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Synaptic protein levels altered in vascular dementia

Introduction: Cerebral ischaemia is the defining
pathophysiological abnormality in most forms of vascular
dementia (VAD), but the pathogenesis of the dementia
remains poorly understood. In Alzheimer’s disease (AD),
there is early loss of synaptic proteins, but these have been
little studied in VAD. Materials and Methods: We measured
synaptophysin, postsynaptic density protein 95 (PSD-95),
drebrin, synaptosomal-associated protein 25 (SNAP-25)
and vascular endothelial growth factor (VEGF) by enzyme-
linked immunosorbent assays in superior temporal cortex
from 11 patients with VAD and, initially, 11 non-dementia
controls. We corrected for neuronal content by measure-
ment of neuron-specific enolase. A further 11 controls
were subsequently used in a validation study. Simulation of

post-mortem delay found that PSD-95 was stable at 4°C
but declined slightly at RT. SNAP-25 and drebrin showed
good post-mortem stability. Previous studies had shown
good post-mortem preservation of synaptophysin and
VEGF. Results: The VAD cases had lower synaptophysin
(but P > 0.05 in initial study), significantly lower SNAP-25
(P = 0.024) and significantly higher drebrin (P = 0.020).
On comparison with the second control group, the reduc-
tion in synaptophysin was significant (P = 0.008), and the
other results were confirmed. Conclusion: There is prob-
ably a reduction in presynaptic proteins in the temporal
cortex in VAD, although not as marked as in AD. In VAD,
there is also an increase in drebrin, which may be a
response to reduced synaptic input.

Keywords: apolipoproteins E, DLG4 protein human, drebrins, SNAP 25 protein human, synaptophysin, vascular
dementia

Introduction

Although it is a major cause of cognitive decline, with an
age-adjusted incidence estimated at 11–13 per 1000 per
year [1–3], vascular dementia (VAD) has been studied
biochemically to a much lesser extent than have other
types of dementia. This is partly because it has proven
difficult to define in research terms [4,5]. Ongoing Delphi
consensus studies (VICCCS and VCIN) aim to produce a
single set of clinical and neuropathological criteria
which can be used in research [6]. Nevertheless, clini-
cians are able to use the ICD-10 or DSM criteria [7,8] to
make a clinical diagnosis of dementia which is consid-

ered to result from ischaemic damage − sometimes acute
and widespread (e.g. poststroke dementia) but more
usually the cumulative effect of multiple, smaller, tempo-
rally and topographically dispersed ischaemic events
[5,9]. Clinically, a distinction is sometimes drawn
between the gradual cognitive decline of Alzheimer’s
disease (AD) and the stepwise disease progression of
VAD, each ‘step’ presumed to be a result of a separate
infarct. In VAD, episodic memory impairment is often ini-
tially less prominent than in AD, with attention and
executive function being more severely impaired [9].

In recent years, it has become increasingly recognized
that while VAD and AD can be separate disease states,
there are many patients in whom the two coexist. The two
diseases also share several risk factors [1,3,10]. There is
evidence that reduced cerebral blood flow may contribute
to the progression of AD [11–15] and conversely that the
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accumulation of Aβ in AD not only contributes directly to
small vessel disease (SVD) through the development of
cerebral amyloid angiopathy but also reduces blood flow
by enhancing vasoconstriction [16–20].

Synaptic loss was recognized nearly 30 years ago as a
major neuropathological abnormality in AD [21]. It is
thought that this loss reflects a combination of neuronal
loss and synaptic degeneration. In AD, this process is pre-
dominantly presynaptic [22]. A recent proteomics study
which looked at the synaptosome in AD vs. controls
found differences in expression of a wide range of pro-
teins involved in processes such as vesicular trafficking,
synapse structure and signal transduction [23].

