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A comfortable, discrete and robust recording of the sleep EEG signal at home is a

desirable goal but has been difficult to achieve. We investigate how well flex-printed

electrodes are suitable for sleep monitoring tasks in a smartphone-based home

environment. The cEEGrid ear-EEG sensor has already been tested in the laboratory

for measuring night sleep. Here, 10 participants slept at home and were equipped

with a cEEGrid and a portable amplifier (mBrainTrain, Serbia). In addition, the EEG of

Fpz, EOG_L and EOG_R was recorded. All signals were recorded wirelessly with a

smartphone. On average, each participant provided data for M = 7.48 h. An expert

sleep scorer created hypnograms and annotated grapho-elements according to AASM

based on the EEG of Fpz, EOG_L and EOG_R twice, which served as the baseline

agreement for further comparisons. The expert scorer also created hypnograms using

bipolar channels based on combinations of cEEGrid channels only, and bipolar cEEGrid

channels complemented by EOG channels. A comparison of the hypnograms based on

frontal electrodes with the ones based on cEEGrid electrodes (κ = 0.67) and the ones

based on cEEGrid complemented by EOG channels (κ= 0.75) both showed a substantial

agreement, with the combination including EOG channels showing a significantly better

outcome than the one without (p= 0.006). Moreover, signal excerpts of the conventional

channels containing grapho-elements were correlated with those of the cEEGrid in order

to determine the cEEGrid channel combination that optimally represents the annotated

grapho-elements. The results show that the grapho-elements were well-represented by

the front-facing electrode combinations. The correlation analysis of the grapho-elements

resulted in an average correlation coefficient of 0.65 for the most suitable electrode

configuration of the cEEGrid. The results confirm that sleep stages can be identified

with electrodes placement around the ear. This opens up opportunities for miniaturized

ear-EEG systems that may be self-applied by users.
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INTRODUCTION

Capturing sleep stages in a medically meaningful way requires
the infrastructure of a sleep laboratory and the placement
of many sensors by well-trained personnel. Acquisition of
electroencephalogram (EEG) data is the most fundamental part
of a polysomnography (PSG). While the PSG administered in the

sleep lab in controlled conditions continues to play an important
role in sleep medicine, it has become clear that more options
are needed to address different questions concerning sleep and
sleep disorders. The German Society for Sleep Research and Sleep

Medicine (DGSM) has long been drawing attention to the need
for research with regard to simplified procedures to support sleep
diagnostics with possible applications for at-home studies (1), as

the ever-increasing demand for diagnostics leads to long waiting
lists for sleep laboratories. Additionally, standard PSG in a sleep
lab is obtrusive and may lead to atypical sleep patterns in a
patient, which can complicate the diagnostic process (2).

The consumer market has identified those experiencing
trouble sleeping as customers. Many gadgets, devices, and
apps are available and promise information on sleep duration,
sleep quality or even sleep apnea. Yet, sleep researchers and
practitioners alike questioned the validity of consumer-level
sleep tracking devices (3, 4). Most solutions are neither medical
devices nor validated against standard procedures. Nevertheless,
the marketing claims can be ambiguous, and customers may
perceive the products as scientifically validated because of their
appearance. Inaccurate feedback on one’s sleep, however, can
corrupt people’s perception of their quality of sleep, worsening
symptoms and hindering appropriate diagnosis and treatment.
Negative feedback on sleep quality can harm daytime functioning
and increase reported daytime fatigue, as tested in a sham
experiment with insomniac patients (5). The development
of accurate, low-threshold sleep monitoring solutions that
could be self-applied and used at home may help to avoid
those problems.

Several research groups and for-profit companies have
developed compact EEG sleep monitoring systems that may
help to re-define how sleep EEG can be taken from the scalp
in ways that are easy to apply without preparation and not
disrupting to wear during sleep.They differ in placement (face,
ear) as well as type and number of channels but have in common
that they present ideas outside of the box of standard PSG,
with some reporting promising results. Recent examples for
facial solutions include self-applicable electrodes developed for
emergency medicine (6, 7), a printed dry-electrode array applied
to the face (8) and auto-adhesive electrodes attached with a
headband (9). Devices focusing on the ear canal include both dry
and wet in-ear electrodes that fit into a personalized earpiece (10,
11) as well as in-ear sensors attached to a foam earplug (12). In the
consumer market, several commercially available devices have
been scientifically evaluated. Examples include sensor systems
with single-use electrodes applied to the forehead (13, 14) or
dry electrodes in a headband, with brush-like silicon electrodes
at the back of the head and flat dry electrodes on the forehead
(15, 16). These systems have in common that they offer all
necessary hardware in a compact, easy-to-use setup. However, in

many cases, data analysis runs on company-owned servers, and
direct access to raw data is refused, which is incompatible with
independent scientific evaluation attempts.

