H,0
(0.23 g, 1.05 mmol) to give phthalocyanine 8 as a blue-green

oil (54 mg, 8%). '"H NMR (CDCl;): § 9.43-9.47 (m, 4 H, Pc-
H,), 9.20 (d, ] = 7.5Hz, 2H, Pc-H,), 8.03-8.15 (m, 6 H,
Pc-Hg), 7.68 (s, 2H, Pc-Hp), 7.37 (s, 4 H, ArH), 5.90 (s,
4 H, ArCH,), 4.05 (t, ] = 5.1 Hz, 4 H, CH,), 3.80 (t, ] =
5.1 Hz, 8H, CH,), 3.70 (t, ] = 5.1 Hz, 4H, CH,), 3.61-3.65
(m, 4 H, CH;), 3.55-3.58 (m, 8 H, CH;), 3.44-3.48 (m, 12 H,
CH,), 3.34-3.37 (m, 12 H, CH,), 3.30 (s, 6 H, CH3), 3.18—
3.21 (m, 8 H, CH,), 3.12 (s, 12 H, CH,), 2.90 (s, 12 H, CH3);
BC{'H} NMR (CDCl;): 153.6, 153.4, 153.3, 152.5, 152.2,
150.2, 138.6, 138.3, 138.1, 137.5, 133.6, 129.0, 128.8, 128.6,
128.5,122.6, 122.3, 122.1, 116.5, 107.0, 72.3, 72.2, 71.8, 71.3,
70.5, 70.4, 69.9, 69.7, 69.2, 68.1, 58.8, 58.4 (some of the
CH,; signals are overlapped); MS (ESI): an isotopic cluster
peaking at m/z 1784 20%, [M + Na]*; HRMS (ESI): m/z
calcd for CggH112NgNaO»Zn [M + Na]*: 1783.6871, found
1783.6862.

2.3. Invitro studies

2.3.1.  Celllines and culture conditions

The HT29 human colorectal carcinoma cells (from ATCC,
no. HTB-38) were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) (Invitrogen, cat no. 10313-021) supple-
mented with fetal calf serum (10%), penicillin-streptomycin
(100 units mL™! and 100 mgmL~!, resp.), L-glutamine
(2mM), and transferrin (10 mgmL™!). The HepG2 human
hepatocarcinoma cells (from ATCC, no. HB-8065) were
maintained in RPMI medium 1640 (Invitrogen, cat no.
23400-021) supplemented with fetal calf serum (10%) and
penicillin-streptomycin (100 units mL~! and 100 mgmL™!,
resp.). Approximately 3 x 10* (for HT29) or 4 x 10* (for
HepG2) cells per well in these media were inoculated in 96-
multiwell plates and incubated overnight at 37°C in a humid-
ified 5% CO, atmosphere.

2.3.2.  Photocytotoxicity assay

Phthalocyanines 4, 5, and 8 were first dissolved in DMF to
give 1.5 mM solutions, which were diluted to 80 yM with an
aqueous solution of Cremophor EL (Sigma, 0.47 g in 100 mL
of water). The solutions were filtered with a 0.2 ym filter, then
diluted with the culture medium to appropriate concentra-
tions (two-fold dilutions from 8 uM). The cells, after being
rinsed with phosphate buffered saline (PBS), were incubated
with 100 L of these phthalocyanine solutions for 2 hours at
37°C under 5% CO,. The cells were then rinsed again with
PBS and refed with 100 4L of the culture medium before
being illuminated at ambient temperature. The light source
consisted of a 300 W halogen lamp, a water tank for cooling,
and a color glass filter (Newport) cut-on 610 nm. The flu-
ence rate (A > 610 nm) was 40 mW c¢cm~2. An illumination of
20 minutes led to a total fluence of 48 ] cm™2.

