Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

trans-(2,2'-Bipyrimidine)diiodido(isopropoxido)oxidorhenium(V)

Andrzej Kochel

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie St, 50-383 Wrocław, Poland
Correspondence e-mail: garfild9@gazeta.pl

Received 16 November 2009; accepted 7 December 2009
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.029 ; w R$ factor $=0.056 ;$ data-to-parameter ratio $=15.2$.

In the title compound, $\left[\operatorname{Re}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right) \mathrm{I}_{2} \mathrm{O}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right]$, the Re^{V} atom adopts a distorted octahedral $\mathrm{ReI}_{2} \mathrm{O}_{2} \mathrm{~N}_{2}$ geometry, with the O atoms in a trans conformation and the I atoms in a cis conformation. Two intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ contacts occur. The crystal structure is stabilized by intermolecular C $\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds.

Related literature

For related structures and for further discussion of rhenium structural chemistry, see: Abrahams et al. $(2005,2007)$; Abram et al. (1995); Ciani et al. (1983); Gerber et al. (2004). Graziani et al. (1985); Herrman et al. (1990); Irmler et al. (1991); Lebuis et al. (1993); Mrozinski et al. (2002); Quintal et al. (2000); Schmidt-Brucken \& Abram (2000). For further synthetic details, see: Watt \& Thompson (1963).

Experimental

Crystal data

$\left[\operatorname{Re}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right) \mathrm{I}_{2} \mathrm{O}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right]$	$V=1570.63(9) \AA^{3}$
$M_{r}=673.26$	$Z=4$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=10.3973(3) \AA$	$\mu=11.67 \mathrm{~mm}^{-1}$
$b=10.9046(3) \AA$	$T=100 \mathrm{~K}$
$c=15.6341(6) \AA$	$0.12 \times 0.11 \times 0.03 \mathrm{~mm}$

Data collection

Oxford Diffraction KM-4-CCD diffractometer
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.456, T_{\text {max }}=0.611$
15982 measured reflections 2776 independent reflections 2288 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.056$
$S=1.03$
2776 reflections

183 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.85 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.34$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Re1-O1	$1.698(4)$	Re1-N2	$2.183(6)$
Re1-O2	$1.861(5)$	Re1-I1	$2.7176(5)$
Re1-N1	$2.175(5)$	Re1-I2	$2.7235(5)$

$\mathrm{N} 1-\mathrm{Re} 1-\mathrm{N} 2 \quad 76.5(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{I} 1$	0.95	3.04	$3.697(7)$	127
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{I} 2$	0.95	3.05	$3.709(7)$	128
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 4^{\mathrm{i}}$	0.95	2.58	$3.504(9)$	163
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\text {ii }}$	0.95	2.53	$3.193(9)$	127
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{I} 1^{\mathrm{iii}}$	1.00	3.02	$3.834(8)$	139
Symmetry codes:	(i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2} ;$	(ii) $-x+1,-y-1,-z ;$	(iii)	
$x,-y-\frac{1}{2}, z+\frac{1}{2}$.				

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: SHELXL97.

Financial support by the Polish Ministry of Science and Higher Education (grant No. N N204 016735, in years 20082010) is gratefully acknowledged

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5231).

References

Abrahams, A., Gerber, T. A., Luzipo, D. R. \& Mayer, P. (2007). J. Coord. Chem. 60, 2207-2213.
Abrahams, A., Gerber, T. A. \& Mayer, P. (2005). J. Coord. Chem. 58, 13871393.

Abram, S., Abram, U., Schulz-Lang, E. \& Strähle, J. (1995). Acta Cryst. C51, 1078-1080.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Ciani, G. F., D'Alfonso, G., Romiti, P. F., Sironi, A. \& Freni, M. (1983). Inorg. Chim. Acta, 72, 29-37.
Gerber, T. I. A., Luzipo, D. \& Mayer, P. (2004). J. Coord. Chem. 57, 1345-1349.

metal-organic compounds

Graziani, R., Casellato, U., Rossi, R. \& Marchi, A. (1985). J. Crystallogr. Spectrosc. Res. 15, 573-579.
Herrman, W. A., Thiel, W. R. \& Hardtweck, E. (1990). Chem. Ber. 123, 271276.

Irmler, M., Möller, A. \& Meyer, G. (1991). Z. Anorg. Allg. Chem. 604, 7-26.
Lebuis, A. M., Roux, C. \& Beauchamp, A. L. (1993). Can. J. Chem. 71, 441449.