In addition to the development of novel devices, a top-
down approach to EEG may help identify simple electrode
constellations that yield the best results. Databases of clinical
PSG data have been analyzed to find the smallest working
combination of sensors that allow solid sleep staging. Examples
include evaluating sleep stages from a single electrode (17,
18) as well as the use of machine learning approaches that
use the smallest number necessary for a correct categorization
from a large number of available parameters and thus provide
information about possible reduced sensor constellations (19,
20).

Currently, we know of no miniaturized sleep monitoring
system that is fully self-applicable for the use at home in the sense
that all equipment would be easily accessible to a layperson. In
this study, we focused on combining the signal quality of wet
scalp electrodes with the usability of easily applied dry electrodes
by applying wet flex-printed electrodes to the hairless skin around
the ear. By doing so, we built on existing knowledge concerning
ear-EEG and get one step closer toward self-administered home
sleep EEG acquisition. We tested an approach to at-home sleep
monitoring, applying novel, unobtrusive hardware and using
statistical means to validate the data quality and sensor selection.
We focused on easily obtainable sensor parts to build a sensor
system that can easily be adapted or replicated. For the EEG, the
cEEGrid was used (21, 22). The cEEGrid is a flexible, discrete
wet EEG system and is particularly suitable for measuring EEG
in the home environment. It consists of a printed circuit board
(PCB) including flat silver electrodes on a flexible polymer sheet
in the shape of a C. Fitting around the hairless skin around the
ear, it is self-adhesive and easy to apply, making it easy to use for
measuring sleep at home.

Compared with ear-canal-electrodes or single electrodes, the
cEEGrid has the advantage of larger inter-electrode distances,
which allows for the recording of larger amplitude signals
(23). In total, the cEEGrid offers eight channels per ear
that are referenced to the mastoid. The suitability for the
use of the cEEGrid for measurements during sleep for up
to 12 h has already been empirically proven (11, 24). Both
publications referred to the same dataset recorded data in a
sleep laboratory and employed cEEGrids on two ears (24),
found that sleep stages were difficult to differentiate based on
cEEGrid channels compared to a full PSG, while differentiation
between sleep and wake showed slightly higher agreement (25)
found that the automatic scoring of cEEGrid data lead to
a similar accuracy as the expert scoring of a standard PSG,
which encourages the further exploration of cEEGrid sleep data.
The higher accuracy based on automatic scoring compared
to manual scoring of cEEGrid data was explained due to the
non-standardized positions of cEEGrid electrodes and possible
inexperience in manual scoring these kinds of data. A correlation
index was derived between cEEGrid and scalp derivations
within specific frequency bands (alpha, beta, theta and delta)
resulting in good correlations using electrode averages and larger
electrode distances.
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In the current study, we used a single cEEGrid, thereby
reducing preparation time to very few minutes, which is
one important feature when getting closer to a future self-
application system. In the manual scoring of the data, linear
combinations of cEEGrid channels were used and labeled
accordingly to extrapolate to classical PSG channels. In addition,
participants slept at home and started and finished the recording
by themselves. Since home application makes the full PSG
setup impractical, an approximation to relevant EEG and EOG
(electrooculogram) channels of the PSG was used. Previous
research showed that a single channel (Fpz) can be sufficient
to differentiate REM and deep sleep stages (17). EOG channels
give additional information on eye movements that facilitate
sleep staging and offer essential information for sleep coders.
Therefore, we measured full nights of sleep at home using one
cEEGrid, one EEG channel (Fpz) and two EOG channels in a
lightweight, mobile setup. Our aim was to identify sleep stages
with this simple setup, enlisting a trained sleep scorer tomanually
code the EEG data.