Cell viability was determined by means of the colorimet-
ric MTT assay [12]. After illumination, the cells were incu-
bated at 37°C under 5% CO, overnight. An MTT (Sigma)
solution in PBS (3 mgmL™!, 50 uL) was added to each well
followed by incubation for 2 hours under the same environ-
ment. A solution of sodium dodecyl sulfate (SDS, Sigma)
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(10% by weight, 504L) was then added to each well. The
plate was incubated in an oven at 60°C for 30 minutes, then
80 uL of iso-propanol was added to each well. The plate was
agitated on a Bio-Rad microplate reader at ambient temper-
ature for 10 sec before the absorbance at 540 nm at each well
was taken. The average absorbance of the blank wells, which
did not contain the cells, was subtracted from the readings
of the other wells. The cell viability was then determined by
the equation: % Viability = [2(Ai/Acontrol X 100)]/n, where
A; is the absorbance of the ith data (i = 1,2,...,n), Acontrol
is the average absorbance of the control wells, in which the
phthalocyanine was absent, and # (= 4) is the number of the
data points.

2.3.3.  Fluorescence microscopic studies

For the detection of the intracellular fluorescence intensity
of compounds 4, 5, and 8, approximately 1.2 X 10° HT29
cells in the culture medium (2 mL) were seeded on a cov-
erslip (diameter = 25 mm) and incubated overnight at 37°C
under 5% CO,. The medium was removed, then the cells
were incubated with 2mL of an 8 yuM phthalocyanine dilu-
tion in the medium for 2 h under the same conditions. The
cells were then rinsed with PBS and viewed with an Olym-
pus IX 70 inverted microscope. The excitation light source
(at 630 nm) was provided by a multiwavelength illuminator
(Polychrome IV, TILL Photonics). The emitted fluorescence
(>660 nm) was collected using a digital cooled CCD camera
(Quantix, Photometrics). Images were digitalized and ana-
lyzed using MetaFluor V.4.6 (Universal Imaging).

3. RESULTS AND DISCUSSION
3.1. Molecular design and chemical synthesis

Zinc(II) phthalocyanines are good candidates for PDT ap-
plication. In addition to their relatively high stability, the
closed-shell zinc(II) center imparts desirable photophysical
characteristics to the macrocycles [13]. Introduction of sub-
stituents at the peripheral positions can also tailor the prop-
erties of the macrocycles such as their solubility in biologi-
cal media, aggregation behavior, and targeting properties. As
a result, zinc(II) phthalocyanines have received considerable
attention as efficient photosensitizers [5]. We describe herein
three novel zinc(II) phthalocyanines (compounds 4, 5, and
8) which contain the bulky and hydrophilic 3,4,5-tris(3,6,9-
trioxadecoxy)benzoxy moiety. Having one or two of these
substituents, the 7-7 stacking tendency is reduced and the
macrocycles become amphiphilic in nature. These properties
should be advantageous for singlet oxygen generation and
cellular uptake, by which the photodynamic activity can be
enhanced. The relatively rare 1,4-disubstituted phthalocya-
nine 8 also has a longer Q-band maximum compared with
the a- and S-monosubstituted counterparts, which is also an
advantage that can increase the light penetration depth [14].

Scheme 1 shows the synthetic route used to prepare the
monosubstituted phthalocyanines 4 and 5. Reaction of ben-
zyl alcohol 1 with 3- or 4-nitrophthalonitrile in the pres-
ence of K,CO3 in DMF gave the substituted phthalonitrile

2 or 3, respectively. These compounds then underwent a
mixed cyclization with an excess of the unsubstituted ph-
thalonitrile (10 equiv.) in the presence of Zn(OAc),-2H,0
and DBU in n-pentanol to afford the corresponding “3+1”
products 4 and 5. These reactions also produced the unsub-
stituted ZnPc as a major side-product, which could be sep-
arated readily by filtration and chromatography as a result
of its lower solubility and slower mobility in the silica gel
column. During the chromatographic purification, a trace
amount of some other blue products was also separated,
but no attempt was made to characterize these minor side-
products. Similarly, treatment of 2,3-dicyanohydroquinone
with benzyl chloride 6 and K,COj afforded dinitrile 7, which
was then cyclized with the unsubstituted phthalonitrile in
the presence of Zn(OAc),-2H,0 to give 8 (Scheme 2). All
these zinc(II) phthalocyanines were soluble in common or-
ganic solvents and possessed high stability, which facilitated
the purification by silica-gel column chromatography, size
exclusion chromatography, followed by recrystallization.

