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Abstract: Ceramides are a class of sphingolipids which are implicated in skin disorders, obesity,
and other metabolic diseases. As a class with pleiotropic effects, recent efforts have centred on
discerning specific ceramide species and their effects on atopic dermatitis, obesity, type 2 diabetes,
and cardiovascular diseases. This delineation has allowed the identification of disease biomarkers,
with long acyl chain ceramides such as C16- and C18-ceramides linked to metabolic dysfunction and
cardiac function decline, while ultra-long acyl chain ceramides (>25 carbon acyl chain) were reported
to be essential for maintaining a functional skin barrier. Given the intricate link between free fatty
acids with ceramides, especially the de novo synthetic pathway, intracellular lipid droplet formation
is increasingly viewed as an important mechanism for preventing accumulation of toxic ceramide
species. Here, we review recent reports of various ceramide species involved in skin abnormalities
and metabolic diseases, and we propose that promotion of lipid droplet biogenesis can be seen as a
potential protective mechanism against deleterious ceramides.
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1. Introduction

Recently, there has been considerable interest in a subtype of sphingolipids known as
ceramides, and in particular ceramide level derangements in skin and metabolic health.
While the pleiotropic effects of ceramides have been reviewed extensively [1–9], knowledge
of its abundance in relation to intracellular lipid partitioning and regulation remains patchy.
This review starts with a summary on the significance of ceramides in well-studied areas
such as skin abnormalities and metabolic disease, before a focus on current knowledge
surrounding intracellular lipid regulation and its relation to intracellular ceramide levels.

2. Ceramides Synthesis

Ceramides are a class of bioactive lipids which comprise of a sphingoid base (com-
monly sphingosine) and a fatty acyl chain, and they were largely generalised as ER stress,
apoptotic triggering molecules in various cell types [10–12]. The toxicity of a ceramide
species is linked to the length, and the degree of saturation, of fatty acyl chains. For ex-
ample, saturated C18:0 and C16:0 ceramides were more toxic to HeLa cells compared to
C18:1 and C24:1 ceramides [13]. Of note, the sphingoid base of the sphingolipids is also a
crucial determinant of its toxicity, as dihydroceramide, which lacks a double bond in its
sphingoid base in comparison to ceramides, does not share similar cytotoxicity as observed
in ceramides [14,15].

The generation of ceramides occurs through three pathways: the de novo synthesis
pathway; the salvage pathway; and the sphingomyelinase pathway. The de novo synthesis
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pathway occurs at the ER and begins with the condensation of serine with palmitoyl-
CoA to form 3-keto-sphinganine, a process catalysed by serine-palmitoyltransferase (SPT)
(Figure 1) [16]. Subsequently, 3-keto-sphinganine is reduced to sphinganine by 3-keto-
sphinganine reductase (KSR) (Figure 1) [16]. Following this process, an acyl-CoA chain
will be added to sphinganine to form dihydroceramides, and this process is facilitated by a
group of ER resident enzymes known as ceramide synthases (CerS) (Figure 1) [16]. Lastly,
dihydroceramides are converted to ceramides by dihydroceramide desaturase 1 (DES1)
(Figure 1) [16].

Figure 1. An illustration of the different ceramides generated either through the de novo syn-
thesis, or the salvage pathway. aCDase: acid ceramidase; nCDase: neutral ceramidase; nSMase:
neutral sphingomyelinase; CerS: ceramide synthases; DES1: dihydroceramide desaturase-1; KSR:
3-ketosphinganine reductase; SPT: serine palmitoyltransferase. Created with BioRender.com.

The salvage pathway involves the degradation of glucosylceramide, sphingomyelin,
and other complex sphingolipids, in acidic organelles such as the lysosome or late en-
dosome, to form ceramides (Figure 1) [17]. These ceramides are then broken down by
acid ceramidase to form a sphingosine base and a free fatty acid chain (Figure 1). The
sphingosine base can exit the lysosome, and ceramide can be formed by the attachment
of a fatty acid chain to the sphingosine base by CerS, in the ER (Figure 1) [17]. In the
sphingomyelinase pathway, ceramides are derived from the hydrolysis of sphingomyelins
by neutral sphingomyelinase (nSMase), an enzyme found in Golgi, microsomal, plasma
membrane, and nuclear fractions (Figure 1) [17,18].

CerSs, as highlighted previously, are a group of ER-resident enzymes which are
important gatekeepers of ceramide levels, as they largely account for ceramides from the de
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novo and salvage pathways [19,20]. There are a total of six mammalian ceramide synthases
(CerS1-6), with each CerS member showing a substrate preference for different lengths of
fatty acid chains and the subsequent acyl length of ceramides (Table 1) [19–24]. Importantly,
the expression of the mammalian CerS differs in various types of tissue. CerS1 is abundant
in mouse brain and skeletal tissues; CerS2 is ubiquitously expressed in most mouse tissue
types, and is most abundant in mouse liver and kidney tissues; CerS3 has the highest
expression in mouse testis and skin tissues; CerS4 is most highly expressed in mouse skin,
leukocytes, heart, and liver tissues; CerS5 is expressed at low levels in most tissue types,
with slightly higher expression found in skeletal muscle, testis, and kidney tissues; CerS6
is expressed at low levels in most tissues, with slightly higher expression in intestine and
kidney tissues [22]. This difference in CerS expression in various tissues may perhaps
explain the variation in ceramide species and their relative abundance in different tissue
types. In addition, the dysregulation of these CerS expression in specific tissues would
implicate the development of disease (Table 1) [25–33].

Table 1. The different ceramide synthases (CerS) characterized to date, their substrate preferences,
and their associations with different diseases.

CerS Acyl Chain Length Preference Disease Implicated Reference

CerS1 C18
↑ Type 2 Diabetes: Skeletal muscle Turpin-Nolan et al., 2019 [25]

↑ Heart Failure: Myocardium Carrillo et al., 2021 [26]

CerS2 C22–C24 ↓ Heart Failure: Myocardium Ji et al., 2017 [27]

CerS3 C26–C34 ↓ Congenital Ichthyosis: Skin Eckl et al., 2013 [28]

CerS4 C18–C20
↑Atopic dermatitis: Skin Ito et al., 2017 [29]
↑ Type 2 Diabetes: β-cells Véret et al., 2011 [30]

CerS5 C14–C16
↑ Obesity and Type 2 Diabetes: White

adipose tissue Gosejacob et al., 2016 [31]

↑ Type 2 Diabetes: β-cells Manukyan et al., 2015 [32]

CerS6 C14–C16
↑ Obesity and Type 2 Diabetes: White

adipose tissue, Liver Turpin et al., 2014 [33]

↑ Type 2 Diabetes: β-cells Manukyan et al., 2015 [32]