In contrast to AD, synaptic proteins have been little
studied in VAD. Two very small previous studies of forms
of VAD found a similar reduction in synaptophysin to
that in AD [24,25]. SNAP-25, PSD-95 and drebrin have
not previously been studied in VAD. We have addressed
this by measuring concentrations of synaptophysin,
SNAP-25, PSD-95 and drebrin in post-mortem superior
temporal cortex from patients with VAD and non-
demented controls. The proteins under investigation were
chosen to provide information on both pre and postsyn-
aptic integrity.

Synaptophysin is a 313-amino acid, 38-kDa presy-
naptic vesicle-specific protein [26,27] which can be used
as a marker of synaptic content. It is not specific to any
type of neuron [27]. Synaptophysin is significantly
reduced in AD, with some evidence to suggest that it is
affected by APOE genotype [28–31]. Synaptophysin con-
centration has been shown to correlate with the level of
cognitive impairment in AD [32–34]. A reduction was
also demonstrated in post-mortem brain from individuals
with Braak tangle stages of III and above but no clinical
dementia prior to death [33]. Synaptosomal-associated
protein 25 (SNAP-25) is part of the SNARE complex
involved in synaptic vesicle membrane docking and
fusion. It was shown to be significantly decreased in AD
brains and in frontotemporal dementia [26,28,35–37].

Postsynaptic density protein 95 (PSD-95) is a 724-
amino-acid postsynaptic protein [26]. It is a member of
the membrane-associated guanylate cyclase family [38],
interacts with glutamate receptors (NMDA type) and is
required for the synaptic plasticity associated with these
receptors [26]. It is also located in dendritic spines and is
important for spine stability [39]. PSD-95 was found to be
reduced significantly in AD and minimal cognitive impair-
ment (MCI, considered to be a possible AD prodrome)

[29,40,41]. Drebrin, a 649-amino acid protein, subject to
post-translational modification [26] and involved in
dendritic spine morphogenesis, is also significantly
reduced in AD and MCI [31,42–44].

Vascular endothelial growth factor A (VEGF) is a
cytokine that is predominantly expressed by astrocytes in
the human brain and plays a pivotal role in hypoxia-
induced angiogenesis [45]. It was previously reported that
only trace levels are found in healthy human brain,
although it is known to be produced constitutively and
may play a role in hippocampal neurogenesis [45–47].
The CSF level of VEGF was found to be raised in AD and
VAD [46].

We hypothesized that synaptic proteins which have
been shown to be reduced in post-mortem brain samples
in AD would also be reduced in VAD, with a reduction in
synaptophysin as our primary outcome measure. We
chose to study tissue from the superior temporal gyrus as
this region of cortex has reduced synaptic proteins in AD,
and infarcts have been shown to be present in the tempo-
ral lobe in >90% of patients with VAD [48].

Materials and methods

Case selection

Brain tissue was obtained from 11 VAD cases and, initially,
11 controls, as shown in Table 1. Further information is
available in supplementary table 1. Tissue was supplied by
the South West Dementia Brain Bank (SWDBB), University
of Bristol; the Sudden Death Brain and Tissue Bank
(SDBTB), University of Edinburgh; and the London
Neurodegenerative Diseases Tissue Bank, King’s College
London (LNDTB). The cases had a mean post-mortem
delay which was almost double that of the controls (64.5 h
vs. 34.5 h, P = 0.007). All work was approved under tissue
bank generic ethical approval for peer-reviewed projects.

All cases had VAD which met DSM-IV criteria, a Braak
tangle stage of III or less, no more than sparse neuritic
plaques, neuropathological evidence of multiple infarcts
or regions of ischaemic damage, moderate to severe ath-
erosclerosis and/or arteriosclerosis, and an absence of
histopathological evidence of other disease processes
likely to cause dementia [49,50]. The controls had no evi-
dence of dementia at the time of their death and fulfilled
most of the same neuropathological criteria as the cases
apart from a lack of moderate or severe atherosclerosis or
arteriosclerosis, detectable infarcts, or other ischaemic
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lesions. This work was part of a larger study examining
synaptic markers in controls aged 75 and under; so, all
controls were aged 75 or less. For this reason, cases and
controls were not matched exactly for age in the first part
of the study.