3.2. Spectroscopic characterization and
photophysical properties

All the new compounds were fully characterized with var-
ious spectroscopic methods. The NMR signals for the ph-
thalocyanine ring protons of 4, 5, and 8 are very distinct in
CDClI; (with a trace amount of pyridine-ds for the former
two complexes to reduce their aggregation), which provide
a useful means for characterization. As shown in Figure 1,
the 'H NMR spectrum of the a-substituted phthalocyanine
4 shows a multiplet at § 9.41-9.46 (5 H) and two doublets at
0 9.16 (1H) and 9.13 (1 H) for the 7 phthalocyanine « pro-
tons. The 8 B protons resonate as a multiplet at § 8.07-8.15
(7H) and a doublet at § 7.69 (1 H). For the $-analogue 5, a
multiplet at § 9.20-9.35 (6 H), a doublet at § 9.05 (1 H), and
a singlet at § 8.66 (1 H) are seen for the 8 phthalocyanine «
protons, while the signals for the 7 8 protons appear as a mul-
tiplet at § 8.06-8.12 (6 H) and a doublet at § 7.62 (1 H). Ph-
thalocyanine 8 has a C,, symmetry. The doublet at § 9.20 can
be assigned to the two phthalocyanine « ring protons close to
the benzoxy groups, while the multiplet at § 9.43-9.47 is due
to the remaining four « protons. The singlet at § 7.68 can be
readily assigned to the two f3 protons adjacent to the benzoxy
groups, while the multiplet at § 8.03—8.15 is attributed to the
remaining six f protons.

The *C NMR data of these compounds were also in ac-
cord with the structures though some of the phthalocyanine
ring carbon signals (for 4 and 5) and the chain CH, signals
were overlapped. For compound 8, a total of 20 signals were
observed in the aromatic region (§ 107.0-153.6) for the 16
phthalocyanine and 4 benzene ring carbons, which is consis-
tent with the C,, symmetry.

The ESI mass spectra of these phthalocyanines were also
recorded. The molecular ion [M + Na]* isotopic cluster
could be detected in all the cases. The isotopic distribution
was in good agreement with the corresponding simulated
pattern. The identity of these species was also confirmed by
accurate mass measurements.
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The electronic absorption and basic photophysical data
of phthalocyanines 4, 5, and 8 were measured in DMF and
are summarized in Table 1. All the three compounds gave
very similar UV-Vis spectra, which are typical for nonaggre-
gated phthalocyanines. The spectrum of compound 5, for

example, showed the B-band at 344 nm, a vibronic band at
606 nm, and an intense and sharp Q-band at 672 nm, which
strictly followed the Lambert Beer’s law (Figure 2). Upon ex-
citation at 610 nm, the compound is emitted at 677 nm with
a fluorescence quantum yield of 0.19. Substitution at the «
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FIGURE 1: The aromatic region of the 'H NMR spectra of 4, 5, and
8 in CDCl;; * indicates the trace amount of pyridine-ds added for
the former two complexes.

TaBLE 1: Electronic absorption and photophysical data for 4, 5, and
8 in DMFE

Compound Amax (nm) (log ) Aem (nm)? OpP @, €
4 334 (4.69), 611 (4.58), 677 (5.40) 681  0.20 0.60
5 344 (4.79), 606 (4.62), 672 (5.39) 677  0.19 0.62
8 337 (4.73), 621 (4.55), 690 (5.31) 696 0.14 0.84

3Excited at 610 nm.

bUsing unsubstituted zinc(IT) phthalocyanine (ZnPc) in DMF as the refer-
ence (O = 0.28).

¢Using ZnPc as the reference (®p = 0.56 in DMF).

position (compound 4) slightly shifted the Q-band and fluo-
rescence emission to the red by 4-5 nm. Introduction of an
additional a-substituent (compound 8) further shifted the
Q-band to 690 nm and the fluorescence emission to 696 nm.