Mrozinski, J., Kochel, A. \& Lis, T. (2002). J. Mol. Struct. 610, 53-58.

Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
Quintal, S. M. Q., Nogueira, H. I. S., Felix, V. \& Drew, M. G. B. (2000). New J. Chem. 24, 511-517.
Schmidt-Brucken, B. \& Abram, U. (2000). Z. Anorg. Allg. Chem. 626, 951-958. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Watt, G. W. \& Thompson, R. J. (1963). Inorg. Synth. 7, 190-192.

supplementary materials

Acta Cryst. (2010). E66, m42-m43 [doi:10.1107/S1600536809052556]

trans-(2,2'-Bipyrimidine)diiodido(isopropoxido)oxidorhenium(V)

A. Kochel

Comment

Re^{V} complexes have been research object for many authors during the last years. Complexes of general formula $\left[\mathrm{ReOX}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]\left(X=\mathrm{Cl}\right.$, I) were obtained by a reaction of trans-[$\left.\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and trans$\left[\mathrm{ReOI}_{2}(\mathrm{OEt})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with cis-1,2-di-(2-pyridyl)ethylene (DPE) in ethanol and in benzene on air. The coordinated DPE ligand undergoes addition of water at the ethylene carbon atoms, and the $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{CH}(\mathrm{O}) \mathrm{CH}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ moiety acts as terdentate $\mathrm{N}, \mathrm{O}, \mathrm{N}$-donor ligand. X-ray crystal structures of both complexes have been determined and show distorted octahedral geometry around the rhenium (V) centre (Abrahams et al., 2005). Complexes cis- $\left[\mathrm{ReO} X_{2}(\mathrm{msa})\left(\mathrm{PPh}_{3}\right)\right][X=\mathrm{Cl}(1), \mathrm{I}(2)]$ were prepared from trans- $\left[\mathrm{ReOCl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ or trans- $\left[\mathrm{ReOI}_{2}(\mathrm{OEt})\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in reaction with 2-(1-iminoethyl)phenol (Hmsa) in acetonitrile. X-ray crystal structure shows, that the bonding distances and angles in 1 and 2 are nearly identical, and that the two halide ligands in each complex are coordinated cis to each other in the equatorial plane cis to the oxido group. Rhenium(V) complexes with two iodido ligands cis to each other are rare (Abrahams et al., 2007). Rhenium(V) complexes with trans-$\mathrm{O}-\mathrm{Re}$-(2-propoxido) core are known. Rhenium (V) complex with 2-propoxido ligand of formula $\left[\mathrm{ReOCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}\right]$ has been synthesized (Abram et al. 1995), and the other one, $\left[\operatorname{ReClO}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right) \mathrm{PPh}_{3} \mathrm{~L}\right]$ (where $L=$ pyridine-2-thiolato ligand), was obtained (Schmidt-Brucken \& Abram, 2000). This paper contains a report on the synthesis and structure of the first characterized $\left[\mathrm{ReOI}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)(2-2\right.$?bipyrimidine $\left.)\right] 1$ complex with ReI_{2} core and 2-propoxido ligand. Fig. 1 presents the view of molecular structure of compound 1 , the compound crystallizes in monoclinic crystal system in $P 2_{1} / c$ space group. The compound was obtained in the synthesis with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ReI}_{6}$ and 2,2'-bipyrimidine as substrates in a mixture of 2-propanol and acetone. The environment around the metal center is a distorted octahedron, with two iodido ligands, 2-propoxido ligand and 2,2'-bipyrimidine ligand coordinated via nitrogen atoms. The Re-I bond lengths are Rel-I1 2.7176 (5) \AA, Rel-I2 2.7235 (5) \AA, respectively,similar Re-I distances were observed in 2-(2-aminophenyl)ethanolato- N, O)-bis(iododo)-ox-ido- triphenylphosphine-rhenium(V) and diodido-(3-hydroxidopicolinato)-oxido-)-triphenylphosphine-rhenium(II) (Gerber et al., 2004, Quintal et al., 2000). On the other hand, the Re1-O1 1.698 (4) \AA bond length is characteristic for monoox-ido-rhenium (V) complexes (on average $1.69 \% \mathrm{~A}$), which is in agreement with the situation in the comparable complexes (Graziani et al., 1985, Lebuis et al., 1993). The O atom from 2-propoxido ligand is coordinated to the rhenium atom with Re-O2 1.861 (5) \AA; this bond is remarkably short with the same multiple bond character as discussed (Ciani et al. 1983). The O-Re-O unit is nearly linear with an angle of $169.69(3)^{\circ}$. Moreover, a molecule of $2,2^{\prime}$-bipyrimidine is coordinated with $\mathrm{Re}-\mathrm{N}$ bond length of Re1—N1 2.175 (5) \%A, Re1—N2 2.183 (6) \AA, which is comparable to the previously investigated trans-[$\left.\mathrm{ReCl}_{4}(\mathrm{py})_{2}\right]$ (Mrozinski et al., 2002, Herrman et al., 1990). Re atom lies within the plane of I1, I2, N1, N2 atoms, the $\mathrm{N} 1-\mathrm{Re} 1-\mathrm{O} 1$ and $\mathrm{N} 2-\mathrm{Re} 1-\mathrm{O} 1$ angles are 88.63 (19), 86.93 (14) and N1—Re1—O2, N2-Re1—O2 83.37 (14) and 84.87 (15) and are directed in side to $2,2^{\prime}$-bipyrimidine. The rings of the 4, 4^{\prime}-bpy ligand are coplanar with the plane defined by the I ligands, one of the $\mathrm{Re}-\mathrm{N}$ bond is shorter ($\operatorname{Re} 1-\mathrm{N} 12.175$ (5) \AA, Re1-N2 2.183 (6) \AA), which may be a result of iodido ligand presence. The molecule conformation is stabilized by intramolecular hydrogen bonds $\mathrm{C}(1)-\mathrm{H}(1) \cdots \mathrm{I}(1)$ and $\mathrm{C}(6)-\mathrm{H}(6) \cdots \mathrm{I}(2)$, as well as by the intermolecular hydrogen bonds of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ type. All hydrogen bonds are summarized in Table 2. In the crystal structure packing along [100] and [010] a layered arrangement of the molecules could be observed. The crystal structure packing viewed along [100] direction is illustrated in Fig. 2. In the structure the