To validate our initial findings, a second control group
was used which was much more closely matched with the
VAD cases for age, as shown in Table 2. All of the second
set of control samples were provided by the SWDBB. To
ensure comparability between cases and controls in the
validation assays, further aliquots of brain homogenate
from the VAD cases were included on the same microplates
as the second set of controls.

Brain tissue

Tissue from the superior temporal gyrus (Brodmann area
21/22) was dissected from brains that had been removed
from patients as soon as practicably possible after death
and then frozen at −80°C. In all bar 5 instances, this was
within 72 h of death. The tissue provided by the SDBTB
and LNDTB had already been dissected. For each sample,
200 mg of tissue was homogenized in 1 ml chilled 1% SDS
lysis buffer in a Precellys homogenizer (2 × 15 s at
6000 g) with 6–10 zirconia beads in a 2-ml screw cap
homogenate tube. The homogenates were then centri-
fuged at 13 000 g for 15 min at 4°C. The supernatants

Table 1. Individual-level characteristics of the samples included in this study

ID Case/control Sex
Age at
death PMD (h)

Braak
stage Clinicopathological diagnosis

SVD score
(temporal)

1 Case M 81 66 0 VAD 3
2 Case M 83 24 II VAD 2
3 Case F 80 70 II VAD 0
4 Case M 72 41 III VAD 2
5 Case F 77 85 I VAD 0
6 Case F 79 88 II VAD 3
7 Case M 67 54 III VAD 2
8 Case M 76 40 III VAD 3
9 Case M 79 56 II VAD 1

10 Case M 79 77 I VAD 3
11 Case M 82 109 N/A VAD, DLBD 2
12 Control M 73 51 0 Asymptomatic small vessel disease N/A
13 Control M 74 44 0 Normal N/A
14 Control M 75 47 II Small vessel disease N/A
15 Control F 72 30 III Small vessel disease N/A
16 Control M 73 23 0 Normal N/A
17 Control M 74 22.5 I Amyloid angiopathy N/A
18 Control M 75 48 II Normal 1
19 Control M 75 6 III Normal N/A
20 Control M 73 35 III Normal 0
21 Control F 74 39.5 I Normal 1
22 Control M 73 33 I Normal 1
23 Control (2) M 82 3 II Normal 1
24 Control (2) F 78 24 II Normal 1
25 Control (2) M 69 66 II Normal 1
26 Control (2) M 72 42 I Normal 0
27 Control (2) M 79 24 N/A Normal N/A
28 Control (2) F 76 106 II Normal 1
29 Control (2) F 76 12 N/A Normal N/A
30 Control (2) M 78 48 II Normal 1
31 Control (2) M 76 23 II Normal 1
32 Control (2) M 78 12 II Normal 0
33 Control (2) M 81 3 II Normal 0

Small vessel disease (SVD) scores were not available for samples which were provided by the Sudden Death Brain and Tissue Bank and the
London Neurodegenerative Diseases Tissue Bank. F, female; M, male; N/A, not available; PMD, post-mortem delay; VAD, vascular dementia.
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were kept on ice and aliquoted into 25-μl aliquots and
stored at −80°C until required for analysis.

SVD scoring of paraffin-fixed temporal sections had
already been performed on a 4-point scale, as described in
detail by Barker et al. [51], with 0 representing normal
vessel wall thickness, 1 slightly increased wall thickness, 2
moderately increased thickness and 3 markedly increased
thickness such that for many arterioles, the diameter of the
lumen was <50% of the outer diameter of the blood vessel.

Measurement of synaptic proteins

Drebrin, synaptophysin and VEGF were measured by
sandwich enzyme-linked immunosorbent assays (sand-
wich ELISA). SNAP-25 and PSD-95 were measured by
direct ELISA assays. Details of the antibodies used are
shown in Table 3. All measurements were performed at
least in duplicate, and the mean values were used in the

subsequent analyses. All measurements were corrected
for protein concentration and neuron-specific enolase
concentration to account for differences in neuronal
content, as described in detail by Ashby et al. [52] and
Miners et al. [20].

