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ABSTRACT: This study presents a novel approach to 'H NMR-based machine learning (ML) models for predicting logD using
computer-generated 'H NMR spectra. Building on our previous work, which integrated experimental 'H NMR data, this study
addresses key limitations associated with experimental measurements, such as sample stability, solvent variability, and extensive
processing, by replacing them with fully computational workflows. Benchmarking across various density functional theory (DFT)
functionals and basis sets highlighted their limitations, with DFT-based models showing relatively high RMSE values (average CHI
logD of 1.12, lowest at 0.96) and extensive computational demands, limiting their usefulness for large-scale predictions. In contrast,
models trained on predicted "H NMR spectra by NMRshiftDB2 and JEOL JASON achieved RMSE values as low as 0.76, compared
to 0.88 for experimental spectra. Further analysis revealed that mixing experimental and predicted spectra did not enhance accuracy,
underscoring the advantage of homogeneous datasets. Validation with external datasets confirmed the robustness of our models,
showing comparable performance to commercial software like Instant JChem, thus underscoring the reliability of the proposed
computational workflow. Additionally, using normalized RMSE (NRMSE) proved essential for consistent model evaluation across
datasets with varying data scales. By eliminating the need for experimental input, this workflow offers a widely accessible,
computationally efficient pipeline, setting a new standard for ML-driven chemical property predictions without experimental data
constraints.

B INTRODUCTION Regression (LR), Random Forest (RF), and Support Vector
Machines (SVM), with RF often considered the “gold
standard”.*” However, the performance of these models is
highly dependent on the descriptors chosen for training, and it
has been shown that models based solelgr on molecular
fingerprints often perform suboptimally.'”"" Furthermore,
limited attention has been given to newer, state-of-the-art
machine learning algorithms like XGBoost and LightGBM,
which have demonstrated great potential for predicting
molecular properties.'”"* Despite the development of graph-

In the current state of computational chemistry, predictive
models based on two-dimensional (2D) molecular descriptors
have reached a plateau of performance. Traditional 2D
descriptors, such as molecular fingerprints, encode structural
information about the presence or absence of specific
substructures and functional groups.'~* While effective, these
descriptors are inherently limited in capturing the complexity
of the chemical information. Specifically, they fail to provide
insight into the molecular environment, conformational
dynamics, nuclei near the nanoparticle, and intermolecular
interactions. As a result, advances in predictive modeling using
2D descriptors have become incremental, with most recent
developments focusing on refining existing methods rather
than introducing fundamentally new approaches.”~” Many
predictive models developed using these descriptors rely on
traditional machine learning algorithms such as Logistic
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based methods, which are reported to outperform descriptor-
based approaches, this remains a topic of ongoing debate,
highlighting the need for further exploration of new method-
ologies to move beyond the limitations of 2D descriptors.®

In contrast, Nuclear Magnetic Resonance (NMR) spectra
offer a notably richer source of information that can be
leveraged as a molecular fingerprint. NMR spectra not only
reflect the chemical shifts associated with specific nuclear
environments but also provide indirect data about molecular
conformation, electron distribution, and intermolecular inter-
actions such as hydrogen bonding and steric effects. This
additional layer of data makes NMR spectra a valuable and
irreplaceable tool for capturing the subtle nuances of molecular
behavior that are often missed by traditional molecular
fingerprints. Using NMR spectra as a basis for predictive
modeling makes it possible to account for both intra- and
intermolecular interactions, offering a more comprehensive
representation of a molecule’s properties.'*

Our previous work demonstrated the potential of integrating
'"H NMR data with machine learning (ML) to predict the
distribution coefficient logD.'> The logD is an essential
parameter for quantifying lipophilicity, as it accounts for
ionization, making it more relevant for drug research since
most drugs contain ionizable groups. Lipophilicity influences
key physicochemical properties of drugs, including absorption,
distribution, metabolism, and toxicity. Excessive lipophilicity
may increase toxicity risks, while low lipophilicity can limit
absorption and metabolism. Accurate determination of logD is
crucial for assessing the pharmacokinetic properties and safety
of potential drug candidates.

In that study, we benchmarked several machine learning
algorithms, including Support Vector Regression (SVR),
Gradient Boosting, and AdaBoost, against traditional 2D
molecular fingerprints such as MACCS, Klekota-Roth,
Extended-Connectivity Fingerprints (ECFPs), RDKit Finger-
prints, and Molecular Descriptors. The 'H NMR-based models
had similar outputs to the fingerprint-based models, with the
Gradient Boosting model combined with 10-fold cross-
validation (10CV) achieving the highest accuracy (0.87).
However, the major limitation of the proposed approach was
its reliance on experimental '"H NMR data, which are both
time-consuming and resource-intensive to collect. In addition,
the inherent variability in experimental conditions—such as
solvent effects, sample purity, and spectrometer settings—
introduced noise into the datasets, negatively impacting the
model’s generalizability. The study also highlighted that
experimental data availability was a bottleneck, as collecting
high-quality NMR spectra for large datasets is labor-intensive
and subject to various experimental inconsistencies. These
challenges underscored the need for alternative approaches to
utilize theoretical and predicted spectra or mixed datasets that
combine experimental and generated spectral data to overcome
these limitations.

In this study, we build upon our earlier approach by utilizing
theoretical and predicted "H NMR spectra to overcome the
reliance on experimental data. We examine the feasibility of
supplementing or replacing experimental datasets with
generated spectra in the training of logD predictive models.
By systematically comparing experimental and generated
spectral data obtained from different sources, we aim to
determine whether theoretically generated or predicted spectra
can offer comparable accuracy and reliability. To achieve this,
we benchmark a broad range of Density Functional Theory
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(DFT) functionals and basis sets, as well as ML-based
methods, to ensure a comprehensive evaluation of spectrum
generation. Additionally, we assess the performance of models
trained on mixed datasets—combining experimental and
generated spectra in specific ratios. The objective of this
work is to develop a more versatile and accessible methodology
that expands the potential applications of NMR-based
predictions while minimizing reliance on resource-intensive
experimental procedures. By leveraging theoretical and
predicted spectral data, we aim to provide robust predictive
models, enabling a more efficient exploration of the chemical
space.