supplementary materials

stacking interactions are observed. pi-pi stacking interactions between the $2,2^{\prime}$-bypirymidine rings contribute to forming a supramolecular network structure (Fig. 2). The centroid-centroid distance of the adjacent aromatic rings is about $3.58 \% \mathrm{~A}$, indicating a normal pi-pi interaction. The corresponding TG-DTA curves (the measurement was carried out under nitrogen atmosphere) for the title compound (Fig. 3) show a three-step decomposition process and that the compound is very stable during heating. In the first step of the thermal decomposition process weight loss in the temperature range $242-247^{\circ} \mathrm{C}$ of 1.39% (calc. 1.43%) is observed. In DTA curve, this decomposition is visible as an endothermic peak at temperature $247^{\circ} \mathrm{C}$, indicating the presence of coordinated 4.4,-bipyrimidine (corresponding to the weight loss of 1.39% in thermal decomposition, which is in agreement with the calculated value of 1.43%). Further weight losses correspond to decomposition of further compound parts, they are continuous and are difficult for unambiguous interpretation (decomposition of all compound constituents except for rhenium part). Another peak at $800^{\circ} \mathrm{C}$ is also observed, however, it is difficult to interpret. It is possible, that the decomposition process leads to rhenium oxides. Similar decomposition process through many intermediate stages has been observed for $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Re}_{3} \mathrm{Cl}_{12}\right]$ (Irmler et al., 1991). In conclusion, an interesting rhenium(V) trans-2,2,-bipyrimidine-diiodido-oxido-(2-propoxido)-rhenium(V) complex with 2-propoxido ligand was obtained. The crystal structure is stabilized by hydrogen bonding interactions. This is the first structural report confirming the existence of a iodido rhenium complex with an aromatic amine and 2-propoxido ligand in coordination sphere.