NSE

The rabbit polyclonal capture antibody (Enzo Life Sci-
ences, Farmingdale, NY, USA) was diluted 1:1000 in 1×
coating buffer and incubated at 4°C overnight in clear
96-well microplates. Following five washes with 0.05%
PBS/Tween 20 (PBST), the plate was tapped dry, and non-
specific protein binding was blocked by incubation with
1% BSA/PBS (Bovine serum album in phosphate buffered
saline) at room temperature (RT) for 1 h with agitation.
Following a further five washes in PBST, the plate was
tapped dry, and five serial dilutions of recombinant NSE

Table 2. Summary statistics for the samples from the second control group and cases included in this study

Control group 2
mean (SD)

Case mean
(SD)

P value (t-test,
Wilcoxon rank
sum or regression)

Gender Male 8 8
Female 3 3

Age at death 76.8 (3.74) 77.7 (4.67) 0.620
Post-mortem delay 33.0 (31.1) 64.5 (24.7) 0.012
Braak stage 1.78 (0.44) 1.90 (0.99) 0.739
Temporal SVD score 1.00 (0.00) 1.57 (1.27)
Synaptophysin (ng/μl) 3.95 (2.21) 1.62 (0.63) 0.008
Drebrin (ng/μl) 3.87 (1.47) 5.53 (1.13) 0.012
SNAP-25 (ng/μl) 0.38 (0.22) 0.017 (0.003) <0.001

As can be seen, the cases have a significantly greater post-mortem delay. For this comparison, adjustments were used for the average NSE and
total protein measurements for these two groups, which accounts for the difference in the case values between this comparison and that with
the first control group.

Table 3. Antibodies used in the ELISAs in this study

Target Clonality
Species
raised in Company and product code Epitope

Synaptophysin Polyclonal Rabbit Abcam ab53166 Proprietary
Synaptophysin Monoclonal Mouse Santa-Cruz Biotech sc17750 aa 221–313 of human synaptophysin
Neurone-specific enolase Polyclonal Rabbit Biomol BML-NA1247 aa 269–286 of human NSE
Neurone-specific enolase Monoclonal Mouse Abcam ab24472 Proprietary
Drebrin Monoclonal Mouse Abcam ab60932 Proprietary
Drebrin Polyclonal Rabbit Abcam ab11068 Proprietary
SNAP-25 Monoclonal Mouse Santa-Cruz Biotech sc376713 aa 91–140 of human SNAP-25
PSD-95 Monoclonal Mouse Sigma-Aldrich P246 Proprietary
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(Abcam, Cambridge, UK) in PBS, blanks consisting of PBS,
and homogenates diluted 1:10 in PBS were all loaded in
duplicate. The plate was incubated for 2 h at RT with agi-
tation. After five washes in PBST, peroxidase-labelled
mouse monoclonal detection antibody (Abcam), diluted
1:1000 in PBS, was added and incubated for 2 h in the
dark at RT, with agitation. After a final five PBST washes,
the peroxidase substrate (100 μl per well) was applied
for 10 min, at the end of which 50 μl of STOP solution
was added. Absorbance at 450 nm was read in a
multidetection microplate reader (Fluostar OPTIMA, BMG
Labtech, Aylesbury, UK). Absolute protein levels were
interpolated from the standard curve.