3. Ceramides in Disease

Ceramides are linked to numerous diseases, but it is important to appreciate that
its reported diverse impact on pathophysiology is related to the length of its fatty acid
chain moiety. For example, ceramides are commonly associated with skin diseases as it
is suggested to constitute approximately 50% of all lipids in the stratum corneum (SC) of
the skin [34]. In atopic dermatitis (AD), the loss of a proper water barrier was found to
be associated with altered lipid composition in the SC. Ceramides with ultra-long fatty
acyl chains of >24 carbon atoms (C25 and above) were reduced, while the long acyl chain
ceramides (C24 and below), were increased in the SC of AD patients [35,36]. This suggests
that an increase in skin long chain ceramides at the expense of ultra-long chain ceramides
may contribute to skin pathologies [35,36]. Indeed, the dysregulation of ceramide profiles
in AD was supported by a randomized control trial (RCT) on 18 female participants with
AD, where the topical application of a ceramide cream significantly ameliorated the severity
of skin lesions after 4 weeks of treatment [37]. In another trial conducted by Spada and
colleagues, transepidermal water loss (TEWL) was shown to be significantly lower in
eczema patients on a ceramide-dominant moisturizing cream and cleanser when compared
to the placebo group. Despite no significant difference in the assessment of the eczema
area severity index (EASI) between the two groups [38], it does highlight the importance
of (restoring) ultra-long acyl chain ceramides in regulating water balance in the skin.
Such an observation was further corroborated by Ito et al., who showed that ceramide
synthase 4 (CerS4), a key enzyme in the biosynthesis of long acyl chain ceramides, C18–C20
ceramides, was significantly higher in changed skin (affected sites) of AD patients compared
to unchanged skin sites [29]. Conversely, mice lacking CerS3, an enzyme involved in the
biosynthesis of ultra-long acyl chain ceramides (C26–C34 ceramides), exhibited more than
a two-fold increase in TEWL rate than in control mice, with a concomitant reduction in
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C26-, C28-, and C30-ceramides, highlighting that loss of ultra-long acyl chain ceramides
accompanied epidermal water permeability barrier disruption [39]. An autosomal recessive
mutation leading to the inactivation of CerS3 was also reported to result in congenital
ichthyosis, further highlighting the importance of CerS3 and the synthesis of ultra-long
ceramides in maintaining skin physiology [28].

Within domains of obesity and type-2 diabetes mellitus (T2DM), an increase in C18-
and C16-ceramides are associated with metabolic dysfunction, again linking long acyl
chain ceramides to pathology. The knockout of CerS1 in the skeletal muscle of C57BL/6
mice was reported to prevent C18-ceramide accumulation with improvements in insulin
resistance and glucose tolerance [25]. Pancreatic beta-cells are particularly sensitive to
changes in extracellular lipids. Under glucolipotoxic conditions of T2D, CerS4 expression
was upregulated, with parallel increases in C18-, C22-, and C24:1-ceramides in the rat
insulinoma cell line INS-1 [30]. Similarly, high glucose and palmitate increased expression
of CerS5 and CerS6 in the mouse pancreatic beta cell line MIN6, and knockdown of either
CerS5 or CerS6 abrogated the glucolipotoxic response [32]. Separately, a global knockout
of mouse CerS5 reduced C16:0 ceramide levels in muscle, liver, and epididymal white
adipose tissues, leading to reduced high-fat diet-associated insulin insensitivity and glucose
intolerance [31]. CerS6 (the enzyme that synthesizes C14 and C16 ceramides) expression
was elevated in adipose tissues of obese humans, while there was global ablation of CerS6
in mice protected against glucose intolerance when challenged with a high-fat diet [33].
Similarly, higher levels of plasma and hepatic C16 ceramides, as well as higher levels of
CerS6 expression, were found in liver and subcutaneous adipose tissues of male Ob/Ob
mice [40]. Separately, Kim and colleagues showed that C57BL/6 mice on a high-fat diet
for 18 weeks had elevated hepatic expression of CerS1, CerS5, and CerS6, and the latter
coincided with increased hepatic C16 ceramide levels and liver steatosis [41].

This detrimental impact of long acyl chain ceramides on T2DM was corroborated by
several human cohort studies. A 6-year longitudinal population study revealed that sev-
eral circulating ceramides, including C18:1-ceramide, C20-ceramide, C20:1-ceramide, and
C22:1-ceramide were found to be positively associated with T2DM incidence and inversely
associated with HOMA-B, the latter an assessment of the pancreatic β-cell function [42].
Similarly, a prospective study showed that higher levels of plasma C16-, C18-, C20-, and
C22- ceramides were each associated with increased risk of developing T2DM [43]. Inde-
pendently, a higher C18-ceramide/C16-ceramide ratio in the plasma was found to be a
predictor of T2DM, with C18-ceramide levels correlated with T2DM incidence [44]. Witten-
becher et al. also found that plasma C18-ceramide, C22-ceramide, C20-dihydroceramide,
and C22-dihydroceramide were associated with T2DM incidence [45].

Indeed, long acyl chain ceramides are linked to cardiovascular diseases. The accumu-
lation of endothelial cell long acyl chain ceramides in high-fat diet-fed mice was linked to
vascular dysfunction. The inhibition of ceramide generation from the de novo synthesis
pathway, through the heterozygous deletion of DES1, was sufficient to ameliorate the
endothelial nitric oxide synthase (eNOS) activity and vascular dysfunction [46]. Inhibi-
tion of ceramide synthesis by myriocin, a pharmacological inhibitor of serine palmitoyl
transferase (SPT), was also shown to be beneficial in reducing atherosclerotic lesions in
high-fat diet-fed apolipoprotein E (apoE) knockout mice [47,48]. Similarly, the inhibition of
ceramide synthesis protected against heat failure, as the myriosin treatment of LpLGPI mice
(overexpressing glycosylphosphatidylinositol (GPI)-anchored human lipoprotein lipase
specifically in the heart, leading to higher lipid uptake and cardiomyopathy) improved
heart function and lowered gene expression of heart failure-associated genes such as Glut1,
Glut4, Pdk4, Cd36, Acs1, and Fatbp1 [49].

Dysregulation of plasma ceramide levels were also reported to be correlated to the
development of cardiovascular diseases [45,50]. A prospective study performed on a
European cohort found that plasma C16-ceramide, C18-ceramide and C24:1-ceramide were
associated with increased risk of coronary artery disease [50]. Similarly, a separate cohort
study also reported that C16-ceramide and C22:2 dihydroceramide were associated with
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higher risk of cardiovascular diseases [45]. In another study, C16:1-, C16:0-, and C24:1-
ceramides were found to be elevated in myocardium samples obtained from advanced
heart failure patients when compared to control myocardial samples [27]. Elevated CerS1
expression (involved in synthesis of C18-ceramide) was also found in cardiac tissues of
patients with heart failure when compared to tissues from non-diseased patients [26]. In
a study looking at the effects of liraglutide treatment, a glucagon-like peptide-1 agonist
known to reduce CVD risk in T2DM patients, plasma ceramides with acyl lengths of 19 and
20 carbon atoms were lowered by GLP-1 treatment, suggesting that the lowering of long
acyl chain ceramides may contribute to reported GLP-1 cardio-protection [51]. Indeed, a
study performed on European and American cohorts found that a higher ratio of ultra-long
acyl chain ceramides, C24-ceramide, to long acyl chain ceramides, C16-ceramide, was
inversely correlated with coronary heart disease and heart failure [52].

4. Linking Circulating Ceramides with Intracellular Lipid Regulation

It has become increasingly clear that the levels of circulating ceramides are intricately
linked to intracellular lipid regulation, particularly at the ER, due to the organelle local-
ization of the various ceramide synthases. Apart from this de novo synthesis pathway,
ceramides can be taken up by cells with shorter chain ceramide species, such as C2- and
C6-ceramides being far more efficient at passing through the plasma membrane compared
to ceramides with an acyl chain length of 16 carbons and above [53,54]. Hence, when
studying the contribution of ceramides to cell physiology and pathology, it is important
to consider them against a backdrop of intracellular lipid regulation and the activity of
ER fatty acid enzymes. Circulating lipids remain the reservoir of substrates for ceramide
synthesis [55]. However, lipids, especially free fatty acids (FFAs), have a preferred evolved
route of shuttling into the ER for either assembly/esterification into neutral lipids or for
generation of metabolic intermediates and signalling molecules [56,57]. The availability
and retention of lipids within the ER is therefore very much dependent on the activity
of enzymes and scaffold proteins that are responsible for shuttling fatty acids and other
lipid intermediates into other compartments such as the Golgi apparatus, lipid droplets,
peroxisomes, and/or lysosomes.