Experimental

A mixture of $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{ReI}_{6}\right]$ (prepared according to the literature procedure (Watt \& Thompson, 1963) (0.12 g) and 0.30 g of 2,2,-(bipyrimidine) (from Aldrich) was added to a mixture of 2-propanol/acetone (1:1) $(50 \mathrm{~cm} 3)$ and then was stirred at 40° for about 4 h , the color of the solution was dark green. The solution was left for slow crystallization by evaporation under parafilm. The mixture was kept at room temperature for crystallization. After five days the pale green plate-shaped crystals were obtained. Anal. Calc. For: $\left[\mathrm{ReOI}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)(2,2\right.$,bipyrimidine $\left.)\right]$ C 19.62, H 2.08, N 8.32, I 37.69\%: found C 19.01, H 1.89, N 8.15, I 37.50\%. Selected IR data (KBr): $2925(m), 2854(m), 1717(m), 1631(m), 1610(\mathrm{w}), 1558(s), 1464$ (m), 1406 (s), 1378 (m), 1271 (w), 1193 (w), 1191 (w), 978 (w), 908(w), 807 (w), 645 (m), 561 (w), $535(\mathrm{w}), 452(s), 390$ (w), 358(w), 315 (s), 162 (versus), 131 (s), 74 (w).

TG-DTA Thermogravimetric measurements were carried out using a TG-DTA SETSYS 16Y18 device under nitrogen atmosphere for a sample placed in $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucible. The investigated temperature range was from room temperature to $1400^{\circ} \mathrm{C}$ at $10^{\circ} \mathrm{C} / \mathrm{min}$. temperature changes rate. IR spectra The room temperature FT-IR spectra of polycrystalline samples were measured by means of the Bruker IFS-66 instrument.

Refinement

The H atoms were generated geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak of 0.82 electrons at the difference Fourier map was situated near the Re atom.

Figures

Fig. 1. View of (I) showing 50\% displacement ellipsoids (H atoms as spheres of arbitrary radius).

Fig. 2. The crystal packing in (I) viewed down [100].

Fig. 3. Corresponding TG/DTA curves for 1 . The thicker line denotes the thermal effect, the thinner line denotes the weight loss curve.

trans-(2,2'-Bipyrimidine)diiodido(isopropoxido)oxidorhenium(V)

Crystal data

$\left[\operatorname{Re}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right) \mathrm{I}_{2} \mathrm{O}\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{4}\right)\right]$
$M_{r}=673.26$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=10.3973$ (3) \AA
$b=10.9046$ (3) \AA
$c=15.6341(6) \AA$
$\beta=117.616(2)^{\circ}$
$V=1570.63(9) \AA^{3}$
$Z=4$
$F(000)=1216$
$D_{\mathrm{x}}=2.847 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2115 reflections
$\theta=2.9-25.1^{\circ}$
$\mu=11.67 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, pale green
$0.12 \times 0.11 \times 0.03 \mathrm{~mm}$

Data collection

Oxford Diffraction KM-4-CCD diffractometer
Radiation source: fine-focus sealed tube graphite
/w scans
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)

2776 independent reflections
2288 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=25.1^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-12 \rightarrow 12$
$T_{\text {min }}=0.456, T_{\text {max }}=0.611$
15982 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.056$
$S=1.02$

2776 reflections
183 parameters
0 restraints
$k=-11 \rightarrow 12$
$l=-18 \rightarrow 18$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0251 P)^{2}+3.8665 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.85 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.34$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Re1	$0.26746(3)$	$-0.33250(2)$	$-0.10973(2)$	$0.02512(9)$
I1	$0.13432(6)$	$-0.31460(4)$	$-0.30538(3)$	$0.03659(14)$
I2	$0.22482(5)$	$-0.57955(4)$	$-0.12777(3)$	$0.03021(13)$
O1	$0.4380(5)$	$-0.3317(4)$	$-0.0984(3)$	$0.0228(10)$
O2	$0.0941(5)$	$-0.3139(4)$	$-0.1035(3)$	$0.0317(11)$
N1	$0.2890(6)$	$-0.1369(5)$	$-0.0790(4)$	$0.0228(12)$
N2	$0.3689(7)$	$-0.3247(5)$	$0.0476(4)$	$0.0281(13)$
N3	$0.3837(7)$	$0.0063(5)$	$0.0504(4)$	$0.0293(14)$
N4	$0.4828(7)$	$-0.1874(5)$	$0.1792(4)$	$0.0316(15)$
C1	$0.2343(8)$	$-0.0453(6)$	$-0.1436(5)$	$0.0324(17)$
H1	0.1832	-0.0636	-0.2105	0.039^{*}
C2	$0.2519(9)$	$0.0735(6)$	$-0.1134(5)$	$0.0365(19)$
H2	0.2114	0.1388	-0.1583	0.044^{*}
C3	$0.3303(8)$	$0.0959(6)$	$-0.0157(5)$	$0.0328(18)$
H3	0.3473	0.1786	0.0057	0.039^{*}
C4	$0.5150(9)$	$-0.2833(6)$	$0.2389(5)$	$0.0342(18)$