Drebrin

The rabbit polyclonal capture antibody (Abcam) was
diluted 1:3000 in 1× coating buffer and incubated at 4°C
overnight in clear 96-well microplates. Following five
washes with 0.05% PBST, the plate was tapped dry, and
non-specific protein binding was blocked by incubation
with 1% BSA/PBS at RT for 1 h with agitation. Following
a further five washes in PBST, seven serial dilutions of the
recombinant drebrin (Abnova, Taipei City, Taiwan) in PBS,
blanks consisting of PBS and homogenates diluted 1:100
in PBS were loaded in duplicate. The concentration of the
protein standard ranged from 0.8 to 0.0125 ng/μl. The
plate was incubated for 1 h at RT with agitation. After a
further five washes in PBST, mouse monoclonal detection
antibody (Abcam) diluted 1:3000 in 1% BSA/PBS was
added for 1 h at RT, with agitation. After a further five
washes, the plate was incubated with peroxidase-labelled
antimouse secondary antibody (Vector Laboratories,
Burlingame, CA, USA) diluted 1:500 in PBS for 30 min.
After a final five washes with PBST, 100 μl of peroxidase
substrate (R&D systems, Minneapolis, MN, USA) was
added to each well, and the plate allowed to develop for
5 min, at the end of which 50 μl of STOP solution
was added. Absorbance at 450 nm was read in a
multidetection microplate reader. Absolute protein levels
were interpolated from the standard curve.

Synaptophysin

The rabbit polyclonal capture antibody (Abcam) was
diluted 1:1000 in 1× coating buffer and incubated at 4°C
overnight in clear 96-well microplates. Following five
washes with 0.05% PBST, the plate was tapped dry, and

non-specific protein binding was blocked by incubation
with 1% BSA/PBS at RT for 1 h with agitation. Following
a further five washes in PBST and the plate being tapped
dry, five serial dilutions of the recombinant protein stand-
ard (Abnova) in PBS, blanks consisting of PBS and
homogenates diluted in PBS such that 10 μg of total
protein was loaded per well, were loaded in duplicate. The
concentration of the protein standard ranged from 5 to
0.313 μg/μl. The plate was then incubated for 1 h at RT
with agitation. After a further five washes in PBST, the
plate was tapped dry, and mouse monoclonal detection
antibody (SantaCruz Biotechnology, Dallas, TX, USA)
diluted 1:1000 in 1% BSA/PBS was added for 1 h at RT,
with agitation. After a further five washes, the plate was
incubated with biotinylated antimouse secondary anti-
body diluted 1:500 in PBS (Vector Laboratories) for
20 min. After a further five washes, the plate was incu-
bated with streptavidin horse radish peroxidase (R&D
systems) diluted 1:500 in PBS for 20 min. After a final 5
washes with PBST and the plate being tapped dry, 100 μl
of peroxidase substrate was added to each well and the
plate allowed to develop for 10 min, at the end of which
50 μl of STOP solution was added. Absorbance at 450 nm
was read using a multidetection microplate reader. Abso-
lute protein levels were interpolated from the standard
curve.

VEGF

VEGF was assayed by means of a commercially available
sandwich ELISA kit (R&D systems), according to the
manufacturer’s instructions, as previously [53].

PSD-95

Brain homogenates diluted 1:20 in PBS and blanks of PBS
alone were incubated for 2 h at 26°C in a clear 96-well
microplate (Fisher Scientific, Loughborough, UK). The
plate also included seven threefold serial dilutions of
recombinant PSD-95 (Abnova) over a concentration
range of 0.90 ng/μl to 0.0012 ng/μl. The plate was
washed five times in 0.05% PBST, tapped dry and then
incubated for 2 h at 26°C with mouse monoclonal anti-
body to PSD-95 (Sigma Aldrich, St Louis, MO, USA)
diluted 1:3000 in 1% BSA/PBS. After a further five
washes, the plate was incubated with peroxidase-labelled
anti-mouse secondary antibody (Vector Laboratories)
diluted 1:500 in PBS for 30 min. After a final five washes,
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100 μl of peroxidase substrate was added to each well,
and the plate was allowed to develop for 10 min, at which
point 50 μl of STOP solution was added to each well.
Absorbance at 450 nm was read in a multidetection
microplate reader. Absolute protein levels were interpo-
lated from the standard curve.