To determine the reliability of the sleep expert scorer, we
calculated the test-retest reliability of hypnograms that were
created at two different time points (2018, 2020) using the
EEG of Fpz, EOG_L and EOG_R. The results represented the
best possible score for further comparisons. We then created
bipolar channels based on combinations of cEEGrid channels
to approximate channels traditionally used for EEG in a PSG,
therefore considering the spatial filter quality of EEG channels.
We then defined the cEEGrid data as the first experimental
dataset, and the cEEGrid + EOG data as a second experimental
dataset. Both datasets were independently coded by the sleep
expert scorer according to AASM criteria for sleep staging.
Hypnograms were compared to the frontal channel + EOG
hypnograms. Further, we tested how similar so-called grapho-
elements of the sleep EEG are represented using this setup
compared to Fpz signal. We determined K-complexes, and sleep
spindles, characteristic of stage two sleep as suitable grapho-
elements to include in the analysis. We tested which cEEGrid
channel combinations would give the best representation of the
annotated grapho-elements. Therefore, K-complexes and sleep
spindles annotated by the expert scorer in the Fpz-EOG were
correlated with every channel and all possible channel pair
combinations of the cEEGrid-EEG. This correlation analysis
explored whether combinations of ear EEG channels can be used
to mimic the EEG measured at further distanced location of
the scalp, like Fpz. If supported, this approach would motivate
a selection of cEEGrid channel combinations which could
approximately represent the measured EEG of classical PSG scalp
electrodes like Fp2, F4, C4, P4 and O2.

MATERIALS AND METHODS

Participants
Ten participants (8 females, 2males, mean age= 28.4± 4.3 years)
were recruited from members and friends of the Department
of Psychology, Carl von Ossietzky University of Oldenburg,
Germany. Recruiting among this group was necessary because
participants were visited by the experimenter in their private

house and it was preferred that she is familiar to the participants.
Participants reported no sleep disorders. Each participant
provided one night of sleep data, recorded during sleep at home.
The study was approved by the local ethics board.

Data Acquisition
The experimenter visited the participants’ house in the evening
to prepare him or her for the night’s recording. Participants
were asked to wear their nightwear and no make-up. Participants
gave written informed consent to participate in the study
before preparation began. The experimental setting is shown
in Figure 1. One cEEGrid (21) was prepared with abrasive
electrolyte gel (ABRALYT HiCl, Easycap, Germany) and placed
around the right ear with a self-adhesive sticker. In addition, a
single sintered Ag/AgCl ring electrode was placed on the Fpz
location. For the EOG signal, twoAg/AgCl electrodes were placed
diagonally near the eyes in accordance with the AASM (American
Academy of Sleep Medicine) manual. All ring electrodes were
then filled with the electrolyte gel. The electrodes were connected
to a SMARTING SLEEP amplifier (mBrainTrain, Serbia), which
included a built-in Gyro sensor, and then attached to a chest
strap. The amplifier connected via Bluetooth to a commercially
available smartphone (Sony Xperia Z1) which was placed close
to the bed of the participant. Impedances were checked on the
SMARTING app und recording commenced when impedances
were generally below 20 k�. In order to secure cables for sleep,
tubular bandages were applied each to the participant’s head and
to the connector bundling the cables. Overall, 9 EEG channels
(right cEEGrid channels R1-8, Fpz), 2 EOG channels (EOG_L
and EOG_R) and 3 Gyro channels were recorded with a sampling
rate of 250Hz for the duration of the night’s sleep (reference and
ground are located at the center of the cEEGrid and placed on the
right mastoid portion, see Figure 1).

Data Analysis
Data Preprocessing
The following preprocessing steps were done to prepare the
recorded EEG data for the annotation of the sleep expert scorer
and the correlation analysis. For the annotation, three channel
layouts (Fpz+EOG, cEEGrid and cEEGrid+EOG) were used as
listed in Table 1. Channels were selected and if needed re-
referenced and relabeled.

The data set Fpz+EOG is taken as reference with which the
first experimental data set cEEGrid and the second experimental
data set cEEGrid+EOG is compared with. For the cEEGrid
layouts linear combinations of cEEGrid channels were used
motivated to approximately represent the EEG measured at
classic PSG-relevant scalp positions Fp2, F4, C4, P4 and O2
when referenced to the right mastoid process M2 (as shown in
Figure 2). The channel combinations where labeled accordingly
to PSG standards to assure their familiarity to the scorer (e.g.,
Fp2_M2, F4_M2, . . . ). In data set cEEGrid+EOG two EOG
channels are added and re-referenced to R6 as classical mastoid
process reference.