sup-4

H4	0.5655	-0.2690	0.3065	0.041^{*}
C5	$0.4775(8)$	$-0.4035(6)$	$0.2062(5)$	$0.0320(17)$
H5	0.5002	-0.4704	0.2498	0.038^{*}
C6	$0.4065(8)$	$-0.4201(6)$	$0.1084(5)$	$0.0273(16)$
H6	0.3834	-0.5009	0.0830	0.033^{*}
C7	$0.3584(8)$	$-0.1071(6)$	$0.0158(5)$	$0.0291(17)$
C8	$0.4078(8)$	$-0.2118(6)$	$0.0862(5)$	$0.0261(16)$
C9	$-0.0043(9)$	$-0.2989(8)$	$-0.0654(6)$	$0.045(2)$
H9	0.0494	-0.3159	0.0055	0.054^{*}
C10	$-0.1237(9)$	$-0.3889(8)$	$-0.1089(6)$	$0.043(2)$
H10A	-0.1895	-0.3648	-0.1754	0.065^{*}
H10B	-0.1773	-0.3915	-0.0713	0.065^{*}
H10C	-0.0834	-0.4703	-0.1087	0.065^{*}
C11	$-0.0531(8)$	$-0.1652(6)$	$-0.0783(6)$	$0.0382(18)$
H11A	0.0309	-0.1123	-0.0416	0.057^{*}
H11B	-0.1249	-0.1540	-0.0549	0.057^{*}
H11C	-0.0966	-0.1434	-0.1469	0.057^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Re1	$0.03734(18)$	$0.00899(14)$	$0.03104(16)$	$0.00073(12)$	$0.01756(13)$	$0.00019(11)$
I1	$0.0430(3)$	$0.0213(3)$	$0.0286(2)$	$0.0025(2)$	$0.0023(2)$	$0.0026(2)$
I2	$0.0453(3)$	$0.0095(2)$	$0.0337(3)$	$-0.00078(19)$	$0.0165(2)$	$-0.00140(18)$
O1	$0.031(3)$	$0.015(2)$	$0.022(2)$	$0.0001(19)$	$0.011(2)$	$-0.0019(19)$
O2	$0.041(3)$	$0.016(2)$	$0.041(3)$	$0.002(2)$	$0.022(3)$	$-0.001(2)$
N1	$0.030(3)$	$0.013(3)$	$0.028(3)$	$0.001(2)$	$0.016(3)$	$0.000(2)$
N2	$0.045(4)$	$0.012(3)$	$0.034(3)$	$0.001(3)$	$0.025(3)$	$0.001(3)$
N3	$0.056(4)$	$0.012(3)$	$0.036(3)$	$-0.005(3)$	$0.035(3)$	$-0.004(3)$
N4	$0.065(4)$	$0.018(3)$	$0.027(3)$	$-0.003(3)$	$0.034(3)$	$-0.001(2)$
C1	$0.049(5)$	$0.016(4)$	$0.029(4)$	$0.008(3)$	$0.015(4)$	$0.002(3)$
C2	$0.062(5)$	$0.011(4)$	$0.045(5)$	$0.005(4)$	$0.033(4)$	$0.009(3)$
C3	$0.061(5)$	$0.006(3)$	$0.050(5)$	$-0.002(3)$	$0.042(4)$	$-0.002(3)$
C4	$0.065(6)$	$0.021(4)$	$0.025(4)$	$-0.001(4)$	$0.028(4)$	$0.000(3)$
C5	$0.055(5)$	$0.024(4)$	$0.030(4)$	$0.004(3)$	$0.030(4)$	$0.001(3)$
C6	$0.043(5)$	$0.010(3)$	$0.038(4)$	$-0.002(3)$	$0.026(4)$	$-0.003(3)$
C7	$0.048(5)$	$0.011(4)$	$0.044(4)$	$-0.002(3)$	$0.034(4)$	$-0.004(3)$
C8	$0.045(5)$	$0.010(3)$	$0.037(4)$	$-0.001(3)$	$0.030(4)$	$-0.001(3)$
C9	$0.042(5)$	$0.045(5)$	$0.039(4)$	$0.004(4)$	$0.013(4)$	$-0.004(4)$
C10	$0.041(5)$	$0.050(5)$	$0.039(4)$	$-0.010(4)$	$0.019(4)$	$-0.009(4)$
C11	$0.034(4)$	$0.026(4)$	$0.051(5)$	$0.007(3)$	$0.016(4)$	$0.001(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Re} 1-\mathrm{O} 1$	$1.698(4)$
$\mathrm{Re} 1-\mathrm{O} 2$	$1.861(5)$
$\mathrm{Re} 1-\mathrm{N} 1$	$2.175(5)$
$\operatorname{Re} 1-\mathrm{N} 2$	$2.183(6)$
$\operatorname{Re} 1-\mathrm{I} 1$	$2.7176(5)$