SNAP-25

Brain homogenates diluted 1:6.7 in 1× coating buffer
and blanks of 1× coating buffer alone were incubated for
2 h at 26°C in a clear 96-well microplate. The plate also
included seven threefold serial dilutions of recombinant
SNAP-25 (Abcam) over a concentration ranging from
2.0 to 0.02 ng/μl. The plate was washed five times in
0.05% PBST, tapped dry and then incubated for 2 h at
26°C with the mouse monoclonal antibody to SNAP-25
(SantaCruz Biotechnology) which was diluted 1:3000 in
1% BSA/PBS. After a further five washes, the plate was
incubated with peroxidase-labelled anti-mouse second-
ary antibody diluted 1:500 in PBS (Vector Laboratories)
for 30 min. After a final five washes, 100 μl of
peroxidase substrate was added to each well, and the
plate allowed to develop for 10 m, at which point 50 μl of
STOP solution was added to each well. Absorbance at
450 nm was read using a multidetection microplate
reader. Absolute protein levels were interpolated from the
standard curve.

Measurement of post-mortem stability of
synaptic proteins

NSE, synaptophysin, drebrin and VEGF concentrations
had previously been shown not to be affected by post-
mortem delay up to 72 h [29,52,53]. PSD-95 and drebrin
had been studied in a previous, unpublished study from
our group (Figure S2). On incubation of multiple aliquots
of cerebral cortex from three brains for periods of up to
72 h at RT or 4°C, PSD-95 concentration showed a small
but significant decrease over 72 h at RT (Spearman’s r
−0.8929, P = 0.0123) but no significant decrease at 4°C.
Drebrin had been measured in this previous study on the
same set of homogenates by scanning densitometry of
Western blots, the method for which has been published
previously [54]. There was no significant change in
drebrin concentration at either RT or 4°C.

Post-mortem delay was also simulated for SNAP-25 by
taking multiple samples of tissue from the temporal lobe

of four brains with a short post-mortem delay and incu-
bating them for 6, 12, 18, 24, 48 and 72 h at RT and 24,
48 and 72 h at 4°C. The tissue was then homogenized,
and the homogenates were stored at −80°C prior to
protein measurements being made as described above.

Statistical analysis

The power calculation for this study was based on the
finding of Love et al. [29] that synaptophysin, as measured
by sandwich ELISA in the superior temporal cortex, was
reduced by approximately 2/3 in AD compared with con-
trols. The present study was powered to find a similar or
slightly smaller difference in VAD, with synaptophysin
level as the primary outcome measure. A sample size of 11
per group gave 82% power to find a difference 80% of that
found by Love et al. [29].

Where possible, parametric statistical tests were used. If
variables were not normally distributed, log logarithmic
transformations were used to obtain a normal distribu-
tion. For normally distributed variables, the t-test was
used. For variables that were not normally distributed,
even after logarithmic transformation, the Wilcoxon rank
sum test was used. Where post-mortem delay had been
shown to affect protein levels, we used linear regression
with post-mortem delay included as a variable. If the
residuals were not normally distributed (and thus the
assumptions of linear regression violated), then the vari-
able was log transformed and the distribution of the
residuals rechecked. A threshold for P values of 0.05 was
used throughout. Spearman’s correlation was used to
assess the effect of post-mortem delay.

Results

The first part of the study comprised 11 controls and 11
VAD cases. In the second part of the study, we used a further
11 controls. The individual characteristics of each sample
are summarized in Table 1. The comparison between the
VAD cases and the original control group is summarized in
Table 4 and that with the second control group in Table 2.
The post-mortem delay was significantly greater for the
VAD cases (P = 0.007). The cases were slightly older
than the first set of controls (mean difference = 4 yrs,
P = 0.012) but were well matched for gender. The second
control group were well matched for both age (mean differ-
ence = 11 months, P = 0.620) and gender.
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Post-mortem stability

The concentration of SNAP-25 did not fall significantly
with increasing time at RT (ρ = −0.2143, P = 0.6615) or
at 4°C (ρ = −1.00, P = 0.0833), as shown in Figure S1.

Presynaptic proteins

As can be seen in Table 4, the mean concentration of
synaptophysin was higher in controls than in cases but
not significantly so (38.2% difference, P = 0.622). When
the analysis was repeated with the second group of con-
trols, there was stronger evidence for a decrease in
synaptophysin in VAD (59.0% difference, P = 0.008); note
that this study was powered to detect an approximately
50% difference.