B MATERIALS AND METHODS

Compound Dataset. A total of 754 chemical compounds,
selected from the Celon Pharma internal database, were used
in this study. The selection criteria included a broad diversity
of chemical structures, encompassing various functional groups
and molecular cores, as well as the sufficient quality of the 'H
NMR spectra and the availability of experimental logD values.
The values were measured chromatographically at three pH
points: 2.6, 7.4, and 10.5. Structural diversity was assessed
through automatic hierarchical clustering of the dataset, using
the Tanimoto metric with ECFP4 fingerprints for similarity
analysis and a complete linkage method to group the
compounds. A more detailed description of the dataset can
be found in our previous work."

Experimental Determination of LogD. CHI logD and
Chrom logD are chromatographically derived parameters used
to quantify the lipophilicity of chemical compounds, serving as
practical alternatives to conventional logD. While traditional
logD measures the distribution coeflicient of a compound
between octanol and water phases at a specific pH, CHI logD
and Chrom logD are determined by using high-performance
liquid chromatography (HPLC) techniques. The complete
characterization of these two parameters, their interdepend-
ence, and the methodology for their measurement and
determination have been described in previous studies.'”'¢

Experimental '"H NMR Spectra. 'H NMR spectra were
acquired on a JEOL JNM-ECZS 400 MHz, JEOL JNM-ECZR
600 MHz, Bruker DRX 500 MHz, and Varian Inova 300 MHz
spectrometers. Spectra were measured in DMSO-dg4 or CDCl,
solution at 298 K temperature. Signals were referenced to
DMSO-dg with a chemical shift defined at 2.50 ppm or CDCl,
with a chemical shift of 7.26 ppm. Alongside the standard
analysis and interpretation of the 'H NMR, chemical shifts
were listed for each hydrogen atom to perform a related DFT
benchmark so that the final number of chemical shifts equaled
the number of hydrogen atoms.

The detailed procedure for processing and preparing
experimental '"H NMR spectra as inputs for training machine
learning models is described in a previous study.'”> We selected
the most optimal and universally applicable approach based on
the findings. The data were reduced using the Bucket
Integration method, down to 500 points from the original
16,384, and then normalized within the range of 0 to 1000.

Theoretical and Predicted '"H NMR Spectra Gener-
ation. In this study, we utilized three fundamentally different
sources of computer-generated "H NMR spectra, each varying
in spectral resolution, computational cost, and processing time.
For training machine learning models, theoretical spectra were
generated using a quantum-mechanics approach, specifically
Density Functional Theory, across various levels of basis sets
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and functionals. In addition, JEOL JASON'" software was
employed to predict spectra that closely mimic real '"H NMR
spectra. The third method involved a standalone chemical shift
predictor for 'H NMR spectra, developed usin§ HOSE codes
and based on the NMRshiftDB2 database."*™>

All quantum-chemical calculations were performed using the
Gaussian 16 (G16) software package.”' The molecular
geometries were optimized using DFT,”””° with five different
functionals: B3LYP-D3BJ,°"** CAM-B3LYP-D3BJ,*’ MO06-
2X-D3,°”*" PBEPBE-D3BJ,”*** and wB97XD.** The D3
version of Grimme’s dispersion correction with Becke-Johnson
(BJ) damping was applied to account for long-range electron
correlation effects, improving the accuracy of density func-
tional theory calculations by correcting for dispersion
interactions. These were tested with six basis sets: 6-31G(2d),
6-311+G(2d,p) — Pople basis sets,*”*® cc-pVDZ, cc-pVTZ —
Dunning’s correlation-consistent basis sets,” 738 4ef2-SVP, and
def2-TZVP — Karlsruhe basis sets.””** Solvent effects were
included using the polarizable continuum model (PCM)*" for
chloroform (CDCly) and dimethyl sulfoxide (DMSO) to
replicate experimental conditions.

To ensure consistency in geometry optimization, the
following convergence thresholds were applied across all
functionals and basis sets:

e Maximum Force: 4.5 X 10~* Ha/Bohr,

e RMS Force: 3.0 X 10~* Ha/Bohr,

e Maximum Displacement: 1.8 X 10> Bohr,
e RMS Displacement: 1.2 X 10~ Bohr.

These parameters ensured accurate and well-converged
molecular structures suitable for subsequent NMR calculations.

"H NMR shielding tensors were computed using the gauge-
independent atomic orbital (GIAO) method within the same
functional and basis set framework.”””** The calculated 'H
NMR chemical shifts were referenced to tetramethylsilane
(TMS) as an internal standard, using calculated values from
the same computational set for comparison. Shielding tensors
are intrinsic properties of the molecule and are independent of
the reference standard and the resonance frequency of the
spectrometer. Conversion to chemical shifts was necessary to
compare the calculated shielding values to the experimental
data. No explicit signal assignment was used for comparison
between calculated and experimental spectra, as a semi-
automated analysis was required. The analysis was conducted
by comparing the occurrence of successive signals in both
experimental and theoretical 'H NMR spectra. The chemical
shifts of signals originating from the same nuclei in a structural
sense were not compared; only the order of their appearance in
the spectra was evaluated. The benchmark simulated the
approach of machine learning algorithms in reading input data
without a specific assignment of signals to structures. The root-
mean-square error (RMSE) was calculated without individual
signal matching to evaluate the overall agreement between the
calculated and experimental shifts for each hydrogen. The
heatmaps and boxplots were generated by our Python script,*
utilizing the Matplotlib46 and Seaborn®” libraries, to visualize
the performance of different functional and basis set
combinations.

Following the benchmark analysis, the CAM-B3LYP/6—
311+G(2d,p) combination was used to calculate the "H NMR
spectra for the entire molecular library. The PCM model was
applied for CDCI, as a solvent. For structures containing heavy
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atoms, the GenECP with pseudopotential for heavy atoms
(def2-TZVP) was used to account for relativistic effects.

All calculations were performed on the Ares supercomputer
at the HPC Center: ACK Cyfronet AGH, utilizing 24 cores per
job, ensuring efficient parallel processing and reducing
computation time. Computation times for each job were
extracted directly from the Gaussian log files, allowing for an
assessment of the computational efficiency alongside the
accuracy.

The second computer-generated '"H NMR spectra method
used was a tool implemented in JEOL JASON software 4.0."
Spectra were predicted from structures saved in .mol files. The
predictions were performed at a frequency of 600 MHz, with a
line broadening factor of 1.0 Hz and 64K points across a
spectral window from 0 to 12 ppm. All generated spectra were
then subjected to postprocessing using the resample function,
with the range set from —1 to 12 ppm and 16,384 points. Each
spectrum generation took several seconds and required manual
processing and saving of the results. The spectrum produced
by the JASON software is a fully representative 'H NMR
spectrum, in which the signals not only appear at the defined
frequencies but also include relative integration and multiplet
structure, allowing for the reading of coupling constants. The
spectrum lacks only the signals of the solvent, internal
standard, and typical impurities, such as water.