The singlet oxygen quantum yields (®,) of these com-
pounds were also determined using 1,3-diphenylisobe-
nzofuran (DPBF) as the scavenger. The concentration of the
quencher was monitored spectroscopically at 411 nm along
with time, from which the values of ®, could be determined
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FiGure 2: UV-Vis spectra of 5 in DME The inset plots the Q-band
absorbance versus the concentration of 5.
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FiGure 3: Comparison of the rates of decay of DPBF in DME, as
monitored spectroscopically at 411 nm, using phthalocyanines 4, 5,
and 8 as the photosensitizers and ZnPc as the reference.

by the method described previously [11]. These data are also
summarized in Table 1. Figure 3 compares the rates of de-
cay of DPBF using these compounds and ZnPc as the pho-
tosensitizers. It can be seen that all these phthalocyanines
are efficient singlet oxygen generators, particularly the 1,4-
disubstituted analogue 8, of which the value of ®, (0.84) is
significantly higher than that of ZnPc (0.56), which was used
as the reference.

3.3. Invitro photodynamic activity

The in vitro photodynamic activity of photosensitizers 4, 5,
and 8 in Cremophor EL emulsions was investigated against
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FIGURE 4: Effects of 4 (triangles), 5 (stars), and 8 (squares) on (a) HT29 and (b) HepG2 in the absence (closed symbols) and presence (open
symbols) of light (A > 610 nm, 40 mW cm 2, 48 ] cm?2). Data are expressed as mean value = SEM of three independent experiments, each

performed in quadruplicate.
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FiGure 5: Electronic absorption spectra of 4 (solid line), 5 (dashed
line), and 8 (dotted line), formulated with Cremophor EL, in the
DMEM culture medium (all at 8 uM).

(b)

F1GURE 6: Fluorescence microscopic images of HT29 tumor cells af-
ter incubation with (a) 4, (b) 5, and (c) 8 at a concentration of 8 yM
for 2 hours.

TaBLE 2: Comparison of the ICsy values® of phthalocyanines 4, 5,
and 8 against HT29 and HepG2.

Compound For HT29 (uM) For HepG2 (uM)
4 0.02 0.03
5 0.36 0.39
8 0.15 0.49

aDefined as the dye concentration required to kill 50% of the cells.

two different cell lines, namely, HT29 human colorectal car-
cinoma and HepG2 human hepatocarcinoma cells. As shown
in Figure 4, the three compounds are essentially noncyto-
toxic in the absence of light, but exhibit a very high photo-
cytotoxicity. The corresponding ICsq values are summarized
in Table 2. It can be seen that all these compounds are highly
potent and the effects on HT29 are greater than those on
HepG2. The phthalocyanine 4 is particularly potent with the
ICsg values down to 0.02 yuM. About 1 uM of the dye is suffi-
cient to kill 90% of the cells.

It is worth noting that although phthalocyanine 4 ex-
hibits a relatively lower singlet oxygen quantum yield than
the other two analogues in DMF (Table 1), its photocytotoxi-
city is the highest among the three photosensitizers (Table 2).
To account for the results, the absorption spectra of these
compounds in the culture media were recorded. As shown in
Figure 5, the Q-band for compound 4 in the DMEM medium
(for HT29) remains very sharp and intense, while those for
5 and 8 are weaker and broadened. Very similar results were
obtained in the RPMI medium (for HepG2). This is a strong
indication that compound 4 is significantly less aggregated in
these media, which should lead to a higher photosensitizing
efficiency.

To further explain the photocytotoxicity results, fluo-
rescence microscopic studies were also carried out to shed
light on the cellular uptake of photosensitizers 4, 5, and 8.
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After incubation with these compounds (formulated with
Cremophor EL) for 2 hours and upon excitation at 630 nm,
the HT29 cells showed intracellular fluorescence throughout
the cytoplasm as shown in Figure 6, indicating that there was
a substantial uptake of the dyes. The qualitative fluorescence
intensity follows the order 4 > 5 > 8, suggesting that the
a-substituted phthalocyanine 4 also has the highest uptake
among the three photosensitizers. This may also account for
the highest photocytotoxicity of this compound.

In conclusion, we have prepared and characterized three
novel “3+1” zinc(II) phthalocyanines substituted with one or
two 3,4,5-tris(3,6,9-trioxadecoxy)benzoxy group(s). These
compounds exhibit a high photocytotoxicity against HT29
and HepG2 cells with ICsy values down to 0.02uM. The
mono-a-substituted phthalocyanine 4 is more potent than
the other two analogues, which can be partly explained by its
lower aggregation tendency in the culture media and higher
cellular uptake as shown by absorption spectroscopy and flu-
orescence microscopy, respectively.
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