After this step, EEG-data was bandpass filtered, using a
phase true, 4th order Butterworth filter with a passband of
0.5 to 40Hz, to reduce electrode drift and noise containing
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FIGURE 1 | Schematic presentation of the experimental design used in this study, including electrode labels.

TABLE 1 | Channel configuration of the three different data sets.

Data set Fpz+EOG cEEGrid cEEGrid+EOG

EEG channels Fpz R1

(R1+R2)/2 - R6

(R2+R3)/2 - (R6+R7)/2

(R3+R4)/2 - R7

-R8

R1

(R1+R2)/2 - R6

(R2+R3)/2 - (R6+R7)/2

(R3+R4)/2 - R7

-R8

EOG EOG_L

EOG_R

none EOG_L - R6

EOG_R - R6

high-frequency components. Following this step, data was down
sampled to 125 Hz.

Data Annotation of the Sleep Expert
An expert polysomnographic technologist with 14 years of
experience in the area of polysomnography (MP, subsequently
referred to as expert scorer) annotated the EEG data in
consecutive 30 s segments, using an open source, sleep analysis
software (26). Sleep staging was done in respect to the AASM
guidelines for sleep staging in four annotation conditions
described in Table 2 [annotated stages: awake (W), N1, N2,
N3 and REM (rapid eye movement)]. Note that the novelty
of the setup meant that the technical and digital specifications
deviated considerably from AASM guidelines. The sleep staging
guidelines, including amplitude thresholds, were observed to the
best of the scorer’s abilities. In addition, grapho-elements (K-
complexes and sleep spindles) were annotated in the condition
Fpz+EOG 2nd Rating.

Correlation Analysis
K-complex and sleep spindle events where extracted by
separation of the transient EEG of the cEEGrid channels (R1,
. . . , R8) and Fpz into epochs according to the grapho-element
annotations of the expert scorer in Fpz+EOG 2nd Rating.
DC-offsets where estimated and reduced by subtracting the
average over all samples of the respective epoch. Finally,

FIGURE 2 | cEEGrid channel combinations used for the cEEGrid and

cEEGrid+EOG channel layouts. These bipolar channels extrapolate toward

classical PSG scalp positions (Fp2, F4, C4, P4, O2), as illustrated.

correlation coefficients were calculated between the reference
grapho-elements (annotated epochs in Fpz) and the respective
transient data of all possible single channel and bipolar channel
combinations of cEEGrid electrodes (36 in total) as shown in
the following:

R1,
R1-R2, R2,
R1-R3, R2-R3, R3,
R1-R4, R2-R4, R3-R4, R4,
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R1-R5, R2-R5, R3-R5, R4-R5, R5,
R1-R6, R2-R6, R3-R6, R4-R6, R5-R6, R6,
R1-R7, R2-R7, R3-R7, R4-R7, R5-R7, R6-R7, R7,
R1-R8, R2-R8, R3-R8, R4-R8, R5-R8, R6-R8, R7-R8, R8.

To calculate the average correlation coefficient over epochs of
one grapho-element or further average over participants, the
single correlation coefficients were first Fisher Z transformed
than averaged and in a final step back-transformed, by calculating
its hyperbolic tangent.

Statistical Analysis of Hypnograms
To statistically evaluate the accordance of the different
hypnograms, Cohen’s Kappa was used to determine the
respective inter-rater reliability in three test conditions as
described in Table 3 [agreement scale according to (27)]. For a
calculation of the reliability over participants, the corresponding
hypnograms were concatenated. Therefore, confusion matrices
of the different hypnograms were calculated and further used
to determine the Cohen’s Kappa and its standard error. Cohen’s
Kappa was calculated for every single sleep stage vs. the rest, and
for all sleep stages.

RESULTS

Hypnograms
Hypnograms of all four annotation conditions are shown in
Figure 3 for a representative participant. In Figures 3A,B results
of Fpz+EOG 1st Rating and Fpz+EOG 2nd Rating are shown,
respectively. The results of the corresponding reliability tests
Fpz+EOG test-retest are listed in the left column of Table 4.
Hence the data of participant 5 was not analyzed in Fpz+EOG

TABLE 2 | Description of the four sleep staging annotation conditions.