The last method used for generating predicted 'H NMR
spectra involved the standalone predictorlh.jar,*® which
contains a Java class org.openscience.nmrshiftdb, a prediction
tool, and a CSV file. This file includes all HOSE codes and
corresponding  shift values from NMRshiftDB2.'"*™*° The
predictor was employed in conjunction with the Chemistry
Development Kit (CDK) version 2.9*’ and a modified script
published on the project’s SourceForge page which is
provided in the Supporting Information of this publication.
Properly prepared .mol files of the compound structures were
used as input for the predictions. Loading structures as flat
coordinates or 3D structures occasionally caused stereo-
chemistry assessment errors on certain atoms. To address
this, structures were prepared by loading SMILES codes to a
Python script, then 3D coordinates were generated using the
Python RDKit 1ibrary,50 which were then flattened and saved
to files already in the form of 2D coordinates. The flattening
process involved zeroing out the z-coordinates. These prepared
structures worked seamlessly with the "H NMR predictor.

Generating Spectra from Predictions. The results from
both DFT calculations and the predictions using the
NMRshiftDB2-based tool are not conventional 'H NMR
spectra in the form of matrices with tens of thousands of
frequency-intensity pairs. Instead, they provide only a list of
chemical shifts corresponding to individual simulated nuclei.
This poses a challenge for generating inputs for machine
learning models, as the feature space for each vector must have
the same number of components, which is impossible for
compounds with varying numbers of nuclei. To generate
standardized "H NMR spectra, a modified bucket integration
methodology'® was employed, which has been successfully
used for dimensionality reduction tasks. A Python script was
developed that divides the chemical shift range from —1 to 14
ppm into 500 equal bins (buckets), with each bucket initially
assigned a value of 0. The script then analyzed the provided
array of frequencies (chemical shifts) from the predicted
spectra. If a chemical shift value from the list fell within a
specific bucket, that bucket’s value increased by 1. For

https://doi.org/10.1021/acs.jcim.4c02145
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Figure 1. Heatmaps illustrating the mean RMSE for theoretical 'H NMR spectra generated using various functionals and basis sets compared to
experimental spectra measured in CDCl; (A) and DMSO (B) solvents. Lower RMSE (blue) indicates better agreement with experimental data,

while higher RMSE (red) represents greater deviations.

example, three identical protons from a methyl group would
generate a bucket with a corresponding chemical shift and an
intensity of 3. In contrast, a methylene group would produce
one bucket with an intensity of 2. These pseudo-NMR spectra,
now formatted as matrices with equal numbers of chemical
shift-intensity pairs, were ready to be used for training machine
learning models.

Machine Learning. To prepare inputs from computer-
generated '"H NMR spectra for training machine learning
models, we used the Python scripts developed in our previous
study."® Spectra produced by JASON were normalized in the
same range as experimental spectra, ie., from 0 to 1000. DFT
spectra were normalized due to their inherent structure in a
range from 0 to 1. Similarly, spectra generated by the
NMRshiftDB2 predictor did not require normalization, as all
values were integers and multiples of 1. As for model selection,
Gradient Boosting was chosen for its ability to handle data
subjected to different dimensionality reduction and normal-
ization methods, as confirmed by previous research.'” For
model training and evaluation, a 10CV (10-fold cross-
validation) was applied.

Assessment of Predictive Model’s Performance.
RMSE, namely the root-mean-square error (eq 1), is a
common evaluation metric in machine learning used to
measure the difference between predicted j and actual values

y; in regression tasks. It is calculated as the square root of the
average of the squared differences between predictions and
true values, providing a measure of the model’s prediction
accuracy. Low RMSE values indicate better model perform-
ance as they reflect smaller errors and a closer fit to the actual
values of predicted parameters.

RMSE =

(1)

Mixing Spectra. The random mixing of predicted/
theoretical with experimental "H NMR spectra was performed
ten times for each pair of spectral datasets in proportions of
20%, 40%, 60%, and 80%. This mixing scheme was repeated
three times: once for the theoretical spectra obtained from
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DFT calculations, once for those from the NMRshiftDB2
predictor, and once for the spectra predicted by using the
JASON software. The resulting mixed datasets were then used
as inputs for training machine learning models with 10CV as
the evaluation method.

B RESULTS AND DISCUSSION

Comparison of DFT Levels for Accurate '"H NMR
Predictions. A comprehensive benchmark was performed to
assess the accuracy of quantum mechanical methods for
calculating "H NMR spectra by using a broad range of DFT
functionals and basis sets. The calculated 'H NMR chemical
shifts were referenced to tetramethylsilane (TMS), and RMSE
was used to assess the overall agreement between the
calculated and experimental shifts. A semiautomated approach
was applied, where no explicit signal assignment was made,
allowing for an efficient comparison between calculated and
experimental spectra. This method provided an unbiased
evaluation of how well each functional and basis set
combination captured the general accuracy of the chemical
shifts. The selected functionals represent a diverse set of
approaches, from hybrid functionals like B3LYP and CAM-
B3LYP, which incorporate both local exchange-correlation and
a portion of exact Hartree—Fock exchange, to dispersion-
corrected functionals such as wB97XD and PBEPBE-D3B]J,
designed to account for long-range interactions. M06-2X, a
meta-hybrid functional specifically designed for thermochem-
istry, kinetics, and noncovalent interactions, was also included
due to its suitability for molecules with varying electronic
properties. The basis sets were selected to provide a range of
computational efficiency and accuracy, ensuring compatibility
with the chosen functionals for both weakly and highly polar
solvent environments. The Pople-type basis sets, due to their
efficiency, are widely used in computational chemistry,’
particularly for small and medium-sized molecules. Meanwhile,
the correlation-consistent basis sets from Dunning are
designed to systematically converge electron correlation
effects, offering higher accuracy at greater computational
expense. Finally, the Karlsruhe def2-SVP and def2-TZVP basis
sets were selected for their optimization with DFT methods

https://doi.org/10.1021/acs.jcim.4c02145
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and their ability to model transition metals and heavy atoms,
making them ideal for a broad class of organic and
organometallic compounds.