The mean concentration of SNAP-25 was higher in
controls than cases, and there was strong evidence to
support this from the Wilcoxon rank sum analysis (mean
difference = 0.014 ng/μl, P = 0.024). The same direction
of difference was observed in the new group of controls
(mean difference = 0.363 ng/μl, P = < 0.001) suggesting
that this is a true difference, rather than a type 1 error.

Postsynaptic proteins

There was a very small increase in PSD-95 (0.7 ng/μl,
P = 0.876) in the original comparison. Unfortunately,
variability in the assay (as evidenced by comparison of
values in the same VAD cases) made it impossible to obtain

reliable data on comparing the new control group to the
cases.

Drebrin was significantly increased in VAD. This was
evident on comparison with the first set of controls as
shown in Table 4. Drebrin concentration increased from
a mean of 5.47 ng/μl in controls to 8.38 ng/μl in cases
(P = 0.020). The findings were confirmed on comparison
with the second control group as shown in Table 2, with
a mean difference of 1.66 ng/μl (P = 0.012). This was an
unexpected finding as drebrin is reduced in AD.

Measures of vascular disease

Although temporal SVD scores were not available for all
controls, the SVD score was higher in the cases (1.57 vs.
0.75). All of the controls for which data were available
had a temporal SVD score of 1 or 0. There was a trend for
higher VEGF levels in the cases (0.830 μg/μl vs. 0.573 μg/
μl, P = 0.058). All of the cases had a neuropathological
diagnosis of VAD. Several of the controls had some SVD
documented at post-mortem examination, but we chose to
include these to avoid selecting ‘super normal’ partici-
pants. Indeed, in one study >75% of nondemented older
people had evidence of cerebrovascular disease at autopsy
[55].

Discussion

This study is the first to examine a range of synaptic pro-
teins in VAD. All four of the synaptic proteins studied had
previously been found to be decreased in AD compared

Table 4. Summary statistics for the samples included in this study

Control mean
(SD)

Case mean
(SD)

P value (t-test,
Wilcoxon rank
sum or regression)

Gender Male 9 8
Female 2 3

Age at death 73.7 (1.01) 77.7 (4.67) 0.012
Post-mortem delay 34.5 (13.6) 64.5 (24.7) 0.007
Braak stage 1.45 (1.21) 1.90 (0.99) 0.382
Temporal SVD score 0.75 (0.50) 1.57 (1.27)
Synaptophysin (ng/μl) 3.85 (2.68) 2.38 (0.75) 0.622
Drebrin (ng/μl) 5.47 (3.46) 8.38 (1.98) 0.020
SNAP-25 (ng/μl) 0.0373 (0.166) 0.0236 (0.0045) 0.024
PSD-95 (ng/μl) 0.411 (0.334) 0.480 (0.345) 0.876
VEGF (μg/μl) 0.573 (0.328) 0.830 (0.267) 0.058

As can be seen, the cases were older than the controls and had a greater mean post-mortem delay.
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with controls with no dementia at the time of death. The
present study was powered with synaptophysin as the
primary outcome and to find a similar or slightly lower
decrease in synaptophysin to that in AD. We found a
reduction in synaptophysin, nonsignificant in our original
analysis, which may reflect a smaller reduction in VAD
than in AD, but significant compared with our second
group of controls.

The Cambridge later life study found in AD that in
Braak tangle stages I and II, there was no change in syn-
aptic proteins, including synaptophysin and SNAP-25,
that levels increased in Braak stages III and IV and
only decreased from Braak stage V onwards. The same
pattern was seen in relation to clinical severity [56]. That
was, however, a relatively small study. The authors sug-
gested that the initial increase may represent an early
adaptive synaptic regeneration which then fails as the
disease process progresses. A similar study by Counts
et al. [31] found no significant change in synaptophysin
in five brain areas in MCI but a significant difference
between controls and severe AD in the superior temporal
and inferior parietal cortex. Our previous study which
found a decrease in synaptophysin in AD analysed cases
with a Braak stage of V or VI [29]. In the present study,
the Braak tangle stages did not differ significantly
between the cases and controls and would not be
expected to contribute to any differences between the
groups.