Fpz+EOG 1st Rating based on data set Fpz+EOG of nine participants.

Participant number 5 was excluded to inferior data quality based on visual

inspection of the experimenter.

Fpz+EOG 2nd Rating based on data set Fpz+EOG of all ten participants. Two

years of time in-between 1st and 2nd rating. In addition, grapho-elements

(K-complexes and sleep spindles) were annotated.

cEEGrid Rating based on data set cEEGrid of all ten participants.

cEEGrid+EOG Rating based on data set cEEGrid+EOG of all ten participants.

TABLE 3 | Description of all statistical test conditions.

Fpz+EOG test-retest comparing results of Fpz+EOG 1st Rating

and Fpz+EOG 2nd Rating (Participant number 5 not included, since

not contained in Fpz+EOG 1st Rating).

Fpz+EOG vs. cEEGrid comparing results of Fpz+EOG 2nd Rating

and cEEGrid Rating. *

Fpz+EOG vs. cEEGrid+EOG comparing results of Fpz+EOG 2nd

Rating and cEEGrid+EOG Rating. *

* Only the first 5 h and 20min of rating results of participant number 1 were used, due to

signal loss on several cEEGrid channels during the second half of the night.

1st Rating, the hypnograms of only nine participants were used
for this comparison.

The hypnograms scored an overall substantial agreement
with a test-retest reliability of Cohen’s κ = 0.78 ± 0.0. The
corresponding confusion matrix is shown in Table 5A. W and
N2 scored a substantial agreement in the single stage vs. the
rest test condition. N1 scored a moderate and N3 and REM
an almost perfect agreement. The κ values shown in the left
column of Table 4 were taken as representing best possible
scores for test conditions Fpz+EOG vs. cEEGrid and Fpz+EOG

vs. cEEGrid+EOG.
In Figures 3C,D results of Fpz+EOG 2nd Rating and

cEEGrid Rating are exemplarily shown for participant number
4. The results of the reliability tests of Fpz+EOG vs. cEEGrid

and Fpz+EOG vs. cEEGrid+EOG are listed in the middle and
right column of Table 4 (corresponding confusion matrices are
shown in Tables 5B,C). Overall, a substantial agreement is scored
in condition Fpz+EOG vs. cEEGrid (Cohen’s κ = 0.67 ± 0.01)
as well as in condition Fpz+EOG vs. cEEGrid+EOG (Cohen’s κ

= 0.75 ± 0.01). A paired-sample t-test (one-tailed) of the single
participant Cohen’s κ values revealed a significant difference in
agreement (p= 0.006).

In the single stage vs. the rest test condition, N3 scored an
almost perfect agreement in both comparisons. Condition REM
scored a substantial agreement in Fpz+EOG vs. cEEGrid and
an almost perfect agreement in Fpz+EOG vs. cEEGrid+EOG.
Conditions W and N2 scored a substantial agreement in both
comparisons. Fpz+EOG vs. cEEGrid shows a fair agreement
in condition N1 while Fpz+EOG vs. cEEGrid+EOG shows a
moderate agreement.

Grapho-Elements
Figure 4 shows the results of the correlation analysis averaged
over epochs for K-complex and sleep spindle events, respectively.
The effect is similarly visible in the average over participants
and single participant results. R1 and R1-R4 scored the highest
positive (K-complex: 0.68, sleep spindle: 0.62) and R5-R8 scored
the highest negative average correlation coefficients (K-complex:
−0.59, sleep spindle: −0.52). It is noticeable that K-complexes
and sleep spindles annotated in EEG recorded at Fpz are best
represented in EEG of cEEGrid channel combinations that
point in the direction of Fpz. This directional dependence
is exemplarily shown in Figure 5 for six cEEGrid channel
combinations. Overall, these results confirm the assumption that
combinations of ear EEG channels can be used to estimate the
EEG measured at further distanced location of the scalp and
therefore the selection of channel combinations used for cEEGrid
and cEEGrid+EOG, cf. Table 1.