The spectra were divided based on the solvent used to
dissolve the compounds. CDCI,, being a weakly polar solvent,
primarily engages in dipole—dipole interactions,”* which can
be reasonably approximated by PCM through its dielectric
constant. In contrast, DMSO is a strongly polar solvent,
introducing not only dipole—dipole interactions but also more
complex solute—solvent interactions, such as hydrogen
bonding.> PCM does not directly model specific solute—
solvent hydrogen bonding or other nonelectrostatic inter-
actions. Thus, in highly polar solvents like DMSO, where these
interactions are significant, PCM might be an incomplete
model, leading to less accurate calculations of NMR chemical
shifts and consequently higher RMSE in predicting exper-
imental 'H NMR spectra.”*~>°

The performance of different DFT methods combined with
various basis sets in reproducing 'H NMR spectra for CDCl,
and DMSO showed distinct trends due to the nature of the
solvent environments (Figure 1). In the case of CDCl;, a
weakly polar solvent, the overall RMSE values remained
relatively low across most functionals and basis sets. Notably,
the lowest RMSE values were obtained with simpler basis sets,
such as 6-31G(2d), as seen with PBEPBE (0.345) and CAM-
B3LYP (0.350). These results suggest that the solute—solvent
interactions in CDCl;, primarily dipole—dipole, are sufficiently
modeled by simpler basis sets, and the additional polarization
and dispersion corrections do not substantially improve spectra
reproducing accuracy. This finding highlights the efficiency of
smaller basis sets in capturing the essential interactions in such
a solvent where long-range electron correlation effects play a
minor role. Interestingly, more complex basis sets like def2-
TZVP did not outperform the smaller sets in CDCl;, with
functionals such as wB97XD (0.396) and B3LYP (0.384)
yielding only slightly better results. Functionals without explicit
dispersion corrections, such as MO06-2X, exhibited slightly
higher RMSE values overall, particularly with larger basis sets
such as cc-pVTZ (0.548). This highlights that while CDCly
does not require extensive corrections for electron correlation
and long-range interactions, functionals with minimal dis-
persion corrections are still effective. This trend suggests that
while functionals with dispersion corrections might refine the
geometry, their impact on chemical shift predictions in CDCl,
remains minimal due to the solvent’s weak polarization
environment. Moreover, additional polarization in basis sets,
such as def2-SVP and cc-pVDZ, yielded higher RMSE values,
especially for M06-2X (0.545 and 0.569, respectively). This
reinforces the idea that introducing extra polarization in the
basis sets does not provide a proportional benefit for CDCl,.
Instead, the inherent simplicity of the solvent’s interactions
appears to be well-represented by smaller, less computationally
demanding configurations. Consequently, this solvent environ-
ment provides a compelling case for the practical use of
minimal basis sets and standard functionals without extensive
corrections, particularly for computational efficiency in large-
scale studies.

In contrast, DMSO, a highly polar solvent, presented a more
challenging environment for accurate 'H NMR calculations,
with consistently higher RMSE values across all functionals
and basis sets. The lowest RMSE values in DMSO were still
higher than those in CDCl;, with B3LYP/cc-pVTZ (0.715)
and CAM-B3LYP/cc-pVTZ (0.721) leading the performance,

2928

followed closely by PBEPBE/cc-pVTZ (0.728). These results
indicate that in DMSO, the strong solute—solvent interactions
require more complex functionals and basis sets to achieve
comparable accuracy. The trend was particularly evident when
comparing the performance of the 6-31G(2d) basis set
between CDCl; and DMSO. While it performed well in
CDCly (e.g, PBEPBE/6-31G(2d) at 0.345), it yielded
significantly higher RMSE values in DMSO (e.g, PBEPBE/
6-31G(2d) at 0.933). This reflects the more complex polar and
hydrogen bonding interactions in DMSO, which are not
adequately captured by simpler basis sets. Adding extra
polarization and dispersion functions increases the prediction
accuracy in DMSO. In contrast, the MO06-2X functional
showed consistently higher RMSE values in DMSO, with the
best result being 0.767 with cc-pVTZ. This suggests that M06-
2X, while effective for thermochemistry and kinetics, may not
capture the necessary long-range interactions in highly polar
solvents such as DMSO. Additionally, for basis sets such as
def2-SVP, the RMSE values were significantly higher in
DMSO, with B3LYP (0.891) and CAM-B3LYP (0.903)
performing similarly. These higher RMSE values may suggest
that the polarization functions in def2-SVP do not fully capture
complex solute—solvent interactions in DMSO, leading to less
accurate predictions. The detailed distribution of RMSE values
for each functional and corresponding basis sets is provided in
the (Figures S1 and S2).

To identify the best DFT approach for further analysis, each
set was ranked based on mean RMSE values in both CDCl,
and DMSO solvents. The rankings were determined separately
for each solvent and then summed to provide an overall
performance score. Based on this combined ranking, the two
top levels of theory—CAM-B3LYP + 6—311 + G(2d,p) and
B3LYP + def2-TZVP—were selected as they consistently
showed the best reproduction performance of 'H NMR
spectra for both solvents (Table S1).

Statistical analysis was used to compare the performance of
the def2-TZVP and 6—311+G(2d,p) basis sets across both
solvents (CDCl; and DMSO) using a paired t-test. These two
basis sets were selected for statistical comparison, as they
demonstrated the lowest average RMSE values in the
benchmarking analysis, making them the most relevant
candidates for further evaluation. For CDCl;, the results
showed no statistically significant difference in the RMSE
between the two basis sets (p = 0.775), indicating that both
basis sets perform similarly. Analogously, for DMSO, the t-test
results also indicated no significant difference between the two
basis sets (p = 0.348). Given the lack of significant statistical
difference in RMSE between basis sets in both solvents and the
fact that 6-311 + G(2d,p) needs less computational time
(Table S2), this basis set was chosen for the calculations of the
entire molecular library in combination with the CAM-B3LYP
functional. When the combination of 6-311+G(2d,p) (for H,
N, C, and F atoms) and def2-TZVP (for I atom) basis sets was
used for compounds containing iodine, the theoretical 'H
NMR spectra showed unexpected shifts for protons located
near the iodine atom in the molecular structure. These protons
were affected because iodine’s large core electron count leads
to significant relativistic effects that alter the electron density
around the atom. Standard basis sets without pseudopotentials
struggle to account for these effects, resulting in incorrect
shielding constants for neighboring protons. By applying the
effective core potentials option in Gaussian (GenECP), the
relativistic effects of iodine’s core electrons are properly
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Figure 2. Comparison of three methods for generating 'H NMR spectra alongside the experimental. All spectra shown were generated for the same

compound. The intensity for each spectrum has been normalized.

modeled, restoring accurate 'H NMR calculations for the
protons in its vicinity.‘w’58

Characteristics of the Generated '"H NMR Spectra.
The obtained computer-generated '"H NMR spectra exhibited
varying characteristics and structures, as shown in Figure 2.
Among the methods, the spectra produced by the JEOL
JASON software were the most similar to the experimental 'H
NMR spectra. This prediction accurately captured multiplets,
chemical shifts, and natural relative integration, which allowed
for inverse Fourier transformation to calculate an FID (Free
Induction Decay) in the time domain.