We found a reduction in SNAP-25, as expected.
Although the variable itself was not normally distrib-
uted, necessitating nonparametric testing, linear regres-
sion was possible because the residuals were normally
distributed.

Surprisingly, we found an increase in drebrin. This was
contrary to our hypothesis that drebrin would be
decreased, as in AD and MCI [29,31,44]. Drebrin has
been shown to increase dendritic length, size and density
[57] and be involved in NMDR receptor regulation [58].
Reduction of drebrin expression in cultured hippocampal
neurons by use of antidense oligonucleotides led to
decreased spine width and density [59,60]. A study in
rats following axotomy of spinal motor neurons found
that drebrin expression increased in the lesioned motor
neurons (compared with the unlesioned neurons) at 3
days and 7 days but had returned to normal after
10 weeks. The authors suggested that drebrin played a
role in synaptic restoration [61]. Interestingly, a small
study of transient cerebral ischaemia in rats found an

increase in drebrin immunoreactivity in hippocampal
area CA3 but not CA1, 7 days after ischaemia [62].

It seems most likely that the increase in drebrin seen in
this study represents a compensatory response to the
ischaemia caused by the VAD process. A microarray study
of differing stages of AD vs. controls in post-mortem
hippocampus found up-regulation of several processes
including apoptosis, tumour suppressors, down-
regulation of synaptic transmission and microtubule-
based processes and a ‘collapse of protein transport
machinery’ early in AD, although all of their categories of
AD had an average Braak stage of V or more. This, in
addition to the findings of the Cambridge Later Life Study,
provides a precedent for proteins being up-regulated in
dementia [56,63].

Strengths of the present study include the range of
measures of synaptic integrity, the repeated measure-
ments of synaptic proteins in two independent control
groups and the correction for neuronal content. Weak-
nesses include the low numbers, but this only became
apparent post hoc: because these proteins had not previ-
ously been studied in VAD, figures from AD studies were
used in the power calculations.

In summary, we have shown that although there is a
reduction in presynaptic proteins (including a significant
reduction in SNAP-25) in the temporal cortex in VAD, this
is unlikely to be as large as that in AD. In VAD, there is also
an unexpected increase in drebrin, which is probably a
compensatory response to the disease process. However,
further work is required, in larger cohorts, to confirm
these findings.
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Supporting information

Additional Supporting Information may be found in the
online version of this article at the publisher’s web-site:

Figure S1. The effect of post-mortem delay on SNAP-25.
Post-mortem delay was simulated by the storage of
aliquots of tissue at RT (A) or 4°C (B) for differing periods
of time. Measurements were made on samples from more
than one brain. The symbols are colour-coded (red, blue or
black) to indicate which measurements were made on
samples from each brain. The concentration of SNAP-25
did not fall significantly with increasing time at RT
(ρ = −0.2143, P = 0.6615) or at 4°C (ρ = −1.00,
P = 0.0833).
Figure S2. The effect of post-mortem delay on PSD-95 and
drebrin. Post-mortem delay was simulated by the storage
of aliquots of tissue at RT or 4°C for differing periods of
time. For the PSD-95 assays (C and D), measurements
were made on samples from more than one brain. The
symbols are colour-coded (red, blue or black) to indicate
which measurements were made on samples from each
brain. Post-mortem delay appeared to decrease drebrin
concentration (A and B) slightly but not significantly.
Spearman’s ρ was −0.2413 at room temperature
(P = 0.6615) and −0.2000 at 4°C (P = 0.9167). The con-
centration of PSD-95 was not significantly affected by
storage at 4°C (D, Spearman’s ρ −1.000, P = 0.0833) but
did decline at room temperature (C, Spearman’s ρ
−0.8929, P = 0.0123).
Table S1 Individual level characteristics of the samples
included in this study. Full post-mortem reports were not
available for all samples.
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