5. Are Ceramides Responsible for Certain Fatty Acid-Induced ER Stress and Apoptosis?

Certain ceramides, produced after exposure to exogenous fatty acids such as palmitate,
were found to induce pancreatic β-cell ER stress and apoptosis. Zheng et al. showed
that C16 ceramides accompany heightened ER stress and apoptosis when lipid droplet
biogenesis was disabled [58]. Fumonisin B1, a non-specific inhibitor of CerS, reduced ER
stress in palmitate-exposed MIN6 cells [58]. Manukyan et al. showed that inhibition of
C14- and C16-ceramide formation, using either fumonisin B1 or CerS5/CerS6-knockdown,
rescued palmitate-induced apoptosis in mouse insulinoma cells and human pancreatic
islets [32]. Similarly, the treatment of a rat myoblast cell line, L6 cells, with palmitate
was also found to increase C18-ceramides, with a concomitant induction of caspase-3
activity [59]. The inhibition of ceramide biosynthesis in L6 cells, with fumonisin B1,
protected against palmitate-induced apoptosis, and cells co-treated with fumonisin B1
and palmitate had significantly lower caspase-3 activity when compared to cells treated
with palmitate alone [59]. Similarly, palmitate treatment of mouse C2C12 myoblast cells
elevated C16-ceramides with a corresponding induction of apoptosis [60]. Importantly, this
impact of ceramide accumulation was reported to be associated with insulin resistance,
as the prevention of C18-ceramide accumulation in the muscle, through either global or
skeletal-specific knockout of CerS1, significantly improved glucose homeostasis and insulin
sensitivity in high-fat diet-fed mice [25].

C16-ceramide accumulation was also linked to hepatocyte ER stress following palmi-
tate treatment [41]. Either overexpression of CerS6 or the exogenous addition of C16-
and C18-ceramides exacerbated palmitate-induced ER stress in liver cell lines with an
induction of UPR markers, including p-eIF2a, p-PERK, CHOP, and GRP78 proteins [41].
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Interestingly, the overexpression of CerS2, which catalyses the formation of ultra-long acyl
chain ceramides (C24- and C26-ceramides), protected the cells against palmitate-mediated
ER stress [41]. In a separate study, the inhibition of the ceramide de novo biosynthesis
pathway, through the intraperitoneal injection of myriosin, ameliorated hepatic apoptosis
and liver inflammation in high-fat diet-fed rats, with reduced cleaved caspase-3, TNFα,
IL-1β, and IL6 in liver tissues of myriocin-treated steatosis rats [61].

Similarly, C16-ceramides drive apoptosis in human coronary artery endothelial cells
(HCAECs). Under hyperglycemic conditions, Zietzer and colleagues showed that C16-
ceramides dominated HCAEC-derived large extracellular vesicles (lEVs), the latter of which
triggered HCAEC apoptosis [62]. Inhibition of neutral sphingomyelinase 2 (nSMase2), sig-
nificantly reduced C16-ceramides (as well as other less dominant ceramide species) in lEVs,
which resulted in the abrogation of hyperglycemic-induced apoptosis in HCAECs [62].

6. Mechanisms Underpinning Ceramide-Mediated Apoptosis

Ceramides were shown to activate both extrinsic and intrinsic apoptotic pathways
in various cancer models [63–71]. In the extrinsic apoptotic pathway, the generation of
ceramides was linked to the activation of Fas-, as well as tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL)-dependent apoptotic cascades in cancer cells [63,64,72].
Furthermore, ceramides were observed to reduce abundance of FLICE inhibitory proteins
(FLIPs), an inhibitor of caspase 8, in glioblastoma and renal carcinoma cells [65,66].

In the intrinsic apoptotic pathway, ceramides were suggested to form large chan-
nels on the outer membrane of the isolated rat liver mitochondria, leading to increased
permeability of small proteins, including cytochrome c, and triggering of the apoptotic
cascade [73]. Furthermore, ceramides were shown to induce the phosphorylation of p38
mitogen-activated protein kinase (MAPK), leading to de-phosphorylation (inactivation)
of Akt, and subsequent translocation of pro-apoptotic protein, Bax, to the mitochondria.
Bax then facilitates cytochrome c release from the mitochondria into the cytosol, triggering
apoptosis [68]. In addition, ceramides were observed to downregulate the Akt signaling
cascade by binding to the inhibitor of protein phosphatase 2A (I2PP2A), leading to the
activation of protein phosphatase 2A (PP2A), and subsequent inhibition of Akt [67,74].
Activated PP2A is linked to the de-phosphorylation (inactivation) of the anti-apoptotic
Bcl2 protein [69]. Ceramides were separately linked to reduced levels of the anti-apoptotic
protein, survivin, leading to increased expression of pro-apoptotic Bax [70,71].

As mentioned earlier, the acyl length of ceramides is linked to its toxicity, with C16-
and C18-ceramides being notorious in the development of various diseases [29,32,41,62].
Saddoughi et al. reported that I2PP2A preferentially binds to C18-ceramides over C14-,
C16-, C20-, C22-, and C24-ceramides [75], suggesting that C18-ceramides are a relatively
more potent inhibitor of Akt compared to other ceramides. Hence, C18 ceramides may
activate downstream apoptotic pathways more effectively. It was also reported that only
C16-ceramides are able bind to p53, preventing its degradation by the E3 ubiquitin ligase,
MDM2 [76]. Furthermore, the transient overexpression of CerS6 resulted in the stabilisation
of p53 protein, while CerS1-5 overexpression did not [76]. This stabilisation of p53 could
potentially increase binding of p53 to Bcl2, facilitate Bax translocation to mitochondria,
and lead to the subsequent activation of apoptosis [69]. Separately, the formation of a
mitochondrial outer membrane pore by C16-ceramides was found to be disrupted by ultra-
long acyl chains (C22- and C24-ceramides) [77]. Conversely, such ultra-long acyl chain
ceramides could also induce the formation of smaller membrane channels which were vice
versa disrupted by increased C16-ceramides [77]. Therefore, apart from its interaction with
proteins linked to apoptosis, the channel forming function of long acyl chain- and ultra-long
acyl chain-ceramides perhaps require further investigation, especially with regards to the
disruption of mitochondrial permeability and cytochrome c release.
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7. Lipid Droplet Biogenesis: A Potential Protective Mechanism against C18- and
C16-Ceramide Accumulation?

While inhibitors of ceramide biosynthesis, such as the mycotoxin fumonisin B1, was
demonstrated to be effective in preventing ceramide-mediated apoptosis in vitro, there
were concerns of adverse effects in vivo, especially inflammation and necrosis of the liver
and kidney in mice [78]. Apart from the direct modulation of ceramide synthase, handling
of excess intracellular fatty acids may offer another avenue for preventing long-chain
ceramide accumulation, ER stress, and apoptosis in cells. Proper sequestration of fatty
acids as neutral lipids, such as triglycerides, within lipid droplets (LDs) could prevent
ceramide accumulation as it reduces the availability of free fatty acid substrates at the ER
for ceramide synthesis. This was evident from a study performed by Zheng and colleagues,
where the reduction of LD biogenesis, through the β-cell specific knockout of FITM2 protein
in high-fat diet-fed mice, resulted in a significant increase in C16-ceramides in β-cells [58].
Similarly, the disruption of LD biogenesis, through the adipose-specific knockout of SEIPIN,
also resulted in a significant increase in C18- and C20-ceramides [79].