In contrast, spectra obtained through DFT calculations and
the NMRshiftDB2 predictor lacked traditional spectral
characteristics. Instead, these methods produced only a list
of chemical shifts, which were transformed into a spectrum-like
representation using bucketing. In the case of the
NMRshiftDB2 predictor, chemically equivalent protons were
assigned identical chemical shifts, meaning that the pseudo-'"H
NMR spectrum preserved the relative integration of the signal
groups. However, in the DFT-calculated spectra, relative
integration was absent, with each signal having an integral
value of 1. This discrepancy arises because DFT calculations
are performed in a stationary state, without dynamic averaging
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of equivalent nuclei. For example, in a DFT-based spectrum, a
methyl group contains three distinct signals, each with different
shifts and an integral value of 1, rather than a single signal with
an integration value of 3, as seen in experimental or ML-
predicted spectra.

NMR prediction methods have an advantage over
experimental data as they are not susceptible to noise resulting
from sample impurities, solvent traces, or incorrect identi-
fication of the sample’s contents. Additionally, preprocessing of
the experimental spectra was conducted automatically without
segregating the spectra based on specific solvent groups.
Instead, all regions where solvent signals were likely to appear
were removed from the spectra. This approach was justified by
the large size of the input dataset and the need for automated
preprocessing procedures. For large experimental datasets,
complete and reliable characterization of each spectrum
becomes practically unfeasible. In the case of experimental
"H NMR spectra, results are also influenced by factors related
to different spectrometers, measurement parameters, and
variability arising from the work of different operators. Unlike
experimental, theoretical, or predicted 'H NMR spectra form a
homogeneous dataset that contains only information derived
from the defined chemical structures, devoid of disturbances
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and unnecessary noise. Additionally, the DFT method is
characterized by a considerably higher computational cost,
with the time required to process a single compound measured
in hours, compared to just a few seconds needed for the other
two methods. The biggest advantage of the NMRshiftDB2-
based method is its complete automation of spectra generation
based on SMILES codes of the compound, whereas spectra in
the JASON program were generated manually using structures
saved in .mol files. It is worth noting that the entire process in
JASON can now be automated using the Python library
BeautifulJASON.>”

Comparison of Experimental and Generated '"H NMR
Spectra. To compare the potential and usefulness of different
types of "H NMR spectra, a series of logD predictive models
were trained based on the 'H NMR spectra source and
Gradient Boosting algorithm.”” Gradient Boosting consistently
showed strong robustness against variations in data preprocess-
ing, producing reliable results focusing on the intrinsic
properties of the data.'” For model training and evaluation,
10CV (10-fold cross-validation) was employed as a method
with lower computational cost compared to that of Leave-One-
Out (LOO) cross-validation. Both data-splitting techniques
yielded similar performance for the machine learning
algorithms. Using LOO, the RMSE values were obtained in
the previous study as 0.66 for the SVR model and 0.67 for the
Gradient Boosting model. In contrast, 10CV resulted in RMSE
values of 0.88 for SVR and 0.87 for Gradient Boosting.
Gradient Boosting was ultimately chosen due to its
straightforward integration with GPU-based CUDA computa-
tions, which enhances computational efficiency.

The analysis of the results reveals three main patterns in
RMSE values following model training, as illustrated in Figure
3. The highest RMSE values for each of the modeled
parameters across different pH levels were observed for
DFT-based spectra, which is indicated by the red column
(i.e., the worst-performing models in a given series) in Figure
3. On average, RMSE values for DFT-based spectra were 17%
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Figure 3. Comparison of RMSE values obtained by 10CV for the
machine learning models for both experimental and theoretical/
predicted spectra. A negative control column was added, where
models were trained on hashed label vectors instead of spectra. The
values are organized in rows according to specific logD parameters.
The best-performing models are highlighted in green, whereas the
worst-performing models are marked in red.
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higher for the Chrom logD and 23% higher for the CHI logD
compared to the best-performing method available for each
parameter. Moreover, these values were 7% and 11% higher,
respectively, compared to the next best-performing approach
within the given series.

The second pattern corresponds to experimental spectra,
which provide stable and moderate RMSE values, positioning
them between the DFT-based and the ML-based spectra
(JASON and NMRshifDB2).

The third pattern comprises results obtained for the spectra
produced by the JASON software and predictions based on the
NMRshiftDB2 database. For the CHI logD, the model
performances for both methods were nearly identical. A
minor deviation was observed for the Chrom logD, where
NMRshiftDB2-based models outperformed JASON-based
models by 8.5%, 3.1%, and 0.6% at pH values of 10.5, 7.4,
and 2.6, respectively. Despite these minor differences, the
lowest RMSE values were consistently achieved using
NMRshiftDB2-based spectra.

A comparison of RMSE metric values for models trained on
different sources of computer-generated and experimental
spectra (Figure 3) highlights distinct trends related to the
complexity of the input data. Notably, DFT-based spectra
stand out due to the absence of relative signal integration, and
the representation of molecules in a stationary state
significantly diminishes the prediction accuracy of logD. In
contrast to DFT, spectra generated using the NMRshiftDB2-
based and JASON-based methods represent kinetically
averaged molecular structures, allowing for the relative
integration of signal groups in the spectra. In addition, the
lower values of RMSE for ML-based methods may be due to
the lack of noise relative to the experimental spectra. Noise is
defined as additional signals from impurities and erroneous
records in the structure-spectrum NMR database.

To further validate the robustness of the models and rule out
potential shortcut learning or data leakage, a control
experiment was conducted. In this experiment, models were
trained on datasets completely devoid of meaningful spectral
information, using hashed label vectors instead of spectra. The
results (Figure 3) revealed that predictive performance on
these meaningless datasets was approximately 40% worse than
on models trained with NMR-based spectral data. This
substantial decrease in accuracy strongly supports the
conclusion that the models extract relevant chemical relation-
ships from the spectra rather than relying on spurious
correlations or unintended artifacts. These findings further
underscore the critical role of spectral representation in
achieving accurate logD predictions.