$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.395(10)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500
$\mathrm{C} 5-\mathrm{C} 6$	$1.368(10)$

Re1-I2	2.7235 (5)
O2-C9	1.411 (10)
N1-C1	1.345 (8)
N1-C7	1.353 (9)
N2-C6	1.339 (8)
N2-C8	1.348 (8)
N3-C7	1.326 (8)
N3-C3	1.341 (9)
N4-C8	1.320 (9)
N4-C4	1.337 (9)
C1-C2	1.361 (10)
C1-H1	0.9500
C2-C3	1.380 (10)
$\mathrm{O} 1-\mathrm{Re} 1-\mathrm{O} 2$	169.68 (19)
$\mathrm{O} 1-\mathrm{Re} 1-\mathrm{N} 1$	88.66 (19)
O2-Re1-N1	83.34 (19)
$\mathrm{O} 1-\mathrm{Re} 1-\mathrm{N} 2$	86.9 (2)
O2-Re1-N2	84.9 (2)
N1-Re1-N2	76.5 (2)
O1-Re1-I1	94.56 (13)
O2-Re1-I1	92.91 (15)
N1—Re1-I1	97.18 (14)
N2-Re1-I1	173.47 (14)
O1-Re1-I2	97.35 (14)
O2-Re1-I2	89.91 (13)
N1—Re1-I2	171.11 (14)
N2-Re1-I2	97.22 (14)
I1-Re1-I2	88.908 (16)
C9-O2-Re1	160.7 (5)
C1-N1-C7	118.0 (5)
C1-N1-Re1	126.7 (4)
C7-N1-Re1	115.2 (4)
C6-N2-C8	117.7 (6)
C6-N2-Re1	126.8 (4)
C8-N2-Re1	115.3 (4)
C7-N3-C3	115.6 (6)
C8-N4-C4	116.2 (6)
N1-C1-C2	120.3 (7)
N1-C1-H1	119.8
C2-C1-H1	119.8
C1-C2-C3	117.9 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.1
C3-C2-H2	121.1
N3-C3-C2	123.1 (6)
N3-C3-H3	118.5
C2-C3-H3	118.5
O1-Re1-O2-C9	-37 (2)
N1-Re1-O2-C9	-76.5 (14)

2.7235 (5)
1.411 (10)
1.353 (9)
1.339 (8)
1.348 (8)
1.326 (8)
1.341 (9)
1.320 (9)
1.361 (10)
0.9500
1.380 (10)
169.68 (19)
83.34 (19)
86.9 (2)
84.9 (2)
76.5 (2)
94.56 (13)
92.91 (15)
97.18 (14)
173.47 (14)
89.91 (13)
171.11 (14)
97.22 (14)
88.908 (16)
160.7 (5)
118.0 (5)
126.7 (4)
115.2 (4)
117.7 (6)
126.8 (4)
115.3 (4)
115.6 (6)
116.2 (6)
120.3 (7)
119.8
119.8
121.1
121.1
123.1 (6)
118.5
-37 (2)
-76.5 (14)

C5-H5	0.9500
C6-H6	0.9500
C7-C8	$1.502(10)$
C9—C10	$1.478(11)$
C9-C11	$1.526(10)$
C9—H9	1.0000
C10-H10A	0.9800
C10-H10B	0.9800
C10-H10C	0.9800
C11-H11A	0.9800
C11-H11B	0.9800
C11-H11C	0.9800