Indeed, the sequestration of palmitate, the most abundant saturated fatty acid found in
human serum, in the form of neutral lipids was found to protect the cells against palmitate-
mediated apoptosis in multiple studies [80–86]. Exposure of the unsaturated fatty acid,
oleate, prevented palmitate-induced apoptosis by promoting the incorporation of palmitate
into triglycerides in CHO-, 1.1B4-, and INS1e cells, with increased intracellular neutral
lipid accumulation [81–83]. In addition to oleate, the polyunsaturated fatty acid, C20:4
arachidonic acid, was also reported to have a similar beneficial impact on C2C12 cells,
a mouse skeletal muscle cell line [84]. The exogenous addition of linoleate, oleate, α-
linolenate, and docosahexaenoate to microglial cells also protected the cells from palmitate-
induced cell death, with a concomitant increase in neutral lipid formation [85]. Apart from
its effect on the sequestration of FFAs, LDs were also reported to store ceramides, in the
form of acylceramide, in the livers of high-fat diet-fed mice [86].

LDs facilitate sequestration of ceramides, and therefore the stabilization of protein targets
involved in LD formation may mitigate ceramide-induced apoptosis. The formation of LD
occurs at the ER and begins with the accumulation of triglycerides between the ER membranes,
and the subsequent curving and formation of an oil lens. With sufficient accumulation of
triglycerides, the oil lens will then bud off from the ER as LD [87]. LD biogenesis involves many
proteins, but three ER proteins—seipin, perilipin, and FITM2—are critical for LD formation.
Seipin recruits and promotes the accumulation of triglycerides at the LD biogenesis site,
while perilipins (PLIN2 and PLIN3) protect these triglyceride aggregates from lipolysis [88,89].
FITM2, other than its acyl coA diphosphatase activity, promotes membrane curvature at the
LD biogenesis sites by interacting with ER tubule-forming proteins and septins [90,91].

8. Conclusions

Emerging data point towards the benefit of accelerating lipid droplet biogenesis to
sequester fatty acid substrates away from CerS1 and CerS4–CerS6 in the ER. This could
lower the generation of long acyl chain length ceramides, notably C18- and C16-ceramides.
However, this is predicated upon rapid hydrolysis of the lipid droplets by the mitochondria
to prevent lipid droplet accumulation, which may result in steatosis. Hence, much more
research is needed to understand the evolutionary importance of long acyl chain ceramides
and on how knowledge on intracellular lipid regulation can be harnessed to dampen its
negative impact on various cells.

Author Contributions: Q.W.C.H. and Y.A. wrote the manuscript; X.Z. and Y.A. edited the manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Ministry of Education Singapore (MOE2018-T2-1-085, MOE-
T2EP30221-0003) (Y.A.) and Tier 1 (2019-T1-001-059) (Y.A.). This work is also partly supported by
the Program of National Natural Science Foundation of China (82070846) (X.Z.), the Program for
Overseas High-Level Talents Introduction of Sichuan Province of China (21RCYJ0046) (X.Z.).



Int. J. Mol. Sci. 2022, 23, 9697 8 of 11

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Y.A. is additionally supported by the LKCMedicine Healthcare Research Fund
(Diabetes Research), established through the generous support of alumni of Nanyang Technological
University, Singapore.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cha, H.J.; He, C.; Zhao, H.; Dong, Y.; An, I.S.; An, S. Intercellular and intracellular functions of ceramides and their metabolites in

skin (Review). Int. J. Mol. Med. 2016, 38, 16–22. [CrossRef] [PubMed]
2. Blaess, M.; Deigner, H.P. Derailed ceramide metabolism in atopic dermatitis (AD): A causal starting point for a personalized

(basic) therapy. Int. J. Mol. Sci. 2019, 20, 3967. [CrossRef] [PubMed]
3. Fujii, M. The pathogenic and therapeutic implications of ceramide abnormalities in atopic dermatitis. Cells 2021, 10, 2386.

[CrossRef] [PubMed]
4. Van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier

function. Biochim. Biophys. Acta 2014, 1841, 295–313. [CrossRef]
5. Galadari, S.; Rahman, A.; Pallichankandy, S.; Galadari, A.; Thayyullathil, F. Role of ceramide in diabetes mellitus: Evidence and

mechanisms. Lipids Health Dis. 2013, 12, 98. [CrossRef]
6. Sokolowska, E.; Blachnio-Zabielska, A. The role of ceramides in insulin resistance. Front. Endocrinol. 2019, 10, 577. [CrossRef]
7. Mandal, N.; Grambergs, R.; Mondal, K.; Basu, S.K.; Tahia, F.; Dagogo-Jack, S. Role of ceramides in the pathogenesis of diabetes

mellitus and its complications. J. Diabetes Complicat. 2021, 35, 107734. [CrossRef]
8. Choi, R.H.; Tatum, S.M.; Symons, J.D.; Summers, S.A.; Holland, W.L. Ceramides and other sphingolipids as drivers of cardiovas-

cular disease. Nat. Rev. Cardiol. 2021, 18, 701–711. [CrossRef]
9. Meeusen, J.W.; Donato, L.J.; Kopecky, S.L.; Vasile, V.C.; Jaffe, A.S.; Laaksonen, R. Ceramides improve atherosclerotic cardiovascular

disease risk assessment beyond standard risk factors. Clin. Chim. Acta 2020, 511, 138–142. [CrossRef]
10. Sassa, T.; Suto, S.; Okayasu, Y.; Kihara, A. A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis

in HeLa cells. Biochim. Biophys. Acta 2012, 1821, 1031–1037. [CrossRef]
11. Mesicek, J.; Lee, H.; Feldman, T.; Jiang, X.; Skobeleva, A.; Berdyshev, E.V.; Haimovitz-Friedman, A.; Fuks, Z.; Kolesnick, R.

Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal. 2010, 22, 1300–1307.
[CrossRef] [PubMed]

12. Seumois, G.; Fillet, M.; Gillet, L.; Faccinetto, C.; Desmet, C.; Francois, C.; Dewals, B.; Oury, C.; Vanderplasschen, A.; Lekeux,
P.; et al. De novo C16- and C24-ceramide generation contributes to spontaneous neutrophil apoptosis. J. Leukoc. Biol. 2007, 81,
1477–1486. [CrossRef] [PubMed]

13. Rudd, A.K.; Devaraj, N.K. Traceless synthesis of ceramides in living cells reveals saturation-dependent apoptotic effects. Proc.
Natl. Acad. Sci. USA 2018, 115, 7485–7490. [CrossRef]

14. Breen, P.; Joseph, N.; Thompson, K.; Kraveka, J.M.; Gudz, T.I.; Li, L.; Rahmaniyan, M.; Bielawski, J.; Pierce, J.S.; Van Buren, E.;
et al. Dihydroceramide desaturase knockdown impacts sphingolipids and apoptosis after photodamage in human head and neck
squamous carcinoma cells. Anticancer Res. 2013, 33, 77–84. [PubMed]

15. Siddique, M.M.; Bikman, B.T.; Wang, L.; Ying, L.; Reinhardt, E.; Shui, G.; Wenk, M.R.; Summers, S.A. Ablation of dihydroceramide
desaturase confers resistance to etoposide-induced apoptosis in vitro. PLoS ONE 2012, 7, e44042.

16. Larsen, P.J.; Tennagels, N. On ceramides, other sphingolipids and impaired glucose homeostasis. Mol. Metab. 2014, 3, 252–260.
[CrossRef]

17. Kitatani, K.; Idkowiak-Baldys, J.; Hannun, Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell
Signal. 2008, 20, 1010–1018. [CrossRef]

18. Airola, M.V.; Hannun, Y.A. Sphingolipid metabolism and neutral sphingomyelinases. Handb. Exp. Pharmacol. 2013, 215, 57–76.
19. Mizutani, Y.; Kihara, A.; Igarashi, Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides.

Biochem. J. 2005, 390 Pt 1, 263–271. [CrossRef]
20. Venkataraman, K.; Riebeling, C.; Bodennec, J.; Riezman, H.; Allegood, J.C.; Sullards, M.C.; Merrill, A.H., Jr.; Futerman, A.H.

Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1),
regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells.
J. Biol. Chem. 2002, 277, 35642–35649. [CrossRef]

21. Mizutani, Y.; Kihara, A.; Igarashi, Y. LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide
synthase with relatively broad substrate specificity. Biochem. J. 2006, 398, 531–538. [CrossRef] [PubMed]

22. Laviad, E.L.; Albee, L.; Pankova-Kholmyansky, I.; Epstein, S.; Park, H.; Merrill, A.H., Jr.; Futerman, A.H. Characterization of
ceramide synthase 2: Tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J. Biol. Chem. 2008, 283,
5677–5684. [CrossRef] [PubMed]

http://doi.org/10.3892/ijmm.2016.2600
http://www.ncbi.nlm.nih.gov/pubmed/27222347
http://doi.org/10.3390/ijms20163967
http://www.ncbi.nlm.nih.gov/pubmed/31443157
http://doi.org/10.3390/cells10092386
http://www.ncbi.nlm.nih.gov/pubmed/34572035
http://doi.org/10.1016/j.bbalip.2013.11.006
http://doi.org/10.1186/1476-511X-12-98
http://doi.org/10.3389/fendo.2019.00577
http://doi.org/10.1016/j.jdiacomp.2020.107734
http://doi.org/10.1038/s41569-021-00536-1
http://doi.org/10.1016/j.cca.2020.10.005
http://doi.org/10.1016/j.bbalip.2012.04.008
http://doi.org/10.1016/j.cellsig.2010.04.006
http://www.ncbi.nlm.nih.gov/pubmed/20406683
http://doi.org/10.1189/jlb.0806529
http://www.ncbi.nlm.nih.gov/pubmed/17329567
http://doi.org/10.1073/pnas.1804266115
http://www.ncbi.nlm.nih.gov/pubmed/23267130
http://doi.org/10.1016/j.molmet.2014.01.011
http://doi.org/10.1016/j.cellsig.2007.12.006
http://doi.org/10.1042/BJ20050291
http://doi.org/10.1074/jbc.M205211200
http://doi.org/10.1042/BJ20060379
http://www.ncbi.nlm.nih.gov/pubmed/16753040
http://doi.org/10.1074/jbc.M707386200
http://www.ncbi.nlm.nih.gov/pubmed/18165233


Int. J. Mol. Sci. 2022, 23, 9697 9 of 11

23. Riebeling, C.; Allegood, J.C.; Wang, E.; Merrill, A.H., Jr.; Futerman, A.H. Two mammalian longevity assurance gene (LAG1)
family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 2003,
278, 43452–43459. [CrossRef] [PubMed]

24. Lahiri, S.; Futerman, A.H. LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J.
Biol. Chem. 2005, 280, 33735–33738. [CrossRef] [PubMed]

25. Turpin-Nolan, S.M.; Hammerschmidt, P.; Chen, W.; Jais, A.; Timper, K.; Awazawa, M.; Brodesser, S.; Bruning, J.C. CerS1-Derived
C18:0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep. 2019, 26, 1–10.e17. [CrossRef]

26. Perez-Carrillo, L.; Gimenez-Escamilla, I.; Martinez-Dolz, L.; Sanchez-Lazaro, I.J.; Portoles, M.; Rosello-Lleti, E.; Tarazon, E.
Implication of sphingolipid metabolism gene dysregulation and cardiac sphingosine-1-phosphate accumulation in heart failure.
Biomedicines 2022, 10, 135. [CrossRef]

27. Ji, R.; Akashi, H.; Drosatos, K.; Liao, X.; Jiang, H.; Kennel, P.J.; Brunjes, D.L.; Castillero, E.; Zhang, X.; Deng, L.Y.; et al. Increased
de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight 2017, 2, e82922. [CrossRef]

28. Eckl, K.M.; Tidhar, R.; Thiele, H.; Oji, V.; Hausser, I.; Brodesser, S.; Preil, M.L.; Onal-Akan, A.; Stock, F.; Muller, D.; et al. Impaired
epidermal ceramide synthesis causes autosomal recessive congenital ichthyosis and reveals the importance of ceramide acyl
chain length. J. Investig. Dermatol. 2013, 133, 2202–2211. [CrossRef]

29. Ito, S.; Ishikawa, J.; Naoe, A.; Yoshida, H.; Hachiya, A.; Fujimura, T.; Kitahara, T.; Takema, Y. Ceramide synthase 4 is highly
expressed in involved skin of patients with atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 135–141. [CrossRef]

30. Veret, J.; Coant, N.; Berdyshev, E.V.; Skobeleva, A.; Therville, N.; Bailbe, D.; Gorshkova, I.; Natarajan, V.; Portha, B.; Le Stunff, H.
Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-
induced apoptosis of INS-1 beta-cells. Biochem. J. 2011, 438, 177–189. [CrossRef]

31. Gosejacob, D.; Jager, P.S.; Vom Dorp, K.; Frejno, M.; Carstensen, A.C.; Kohnke, M.; Degen, J.; Dormann, P.; Hoch, M. Ceramide
synthase 5 is essential to maintain C16:0-ceramide pools and contributes to the development of diet-induced obesity. J. Biol. Chem.
2016, 291, 6989–7003. [CrossRef] [PubMed]

32. Manukyan, L.; Ubhayasekera, S.J.; Bergquist, J.; Sargsyan, E.; Bergsten, P. Palmitate-induced impairments of beta-cell function are
linked with generation of specific ceramide species via acylation of sphingosine. Endocrinology 2015, 156, 802–812. [CrossRef]

33. Turpin, S.M.; Nicholls, H.T.; Willmes, D.M.; Mourier, A.; Brodesser, S.; Wunderlich, C.M.; Mauer, J.; Xu, E.; Hammerschmidt,
P.; Bronneke, H.S.; et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose
intolerance. Cell Metab. 2014, 20, 678–686. [CrossRef] [PubMed]

34. Coderch, L.; Lopez, O.; de la Maza, A.; Parra, J.L. Ceramides and skin function. Am. J. Clin. Dermatol. 2003, 4, 107–129. [CrossRef]
35. Janssens, M.; van Smeden, J.; Gooris, G.S.; Bras, W.; Portale, G.; Caspers, P.J.; Vreeken, R.J.; Hankemeier, T.; Kezic, S.; Wolterbeek,

R.; et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic
eczema patients. J. Lipid Res. 2012, 53, 2755–2766. [CrossRef] [PubMed]

36. van Smeden, J.; Janssens, M.; Kaye, E.C.; Caspers, P.J.; Lavrijsen, A.P.; Vreeken, R.J.; Bouwstra, J.A. The importance of free fatty
acid chain length for the skin barrier function in atopic eczema patients. Exp. Dermatol. 2014, 23, 45–52. [CrossRef] [PubMed]

37. Draelos, Z.D. A clinical evaluation of the comparable efficacy of hyaluronic acid-based foam and ceramide-containing emulsion
cream in the treatment of mild-to-moderate atopic dermatitis. J. Cosmet. Dermatol. 2011, 10, 185–188. [CrossRef]

38. Spada, F.; Harrison, I.P.; Barnes, T.M.; Greive, K.A.; Daniels, D.; Townley, J.P.; Mostafa, N.; Fong, A.T.; Tong, P.L.; Shumack, S. A
daily regimen of a ceramide-dominant moisturizing cream and cleanser restores the skin permeability barrier in adults with
moderate eczema: A randomized trial. Dermatol. Ther. 2021, 34, e14970. [CrossRef]

39. Jennemann, R.; Rabionet, M.; Gorgas, K.; Epstein, S.; Dalpke, A.; Rothermel, U.; Bayerle, A.; van der Hoeven, F.; Imgrund, S.;
Kirsch, J.; et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 2012, 21, 586–608. [CrossRef]