The analysis of the mean logD prediction error and its
distribution for the CHI logD and Chrom logD models
(Figure 4) indicates that the models performed the worst when
applied to DFT-based and experimental spectra. The medians
of the absolute errors were relatively high—0.76, 0.59, and
0.64 for CHI logD at pH 2.6, 7.4, and 10.5, respectively—and
the distributions of the errors were broad, with mean values of
0.92, 0.73, and 0.87 for the same conditions. The medians of
the absolute errors for JASON-based predictions were 0.48,
0.42, and 0.50, with mean absolute errors of 0.65, 0.58, and
0.67 for CHI logD at pH 2.6, 7.4, and 10.5, respectively.
Similarly, the NMRshiftDB2-based models produced medians
of 0.51, 0.48, and 0.47, with corresponding mean absolute
errors of 0.64, 0.58, and 0.66. For models derived from
experimental "H NMR data, the medians of the absolute errors
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Figure 4. Boxplots of absolute errors between computer-generated and experimental predictions of CHI logD (top) and Chrom logD (bottom) at
different pH. In each plot, the first box corresponds to experimental 'H NMR spectra, whereas the remaining ones are the methods used to obtain
the generated "H NMR spectra. In each box, the horizontal dashed line describes the mean value, while the solid line refers to the median. Charts
with marked outliers can be found in the Supporting Information.

were 0.62, 0.55, and 0.61, while the mean values of the Founded on these results, it can be concluded that critical
absolute errors were slightly higher, at 0.78, 0.69, and 0.80 for factors for the accurate prediction of logD based on theoretical
CHI logD at pH 2.6, 7.4, and 10.5, respectively. The improved "H NMR spectra are the resonance frequencies of individual
performance of models using input data from the nuclei, the relative integration of homogeneous signal groups,
NMRshiftDB2 predictor may be attributed to the structure and the absence of interference from contaminants and
of the feature vectors, which are composed primarily of zeros external effects. Conversely, the multiplet structure, resulting
and discrete values, typically integer multiples of 1. On the from coupling constants, along with the shape and width of the
other hand, JASON-based spectra include feature vectors with signals, has minimal impact on the model’s predictive
floating-point numerical values, similar to those from performance.
experimental spectra methods, which could contribute to the Applicability Domain. The chemical structures used to
observed differences in predictive performance. Although the build the training and testing datasets for the ML models are
simplification of input data might enhance model efficiency, it identical to those described in the previous work.'> The
is not the sole determinant of model effectiveness, as evidenced distribution of outliers for each method of generating 'H NMR
by the poor performance of models using DFT-based spectra. spectra relative to experimental spectra was analyzed under
Despite DFT-calculated 'H NMR spectra having binary feature three distinct pH conditions for each logD parameter. As
vectors, similar to NMRshiftDB2 predicted spectra, the models shown in Figure S, which presents absolute prediction errors as
based on DFT data exhibited poor predictive capabilities. a function of the respective logD parameter values, the outliers
2931 https://doi.org/10.1021/acs.jcim.4c02145
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models.

are gathered in two specific regions. The first region
corresponds to negative logD values for both parameters
across all three pH conditions. The second region is
characterized by extremely high positive logD values. A key
observation is that these two regions are consistent across all
methods of computer-generated spectra as well as for
experimental '"H NMR-based models. This suggests that
machine learning models struggle to predict values near the
boundaries of the available logD range due to the limited
representation of compounds with such logD values. The
training and testing datasets were constructed using com-
pounds obtained through drug design processes as potential
active agents, which are constrained to specific property ranges,
including logD values. Consequently, the limited representa-
tion of boundary values in these datasets likely contributes to
the model’s reduced prediction accuracy in these regions.

Mixing Datasets. Mixed 'H NMR spectral datasets
(combining experimental and theoretical or predicted spectra
in specific ratios) were used to build the input database for
training predictive models. Randomly generated training sets
were created, containing an increasing proportion of computer-
generated spectra relative to experimental spectra. These sets
were then used to train Gradient Boosting models employing
the 10CV method (Figure 6).

In the first case, when the contribution of JASON- or
NMRshiftDB2-based spectra increases, a slight rise (3.9% for
CHI logD, and 1.2% for Chrom logD, on average) in RMSE is
observed until the ratio reaches approximately 40%. At a 60%
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proportion, an insignificant decline in the RMSE values
occurred (—1.2% for CHI logD, and —0.74% for Chrom
logD), with the metrics converging toward levels characteristic
of models based solely on predicted spectra. The change in
RMSE error values for a set of 60% contribution of predicted
spectra relative to experimental "H NMR spectra to a set with
100% contribution of theoretical spectra for CHI logD models
averaged —15.2% and —11.0% for Chrom logD. Ultimately,
with the datasets entirely composed of predicted spectra, the
lowest RMSE values are achieved, with RMSE values declining
from a pure experimental set to a fully predicted '"H NMR
spectra set by —13.0% for CHI logD and —10.6% for Chrom
logD on average. In the second case, which examined the
increasing contribution of DFT-based spectra, the RMSE
gradually increased until the proportion of theoretical spectra
reached 80%. The increase in RMSE values from a set
represented only by experimental '"H NMR spectra to a set
with 80% of theoretical spectra was 15.2% for CHI logD and
7.3% for Chrom logD, respectively. However, a slight decrease
in RMSE values is noted at 100% theoretical spectra when
compared to 80% theoretical dataset contribution (—2.10% for
CHI and —0.5% for Chrom logD). Increasing the contribution
of DFT data introduces factors that gradually degrade the
predictive ability of the model, as the RMSE for the model
trained exclusively on DFT data is higher in every case
compared to the model based solely on experimental "H NMR
spectra. As a result, supplementing missing experimental
spectra in the training set by using DFT proves ineffective

https://doi.org/10.1021/acs.jcim.4c02145
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Figure 6. Panel presents the mean RMSE values obtained for the Gradient Boosting models using the 10CV method for mixed input datasets. Each
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Figure 7. Violin plots showing the distribution of Tanimoto similarity coefficients (using ECFP4 fingerprints) between each compound in the
external datasets (307 and 410) and all compounds in the training set.

and leads to poorer outcomes. Conversely, adding predicted
spectra derived from JASON or NMRshiftDB2 allows for the
supplementation of missing records in the spectral database,
provided that a slight compromise in the model’s predictive
power is acceptable. Despite the compatibility of data formats,
chemical shift ranges, and identical feature vector structures,
"H NMR spectra and their generated counterparts are not fully
compatible.
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In summary, the best predictions are achieved by Gradient
Boosting models trained on homogeneous datasets, regardless
of whether they consist of purely experimental data or spectra
derived from predictions.