$\mathrm{N} 4-\mathrm{C} 4-\mathrm{C} 5$	$122.8(6)$
$\mathrm{N} 4-\mathrm{C} 4-\mathrm{H} 4$	118.6
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	118.6
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$116.6(6)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	121.7
C $4-\mathrm{C} 5-\mathrm{H} 5$	121.7
N2-C6-C5	$121.3(6)$
N2-C6-H6	119.4

C5-C6-H6 119.4
N3-C7-N1 125.1 (6)
N3-C7-C8 118.3 (6)
N1-C7-C8 116.6 (6)
$\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 2 \quad 125.3$ (6)
$\mathrm{N} 4-\mathrm{C} 8-\mathrm{C} 7 \quad 118.7$ (6)
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7 \quad 115.9$ (6)
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10 \quad 110.3$ (6)
O2-C9-C11 108.4 (7)
C10-C9-C11 114.6 (7)
O2-C9—H9 107.7
C10-C9—H9 107.7
C11-C9—H9 107.7
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \quad 109.5$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.5$
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.5$
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \quad 109.5$
C9-C11—H11A 109.5
C9-C11-H11B 109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5$
C9-C11-H11C 109.5
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
$\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$
C1-C2-C3-N3
-3.1 (11)
2.4 (11)
supplementary materials

N2-Re1-O2-C9	0.5 (14)
$\mathrm{I} 1-\mathrm{Re} 1-\mathrm{O} 2-\mathrm{C} 9$	-173.4 (14)
I2-Re1-O2-C9	97.7 (14)
O1-Re1-N1-C1	100.5 (6)
O2-Re1-N1-C1	-86.0 (6)
N2-Re1-N1-C1	-172.3 (6)
$\mathrm{I} 1-\mathrm{Re} 1-\mathrm{N} 1-\mathrm{C} 1$	6.1 (6)
O1-Re1-N1-C7	-83.2 (5)
O2-Re1-N1-C7	90.2 (5)
N2-Re1-N1-C7	3.9 (4)
I1-Re1-N1-C7	-177.7 (4)
O1-Re1-N2-C6	-91.0 (6)
$\mathrm{O} 2-\mathrm{Re} 1-\mathrm{N} 2-\mathrm{C} 6$	95.2 (6)
N1-Re1-N2-C6	179.6 (6)
I2-Re1-N2-C6	6.0 (6)
O1-Re1-N2-C8	83.0 (5)
O2-Re1-N2-C8	-90.8 (5)
N1-Re1-N2-C8	-6.4 (5)
I2-Re1-N2-C8	180.0 (5)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	1.3 (11)
Re1-N1-C1-C2	177.5 (5)
N1-C1-C2-C3	1.8 (11)
C7-N3-C3-C2	1.1 (10)

$\mathrm{N} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$0.8(11)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$2.2(10)$
$\mathrm{Re} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$176.0(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$-3.2(10)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 1$	$2.4(10)$
$\mathrm{C} 3-\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 8$	$-176.6(6)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 3$	$-3.6(10)$
$\mathrm{Re} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 3$	$179.7(5)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$175.4(6)$
$\mathrm{Re} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$-1.3(7)$
$\mathrm{C} 4-\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 2$	$-3.7(11)$
$\mathrm{C} 4-\mathrm{N} 4-\mathrm{C} 8-\mathrm{C} 7$	$175.4(6)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 4$	$1.5(11)$
$\mathrm{Re} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 4$	$-173.1(6)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$-177.6(6)$
$\mathrm{Re} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$7.8(8)$
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 4$	$-4.5(10)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 4$	$176.4(6)$
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$174.7(6)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 2$	$-4.4(9)$
$\mathrm{Re} 1-\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$	$-130.8(12)$
$\mathrm{Re} 1-\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 11$	$102.9(14)$

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \cdots \mathrm{I} 1$	0.95	3.04	$3.697(7)$	127
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{I} 2$	0.95	3.05	$3.709(7)$	128
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{~N} 4^{\mathrm{i}}$	0.95	2.58	$3.504(9)$	163
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.53	$3.193(9)$	127
$\mathrm{C} 9 — \mathrm{H} 9 \cdots \mathrm{I} 11^{\mathrm{iii}}$	1.00	3.02	$3.834(8)$	139

Symmetry codes: (i) $-x+1, y-1 / 2,-z+1 / 2$; (ii) $-x+1,-y-1,-z$; (iii) $x,-y-1 / 2, z+1 / 2$.

Fig. 1

Fig. 2

supplementary materials

Fig. 3