40. Raichur, S.; Brunner, B.; Bielohuby, M.; Hansen, G.; Pfenninger, A.; Wang, B.; Bruning, J.C.; Larsen, P.J.; Tennagels, N. The role of
C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol. Metab.
2019, 21, 36–50. [CrossRef]

41. Kim, Y.R.; Lee, E.J.; Shin, K.O.; Kim, M.H.; Pewzner-Jung, Y.; Lee, Y.M.; Park, J.W.; Futerman, A.H.; Park, W.J. Hepatic triglyceride
accumulation via endoplasmic reticulum stress-induced SREBP-1 activation is regulated by ceramide synthases. Exp. Mol. Med.
2019, 51, 1–16. [CrossRef] [PubMed]

42. Yun, H.; Sun, L.; Wu, Q.; Zong, G.; Qi, Q.; Li, H.; Zheng, H.; Zeng, R.; Liang, L.; Lin, X. Associations among circulating
sphingolipids, beta-cell function, and risk of developing type 2 diabetes: A population-based cohort study in China. PLoS Med.
2020, 17, e1003451. [CrossRef] [PubMed]

43. Fretts, A.M.; Jensen, P.N.; Hoofnagle, A.N.; McKnight, B.; Howard, B.V.; Umans, J.; Sitlani, C.M.; Siscovick, D.S.; King, I.B.;
Djousse, L.; et al. Plasma ceramides containing saturated fatty acids are associated with risk of type 2 diabetes. J. Lipid Res. 2021,
62, 100119. [CrossRef] [PubMed]

44. Hilvo, M.; Salonurmi, T.; Havulinna, A.S.; Kauhanen, D.; Pedersen, E.R.; Tell, G.S.; Meyer, K.; Teeriniemi, A.M.; Laatikainen, T.;
Jousilahti, P.; et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 2018, 61, 1424–1434. [CrossRef]

45. Wittenbecher, C.; Cuadrat, R.; Johnston, L.; Eichelmann, F.; Jager, S.; Kuxhaus, O.; Prada, M.; Del Greco, M.F.; Hicks, A.A.;
Hoffman, P.; et al. Dihydroceramide- and ceramide-profiling provides insights into human cardiometabolic disease etiology. Nat.
Commun. 2022, 13, 936. [CrossRef]

http://doi.org/10.1074/jbc.M307104200
http://www.ncbi.nlm.nih.gov/pubmed/12912983
http://doi.org/10.1074/jbc.M506485200
http://www.ncbi.nlm.nih.gov/pubmed/16100120
http://doi.org/10.1016/j.celrep.2018.12.031
http://doi.org/10.3390/biomedicines10010135
http://doi.org/10.1172/jci.insight.82922
http://doi.org/10.1038/jid.2013.153
http://doi.org/10.1111/jdv.13777
http://doi.org/10.1042/BJ20101386
http://doi.org/10.1074/jbc.M115.691212
http://www.ncbi.nlm.nih.gov/pubmed/26853464
http://doi.org/10.1210/en.2014-1467
http://doi.org/10.1016/j.cmet.2014.08.002
http://www.ncbi.nlm.nih.gov/pubmed/25295788
http://doi.org/10.2165/00128071-200304020-00004
http://doi.org/10.1194/jlr.P030338
http://www.ncbi.nlm.nih.gov/pubmed/23024286
http://doi.org/10.1111/exd.12293
http://www.ncbi.nlm.nih.gov/pubmed/24299153
http://doi.org/10.1111/j.1473-2165.2011.00568.x
http://doi.org/10.1111/dth.14970
http://doi.org/10.1093/hmg/ddr494
http://doi.org/10.1016/j.molmet.2018.12.008
http://doi.org/10.1038/s12276-019-0340-1
http://www.ncbi.nlm.nih.gov/pubmed/31827074
http://doi.org/10.1371/journal.pmed.1003451
http://www.ncbi.nlm.nih.gov/pubmed/33296380
http://doi.org/10.1016/j.jlr.2021.100119
http://www.ncbi.nlm.nih.gov/pubmed/34555371
http://doi.org/10.1007/s00125-018-4590-6
http://doi.org/10.1038/s41467-022-28496-1


Int. J. Mol. Sci. 2022, 23, 9697 10 of 11

46. Zhang, Q.J.; Holland, W.L.; Wilson, L.; Tanner, J.M.; Kearns, D.; Cahoon, J.M.; Pettey, D.; Losee, J.; Duncan, B.; Gale, D.; et al.
Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex.
Diabetes 2012, 61, 1848–1859. [CrossRef]

47. Glaros, E.N.; Kim, W.S.; Wu, B.J.; Suarna, C.; Quinn, C.M.; Rye, K.A.; Stocker, R.; Jessup, W.; Garner, B. Inhibition of atherosclerosis
by the serine palmitoyl transferase inhibitor myriocin is associated with reduced plasma glycosphingolipid concentration.
Biochem. Pharmacol. 2007, 73, 1340–1346. [CrossRef]

48. Park, T.S.; Panek, R.L.; Mueller, S.B.; Hanselman, J.C.; Rosebury, W.S.; Robertson, A.W.; Kindt, E.K.; Homan, R.; Karathanasis,
S.K.; Rekhter, M.D. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation
2004, 110, 3465–3471. [CrossRef]

49. Park, T.S.; Hu, Y.; Noh, H.L.; Drosatos, K.; Okajima, K.; Buchanan, J.; Tuinei, J.; Homma, S.; Jiang, X.C.; Abel, E.D.; et al. Ceramide
is a cardiotoxin in lipotoxic cardiomyopathy. J. Lipid Res. 2008, 49, 2101–2112. [CrossRef]

50. Sigruener, A.; Kleber, M.E.; Heimerl, S.; Liebisch, G.; Schmitz, G.; Maerz, W. Glycerophospholipid and sphingolipid species and
mortality: The Ludwigshafen risk and cardiovascular health (LURIC) study. PLoS ONE 2014, 9, e85724. [CrossRef]

51. Zobel, E.H.; Wretlind, A.; Ripa, R.S.; Rotbain Curovic, V.; von Scholten, B.J.; Suvitaival, T.; Hansen, T.W.; Kjaer, A.; Legido-
Quigley, C.; Rossing, P. Ceramides and phospholipids are downregulated with liraglutide treatment: Results from the LiraFlame
randomized controlled trial. BMJ Open Diabetes Res. Care 2021, 9, e002395. [CrossRef] [PubMed]

52. Peterson, L.R.; Xanthakis, V.; Duncan, M.S.; Gross, S.; Friedrich, N.; Volzke, H.; Felix, S.B.; Jiang, H.; Sidhu, R.; Nauck, M.; et al.
Ceramide remodeling and risk of cardiovascular events and mortality. J. Am. Heart Assoc. 2018, 7, e007931. [CrossRef]

53. Simon, C.G., Jr.; Holloway, P.W.; Gear, A.R. Exchange of C(16)-ceramide between phospholipid vesicles. Biochemistry 1999, 38,
14676–14682. [CrossRef] [PubMed]

54. Kjellberg, M.A.; Lonnfors, M.; Slotte, J.P.; Mattjus, P. Metabolic conversion of ceramides in HeLa cells—A cholesteryl phospho-
choline delivery approach. PLoS ONE 2015, 10, e0143385.