External Validation Sets. The CHI logD and Chrom
logD were measured for two additional sets of chemical
compounds originating from separate projects, labeled as
“dataset 307" and “dataset 410,” containing 65 and 11
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compounds, respectively. '"H NMR spectra were recorded for
all of these compounds. These compounds are characterized
by unique structural motifs that were not present in the
training set. To assess the similarity of external datasets to the
training set, Tanimoto coeflicients were calculated between
each compound in the external datasets and every compound
in the training set, using the ECFP4 fingerprint (Figure 7).
Since "H NMR focuses on atomic nuclei and their immediate
chemical environments, the ECFP4 fingerprint was chosen for
its comparable emphasis on capturing local structural
information within a molecular radius.

The results indicate low similarity for both datasets: the 307
dataset had a mean Tanimoto coefficient of 0.15 (SD = 0.10),
while the 410 dataset showed a mean of 0.13 (SD = 0.02)
(Figure 7). These low values suggest that the compounds in
the external datasets have distinct structural features, showing
minimal overlap with the training set. Both datasets were used
to evaluate the Gradient Boosting models developed in this
study. The results obtained using these models are presented
in Figure 8.

The average RMSE values obtained for dataset 307 in the
context of CHI logD model predictions under varying pH
conditions exhibit values of 1.38, 1.68, and 12.24 for pH values
of 2.6, 7.4, and 10.5, respectively. However, it is important to
note that the RMSE obtained based on experimental data for
pH 10.5 was as high as 3.02. The best results were achieved for
models trained on data generated using the NMRshiftDB2
predictor, where average RMSE values were 1.17, 1.39, and
1.40 for increasing pH values. In comparison, models based on
data from the commercial logD predictor implemented in
Instant JChem software exhibited RMSE values of 1.86, 1.23,
and 1.17, respectively. The significantly high RMSE value of
3.02 for models based on experimental "H NMR spectra at pH
10.5 may indicate potential measurement errors in the CHI
logD values at this pH for certain compounds. For dataset 410
CHI logD, models trained on data from the NMRshiftDB2
predictor also achieved the best results, with average RMSE
values of 1.71, 0.67, and 0.97 for increasing pH values,
compared to models based on JChem data, which obtained
RMSE values of 1.70, 1.95, and 0.66, respectively. Again, an
outlying RMSE value of 2.88 at pH 2.6 for one model based on
experimental spectra suggests potential data quality issues

2934

under specific pH conditions. Apart from these anomalies,
there is no clear trend regarding the impact of the spectral
generation method on the obtained RMSE values. For Chrom
logD predictions, no comparative data are available for the
JChem, limiting the analysis to models trained on different
datasets. The RMSE values for the NMRshiftDB2 predictor in
dataset 307 were 1.47 and 2.24 for pH 2.6 and 7.4,
respectively, while for dataset 410, they were 1.71 and 1.13.
It should be emphasized that two cases (data set 307: RMSE
2.55 and dataset 410: RMSE = 1.97) at pH 10.5 showed
significantly higher RMSE values. Overall, models based on
NMRshiftDB2 data achieved the lowest RMSE values;
however, no clear trends were observed regarding differences
in results depending on the pH conditions and validation sets
for other spectrum generation methods.

To further assess the statistical significance of the differences
between logD prediction methods, pairwise t-tests were
conducted on the absolute error (MAE) distributions for
both datasets. In the case of data set 307, the majority of
method comparisons yielded statistically significant differences
(p < 0.05), particularly between experimental data and
computational predictors. Conversely, for dataset 410, the
results were more balanced, with some method comparisons
exhibiting significant differences while others did not. These
findings suggest that while systematic deviations exist between
methods, their impact may be dataset-dependent. Detailed
statistical results and corresponding box plots are provided in
Figures S4—S7.

Normalized RMSE. Although the RMSE is a widely used
metric for evaluating the performance of regression models, it
has its limitations. For this reason, when models using RMSE
are compared, caution must be exercised, and the character-
istics of this metric must be taken into account. As shown in eq
1, the RMSE value depends on the range of the data on which
the model operates. In practice, this means that if one model
predicts values in the range of (0, 1000), while another in the
range of (0, 10), direct comparison of their RMSE values may
lead to erroneous conclusions, even if the relative predictive
quality of the models is similar. Therefore, comparing ML
models trained on datasets with different input data ranges and
characteristics is methodologically incorrect. However, to
select optimal training datasets or compare their models to
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those reported in the literature, relative comparisons of results
are often necessary. To facilitate such comparisons, several
RMSE normalization methods have been described in the

literature,”' ~°* with the most commonly used ones presented
in eqs 2—4.
NRMSE(y) = "MSE
()
RMSE
NRMSE(y —y.)=-———§——
max min _
ymax ymin (3)
RMSE
NRMSE(s) = @

Normalized metrics enable the evaluation of model
prediction quality by taking into account the average values
in the dataset (eq 2), comparisons relative to the range of data
values (eq 3), or estimation of model error relative to the
standard deviation in the dataset (eq 4). Table 1 presents the

Table 1. Statistical Metrics of Datasets for the CHI and
Chrom LogD at Different pH Levels

pH 2.6 pH 7.4 pH 10.5
logD parameter ~CHI =~ Chrom CHI  Chrom CHI Chrom
7 0.94 233 221 4.14 2.42 4.34
Ymax — Vomin 974 1614 952 1550 1267  20.64
c 1.29 2.29 1.03 1.82 1.27 2.17

“In this table, ¥ represents the mean value of logD labels used in the
datasets, ¥.—Vmi indicates the range, i.e., the difference between the
maximum and minimum actual values of the predicted parameter, and
o denotes the standard deviation of the actual parameter values.

values of all three statistical metrics for the CHI logD and
Chrom logD datasets across the full pH range. It is noteworthy
that the average values, value ranges, and standard deviations
in the CHI logD datasets are approximately 50%—60% of the
average values for the Chrom logD datasets, which

corresponds to similar trends observed when comparing
RMSE values for these systems (Figure 9).