55. Zabielski, P.; Blachnio-Zabielska, A.U.; Wojcik, B.; Chabowski, A.; Gorski, J. Effect of plasma free fatty acid supply on the rate of
ceramide synthesis in different muscle types in the rat. PLoS ONE 2017, 12, e0187136. [CrossRef]

56. Milger, K.; Herrmann, T.; Becker, C.; Gotthardt, D.; Zickwolf, J.; Ehehalt, R.; Watkins, P.A.; Stremmel, W.; Fullekrug, J. Cellular
uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4. J. Cell Sci. 2006, 119 Pt 22, 4678–4688. [CrossRef]

57. Shimura, M.; Shindou, H.; Szyrwiel, L.; Tokuoka, S.M.; Hamano, F.; Matsuyama, S.; Okamoto, M.; Matsunaga, A.; Kita, Y.;
Ishizaka, Y.; et al. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy. FASEB J. 2016, 30, 4149–4158.
[CrossRef]

58. Zheng, X.; Ho, Q.W.C.; Chua, M.; Stelmashenko, O.; Yeo, X.Y.; Muralidharan, S.; Torta, F.; Chew, E.G.Y.; Lian, M.M.; Foo, J.N.; et al.
Destabilization of beta Cell FIT2 by saturated fatty acids alter lipid droplet numbers and contribute to ER stress and diabetes.
Proc. Natl. Acad. Sci. USA 2022, 119, e2113074119. [CrossRef]

59. Turpin, S.M.; Lancaster, G.I.; Darby, I.; Febbraio, M.A.; Watt, M.J. Apoptosis in skeletal muscle myotubes is induced by ceramides
and is positively related to insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E1341–E1350. [CrossRef]

60. Henique, C.; Mansouri, A.; Fumey, G.; Lenoir, V.; Girard, J.; Bouillaud, F.; Prip-Buus, C.; Cohen, I. Increased mitochondrial fatty
acid oxidation is sufficient to protect skeletal muscle cells from palmitate-induced apoptosis. J. Biol. Chem. 2010, 285, 36818–36827.
[CrossRef]

61. Jiang, M.; Li, C.; Liu, Q.; Wang, A.; Lei, M. Inhibiting ceramide synthesis attenuates hepatic steatosis and fibrosis in rats with
non-alcoholic fatty liver disease. Front. Endocrinol. 2019, 10, 665. [CrossRef] [PubMed]

62. Zietzer, A.; Jahnel, A.L.; Bulic, M.; Gutbrod, K.; Dusing, P.; Hosen, M.R.; Dormann, P.; Werner, N.; Nickenig, G.; Jansen,
F. Activation of neutral sphingomyelinase 2 through hyperglycemia contributes to endothelial apoptosis via vesicle-bound
intercellular transfer of ceramides. Cell Mol. Life Sci. 2021, 79, 48. [CrossRef] [PubMed]

63. Park, M.A.; Zhang, G.; Martin, A.P.; Hamed, H.; Mitchell, C.; Hylemon, P.B.; Graf, M.; Rahmani, M.; Ryan, K.; Liu, X.; et al.
Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer
Biol. Ther. 2008, 7, 1648–1662. [CrossRef] [PubMed]

64. Huang, S.T.; Yang, R.C.; Chen, M.Y.; Pang, J.H. Phyllanthus urinaria induces the Fas receptor/ligand expression and ceramide-
mediated apoptosis in HL-60 cells. Life Sci. 2004, 75, 339–351. [CrossRef] [PubMed]

65. Yoon, G.; Kim, K.O.; Lee, J.; Kwon, D.; Shin, J.S.; Kim, S.J.; Choi, I.H. Ceramide increases Fas-mediated apoptosis in glioblastoma
cells through FLIP down-regulation. J. Neurooncol. 2002, 60, 135–141. [CrossRef]

66. Asakuma, J.; Sumitomo, M.; Asano, T.; Asano, T.; Hayakawa, M. Selective Akt inactivation and tumor necrosis actor-related
apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res. 2003, 63, 1365–1370.

67. Mukhopadhyay, A.; Saddoughi, S.A.; Song, P.; Sultan, I.; Ponnusamy, S.; Senkal, C.E.; Snook, C.F.; Arnold, H.K.; Sears, R.C.;
Hannun, Y.A.; et al. Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the
regulation of protein phosphatase 2A activity and signaling. FASEB J. 2009, 23, 751–763. [CrossRef]

68. Kim, H.J.; Oh, J.E.; Kim, S.W.; Chun, Y.J.; Kim, M.Y. Ceramide induces p38 MAPK-dependent apoptosis and Bax translocation via
inhibition of Akt in HL-60 cells. Cancer Lett. 2008, 260, 88–95. [CrossRef]

69. Deng, X.; Gao, F.; May, W.S. Protein phosphatase 2A inactivates Bcl2’s antiapoptotic function by dephosphorylation and
up-regulation of Bcl2-p53 binding. Blood 2009, 113, 422–428. [CrossRef]

http://doi.org/10.2337/db11-1399
http://doi.org/10.1016/j.bcp.2006.12.023
http://doi.org/10.1161/01.CIR.0000148370.60535.22
http://doi.org/10.1194/jlr.M800147-JLR200
http://doi.org/10.1371/journal.pone.0085724
http://doi.org/10.1136/bmjdrc-2021-002395
http://www.ncbi.nlm.nih.gov/pubmed/34518158
http://doi.org/10.1161/JAHA.117.007931
http://doi.org/10.1021/bi991537w
http://www.ncbi.nlm.nih.gov/pubmed/10545193
http://doi.org/10.1371/journal.pone.0187136
http://doi.org/10.1242/jcs.03280
http://doi.org/10.1096/fj.201600569R
http://doi.org/10.1073/pnas.2113074119
http://doi.org/10.1152/ajpendo.00095.2006
http://doi.org/10.1074/jbc.M110.170431
http://doi.org/10.3389/fendo.2019.00665
http://www.ncbi.nlm.nih.gov/pubmed/31616384
http://doi.org/10.1007/s00018-021-04049-5
http://www.ncbi.nlm.nih.gov/pubmed/34951654
http://doi.org/10.4161/cbt.7.10.6623
http://www.ncbi.nlm.nih.gov/pubmed/18787411
http://doi.org/10.1016/j.lfs.2003.12.013
http://www.ncbi.nlm.nih.gov/pubmed/15135654
http://doi.org/10.1023/A:1020604705831
http://doi.org/10.1096/fj.08-120550
http://doi.org/10.1016/j.canlet.2007.10.030
http://doi.org/10.1182/blood-2008-06-165134


Int. J. Mol. Sci. 2022, 23, 9697 11 of 11

70. Liu, X.; Ryland, L.; Yang, J.; Liao, A.; Aliaga, C.; Watts, R.; Tan, S.F.; Kaiser, J.; Shanmugavelandy, S.S.; Rogers, A.; et al. Targeting of
survivin by nanoliposomal ceramide induces complete remission in a rat model of NK-LGL leukemia. Blood 2010, 116, 4192–4201.
[CrossRef]

71. Temme, A.; Rodriguez, J.A.; Hendruschk, S.; Gunes, S.; Weigle, B.; Schakel, K.; Schmitz, M.; Bachmann, M.; Schackert, G.; Rieber,
E.P. Nuclear localization of Survivin renders HeLa tumor cells more sensitive to apoptosis by induction of p53 and Bax. Cancer
Lett. 2007, 250, 177–193. [CrossRef] [PubMed]

72. Dumitru, C.A.; Gulbins, E. TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger
apoptosis. Oncogene 2006, 25, 5612–5625. [CrossRef] [PubMed]

73. Siskind, L.J.; Kolesnick, R.N.; Colombini, M. Ceramide forms channels in mitochondrial outer membranes at physiologically
relevant concentrations. Mitochondrion 2006, 6, 118–125. [CrossRef] [PubMed]

74. Kuo, Y.C.; Huang, K.Y.; Yang, C.H.; Yang, Y.S.; Lee, W.Y.; Chiang, C.W. Regulation of phosphorylation of Thr-308 of Akt, cell
proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J. Biol.
Chem. 2008, 283, 1882–1892. [CrossRef] [PubMed]