In the presented study, the models were trained based on
CHI logD and Chrom logD. Although both parameters exhibit
a linear relationship,éS the Chrom logD datasets contained, on
average, 100 more compounds. Nevertheless, the RMSE values
obtained for models based on Chrom logD were approximately
twice as high as those for CHI logD. It is unlikely that
advanced ML algorithms would fail to account for this linear
relationship, which suggests that other factors may contribute
to the significantly higher RMSE values. Only by comparing
the RMSE values with the normalized values (Figure 9) is it
revealed that the models based on both parameters
demonstrate comparable predictive capability. Significant
differences (on average, 0.27 units of RMSE) are observed
only for NRMSE(y) at pH 2.6, which is likely due to a high
number of outliers and the fact that the mean does not reflect
the true central value of the dataset. For the remaining metrics,
these differences are insignificant for data at a given pH and do
not indicate substantial differences between models based on
the CHI logD and Chrom logD.

The analysis of normalized metric values (Figure 9)
indicates that despite the 2-fold difference in RMSE values,
the models exhibit similar predictive performance. This can be
attributed to differences in the characteristics of the datasets,
indicating that the comparison of RMSE for models trained on
datasets with differing value ranges is inappropriate. Our
results suggest that RMSE should only be used to compare
models that are trained and tested on datasets with similar
statistical properties, such as mean, distribution, or standard
deviation—even if these datasets are not identical. In other
cases, where the goal is to compare the predictive abilities of
models, normalized metrics such as NRMSE should be applied.

B CONCLUSIONS

This study builds on our prior research, where we developed a
novel descriptor based on experimental "H NMR spectra as the
core input for ML models to predict logD. The initial

04 pH 2.6 pH7.4 pH 10.5
' I Experimental
~ [ DFT
M =3 JASON
B NMRshiftDB2
- % 1 CHllogD
1.6 1 ZZZ Chrom logD
E
S
s
w . 1
1 7 7 1. 7
08 7 . 1 A
5 o o v
U A1 oy Y ’
/ 17 N v
; 1 il 1
U 10 oy 7 v
U A1 o # N
U a4 Zn7 Y N7
U A1 oy g Y ’
U A1 A 0 ’ g
1 1 10 / 07
0.0 HE 7] A7 127 44 71 41 A1 7 8%
: RMSE NRMSE NRMSE NRMSE RMSE NRM NRMSE NRMSE RMSE NRMSE NRMSE NRMSE
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Figure 9. Bar plots illustrate the performance metrics (RMSE and NRMSE) for Gradient Boosting models trained to predict CHI logD and Chrom
logD at three different pH levels (2.6, 7.4, and 10.5). Each pair of bars corresponds to CHI logD (plain bars) and Chrom logD (hatched bars) for
each of the four input data sources: Experimental '"H NMR spectra were obtained using three spectral generation methods (DFT, JASON, and
NMRshiftDB2). The metrics are displayed in four categories: RMSE, NRMSE scaled by the mean of the target values (¥), NRMSE scaled by the
range of the target values (Jmax — Vmin), and NRMSE scaled by the standard deviation of the target values (o).
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application of experimental NMR spectra as the foundation for
our descriptor demonstrated predictive performance compara-
ble to that of traditional molecular descriptors. However,
practical challenges, such as solvent effects and instrumental
variability, motivated the transition to theoretical spectra,
which provided a more controlled and reproducible input
while maintaining predictive accuracy. To address these
challenges, we investigated the use of predicted and theoretical
"H NMR spectra to eliminate the dependency on experimental
measurements, creating an entirely computational workflow
that could streamline ML-based logD prediction without
experimental constraints.

Our findings reveal that theoretical 'H NMR spectra—
particularly those generated by NMRshiftDB2 and JEOL
JASON—can rival and even surpass experimental spectra in
machine learning (ML) applications for logD prediction. This
shift toward theoretical spectra offers clear advantages: it
eliminates the need for labor-intensive experimental pipelines,
bypasses challenges related to solubility, sample purity, and
data inconsistencies, and provides a scalable, universally
applicable approach that does not rely on specialized
laboratory resources.

A key insight from our study is that only two methods—
JASON and NMRshiftDB2—outperformed experimental
spectra. Their success is likely attributed to their foundation:
rather than generating purely theoretical spectra, these models
are trained on tens of thousands of real experimental spectra.
As a result, they inherently capture complex spectral
relationships that are naturally present in empirical data,
bridging the gap between the raw experimental measurements
and computational predictions.

Moreover, our approach treats NMR spectra as holistic
fingerprints rather than dissecting individual peak positions or
spin—spin interactions. This representation aligns well with
ML methodologies, where capturing overarching spectral
patterns proves to be more effective than analyzing fine
structural details. While DFT-based spectra remain a gold
standard in quantum mechanical analyses, their computational
intensity and unexpectedly lower predictive power in our study
suggest that they are less suited for large-scale applications,
such as logD prediction. In contrast, HOSE-code-based
methods and ML-driven spectral models demonstrate a more
efficient and robust alternative.

Another crucial takeaway is the impact of data consistency.
Mixing experimental and predicted spectra resulted in
diminished performance compared to using homogeneous
datasets, reinforcing the importance of maintaining uniformity
in spectral inputs. Finally, our results highlight the necessity of
normalized error metrics, such as NRMSE, for ensuring reliable
model comparisons across datasets with varying numerical
scales.

Together, these insights not only refine our understanding of
spectral representations in ML but also pave the way for more
accessible, scalable, and data-driven approaches to molecular
property prediction. Validation against external datasets further
demonstrated the robustness and transferability of our models,
as they performed on par with established commercial software
like JChem. This comparison underscores the reliability and
applicability of our computational pipeline, confirming that the
predicted "H NMR spectra can serve as an effective alternative
to experimental data for logD predictions. By achieving
comparable accuracy to industry-standard tools without
reliance on costly and time-intensive experimental procedures,
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our approach offers a scalable, accessible solution that holds
promise for widespread adoption in cheminformatics and drug
discovery workflows. This methodology, by replacing exper-
imental input entirely, opens new possibilities for ML in
chemical property prediction and remains adaptable for future
advancements in computational chemistry and cheminfor-
matics.
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Density functional theory
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ance

Hierarchical organization of spherical
environment codes
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Light gradient boosting machine
Logarithm of the distribution constant
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SMILES Simplified molecular input line entry
system

SVM Support vector machines

SVR Support vector regression

TMS Tetramethylsilane

wB97XD Range-separated hybrid functional with
empirical dispersion

XGBoost Extreme gradient boosting
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