75. Saddoughi, S.A.; Gencer, S.; Peterson, Y.K.; Ward, K.E.; Mukhopadhyay, A.; Oaks, J.; Bielawski, J.; Szulc, Z.M.; Thomas, R.J.;
Selvam, S.P.; et al. Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation
of PP2A-RIPK1-dependent necroptosis. EMBO Mol. Med. 2013, 5, 105–121. [CrossRef]

76. Fekry, B.; Jeffries, K.A.; Esmaeilniakooshkghazi, A.; Szulc, Z.M.; Knagge, K.J.; Kirchner, D.R.; Horita, D.A.; Krupenko, S.A.;
Krupenko, N.I. C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat. Commun. 2018, 9, 4149.
[CrossRef]

77. Stiban, J.; Perera, M. Very long chain ceramides interfere with C16-ceramide-induced channel formation: A plausible mechanism
for regulating the initiation of intrinsic apoptosis. Biochim. Biophys. Acta 2015, 1848, 561–567. [CrossRef]

78. Chen, Z.; Zhang, F.; Jiang, L.; Chen, Z.; Sun, H. Toxic effects of mycotoxin Fumonisin B1 at six different doses on female BALB/c
mice. Toxins 2021, 14, 21. [CrossRef]

79. Liu, L.; Jiang, Q.; Wang, X.; Zhang, Y.; Lin, R.C.; Lam, S.M.; Shui, G.; Zhou, L.; Li, P.; Wang, Y.; et al. Adipose-specific knockout of
SEIPIN/BSCL2 results in progressive lipodystrophy. Diabetes 2014, 63, 2320–2331. [CrossRef]

80. Abdelmagid, S.A.; Clarke, S.E.; Nielsen, D.E.; Badawi, A.; El-Sohemy, A.; Mutch, D.M.; Ma, D.W. Comprehensive profiling of
plasma fatty acid concentrations in young healthy Canadian adults. PLoS ONE 2015, 10, e0116195. [CrossRef]

81. Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects
against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [CrossRef]

82. Oberhauser, L.; Jimenez-Sanchez, C.; Madsen, J.G.S.; Duhamel, D.; Mandrup, S.; Brun, T.; Maechler, P. Glucolipotoxicity promotes
the capacity of the glycerolipid/NEFA cycle supporting the secretory response of pancreatic beta cells. Diabetologia 2022, 65,
705–720. [CrossRef]

83. Nemecz, M.; Constantin, A.; Dumitrescu, M.; Alexandru, N.; Filippi, A.; Tanko, G.; Georgescu, A. The distinct effects of palmitic
and oleic acid on pancreatic beta cell function: The elucidation of associated mechanisms and effector molecules. Front. Pharmacol.
2018, 9, 1554. [CrossRef] [PubMed]

84. Cheon, H.G.; Cho, Y.S. Protection of palmitic acid-mediated lipotoxicity by arachidonic acid via channeling of palmitic acid into
triglycerides in C2C12. J. Biomed. Sci. 2014, 21, 13. [CrossRef]

85. Urso, C.J.; Zhou, H. Palmitic acid lipotoxicity in microglia cells is ameliorated by unsaturated fatty acids. Int. J. Mol. Sci. 2021,
22, 9093. [CrossRef] [PubMed]

86. Senkal, C.E.; Salama, M.F.; Snider, A.J.; Allopenna, J.J.; Rana, N.A.; Koller, A.; Hannun, Y.A.; Obeid, L.M. Ceramide is metabolized
to acylceramide and stored in lipid droplets. Cell Metab. 2017, 25, 686–697. [CrossRef] [PubMed]

87. Fader Kaiser, C.M.; Romano, P.S.; Vanrell, M.C.; Pocognoni, C.A.; Jacob, J.; Caruso, B.; Delgui, L.R. Biogenesis and breakdown of
lipid droplets in pathological conditions. Front. Cell Dev. Biol. 2021, 9, 826248. [CrossRef] [PubMed]

88. Bell, M.; Wang, H.; Chen, H.; McLenithan, J.C.; Gong, D.W.; Yang, R.Z.; Yu, D.; Fried, S.K.; Quon, M.J.; Londos, C.; et al.
Consequences of lipid droplet coat protein downregulation in liver cells: Abnormal lipid droplet metabolism and induction of
insulin resistance. Diabetes 2008, 57, 2037–2045. [CrossRef]

89. Listenberger, L.L.; Ostermeyer-Fay, A.G.; Goldberg, E.B.; Brown, W.J.; Brown, D.A. Adipocyte differentiation-related protein
reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J. Lipid Res. 2007, 48,
2751–2761. [CrossRef]

90. Chen, F.; Yan, B.; Ren, J.; Lyu, R.; Wu, Y.; Guo, Y.; Li, D.; Zhang, H.; Hu, J. FIT2 organizes lipid droplet biogenesis with ER
tubule-forming proteins and septins. J. Cell Biol. 2021, 220, e201907183. [CrossRef]

91. Becuwe, M.; Bond, L.M.; Pinto, A.F.M.; Boland, S.; Mejhert, N.; Elliott, S.D.; Cicconet, M.; Graham, M.M.; Liu, X.N.; Ilkayeva, O.;
et al. FIT2 is an acyl-coenzyme A diphosphatase crucial for endoplasmic reticulum homeostasis. J. Cell Biol. 2020, 219, e202006111.
[CrossRef] [PubMed]

http://doi.org/10.1182/blood-2010-02-271080
http://doi.org/10.1016/j.canlet.2006.09.020
http://www.ncbi.nlm.nih.gov/pubmed/17084966
http://doi.org/10.1038/sj.onc.1209568
http://www.ncbi.nlm.nih.gov/pubmed/16636669
http://doi.org/10.1016/j.mito.2006.03.002
http://www.ncbi.nlm.nih.gov/pubmed/16713754
http://doi.org/10.1074/jbc.M709585200
http://www.ncbi.nlm.nih.gov/pubmed/18042541
http://doi.org/10.1002/emmm.201201283
http://doi.org/10.1038/s41467-018-06650-y
http://doi.org/10.1016/j.bbamem.2014.11.018
http://doi.org/10.3390/toxins14010021
http://doi.org/10.2337/db13-0729
http://doi.org/10.1371/journal.pone.0116195
http://doi.org/10.1073/pnas.0630588100
http://doi.org/10.1007/s00125-021-05633-x
http://doi.org/10.3389/fphar.2018.01554
http://www.ncbi.nlm.nih.gov/pubmed/30719005
http://doi.org/10.1186/1423-0127-21-13
http://doi.org/10.3390/ijms22169093
http://www.ncbi.nlm.nih.gov/pubmed/34445796
http://doi.org/10.1016/j.cmet.2017.02.010
http://www.ncbi.nlm.nih.gov/pubmed/28273483
http://doi.org/10.3389/fcell.2021.826248
http://www.ncbi.nlm.nih.gov/pubmed/35198567
http://doi.org/10.2337/db07-1383
http://doi.org/10.1194/jlr.M700359-JLR200
http://doi.org/10.1083/jcb.201907183
http://doi.org/10.1083/jcb.202006111
http://www.ncbi.nlm.nih.gov/pubmed/32915949

	Introduction 
	Ceramides Synthesis 
	Ceramides in Disease 
	Linking Circulating Ceramides with Intracellular Lipid Regulation 
	Are Ceramides Responsible for Certain Fatty Acid-Induced ER Stress and Apoptosis? 
	Mechanisms Underpinning Ceramide-Mediated Apoptosis 
	Lipid Droplet Biogenesis: A Potential Protective Mechanism against C18- and C16-Ceramide Accumulation? 
	Conclusions 
	References