DISCUSSION

The present study explored whether flex-printed ear-EEG
sensors can be used to capture sleep stages from recordings
performed with a wireless amplifier and off-the-shelf smartphone
technology at home. The correlation analysis approach provides
evidence that combinations of ear EEG channels can be used
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FIGURE 3 | Hypnograms created by the expert scorer are shown for participant number 4. (A) Hypnogram of Fpz+EOG 1st Rating using the EEG data of

Fpz+EOG. (B) Hypnogram of Fpz+EOG 2nd Rating using the EEG data of Fpz+EOG. (C) Hypnogram of cEEGrid Rating using the EEG data of cEEGrid. (D)

Hypnogram of cEEGrid+EOG Rating using the EEG data of cEEGrid+EOG. The sleep stages are defined according to the AASM as: Art (Artifact), Wake

(Wakefulness), REM (Rapid Eye Movement), N1 (non-REM1), N2 (non-REM2) and N3 (non-REM3).

to extrapolate information measured at traditional locations on
the scalp, like Fpz. Overall, the results support the selection
of those cEEGrid channel combinations that were used for the
cEEGrid and cEEGrid+EOG analysis. Here, cEEGrid channels
were combined and re-named to mimic EEG signals that may
be recorded from traditional PSG scalp electrodes Fp2, F4, C4,

P4 and O2. The quality of the hypnograms in comparison to
the Fpz+EOG hypnograms differed depending on the inclusion
of additional EOG channels in the analysis. The hypnograms
based on cEEGrid only showed significantly less agreement than
the cEEGrid+EOG hypnograms. A comparison of Cohen’s κ

values of the columns of Table 4 shows that Fpz+EOG vs.
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TABLE 4 | Statistical reliability test results and corresponding standard errors for

three test conditions (first: Fpz+EOG test-retest comparing results of

Fpz+EOG 1st Rating and Fpz+EOG 2nd Rating; second: Fpz+EOG vs.

cEEGrid comparing results of Fpz+EOG 2nd Rating and cEEGrid Rating; third:

Fpz+EOG vs. cEEGrid+EOG comparing results of Fpz+EOG 2nd Rating and

cEEGrid+EOG Rating).

Fpz+EOG

test-retest

Fpz+EOG vs.

cEEGrid

Fpz+EOG vs.

cEEGrid+EOG

W 0.78 ± 0.01 0.71 ± 0.01 0.71 ± 0.01

N1 0.46 ± 0.02 0.37 ± 0.02 0.42 ± 0.02

N2 0.77 ± 0.01 0.62 ± 0.01 0.75 ± 0.01

N3 0.90 ± 0.01 0.85 ± 0.01 0.88 ± 0.01

REM 0.86 ± 0.01 0.69 ± 0.01 0.83 ± 0.01

all 0.78 ± 0.01 0.67 ± 0.01 0.75 ± 0.01

Combining all participants, the tests results are shown for either every single sleep stage

vs. the rest or all sleep stages combined.

cEEGrid+EOG scored comparable results to the test-retest
reliability of the expert scorer. It is further noticeable that even
sleep stage N1 showed a comparable reliability. An investigation
of the inter-rater reliability of hypnograms created according
to the AASM for seven different trained sleep scorers yielded
comparable values [N1: Cohen’s κ = 0.46, REM: Cohen’s κ =

0.91; (28)]. Therefore, while the reliability of scores appears
low for some sleep stages, it is not lower than what is typical
for manually scored hypnograms. We expect that automated
scoring may outperform manual scorers and yield better results
in the near future (29). The results of the correlation analysis
further indicate that annotation of grapho-elements, like K-
complexes and sleep spindles, should be possible in ear-
EEG data.

In the current study, we found that off-the-shelf smartphone
technology, when combined with a wireless amplifier and a
potentially easy-to-administer ear-EEG electrodes array, may
be sufficient to provide hypnograms from home sleep data.
Note however that ear-EEG performed better in combination
with additional EOG electrodes than by itself, in particular
when determining REM sleep. REM sleep can be challenging
to differentiate from wake phases without EOG which provides
essential information on the vertical and horizontal eye
movements that signify REM sleep. Similarly, slow rolling eye
movements clearly visible in the EOG channels may indicate the
transition from wake to N1 sleep. Due to the importance of the
EOG information for sleep scoring, it would be interesting for
future studies to test if a scoring using EOG alone is possible (24)
showed only moderate agreement for all sleep stages combined
(κ = 0.42 ± 0.21) between hypnograms based on cEEGrid vs.
hypnograms based on full PSG and attributed the absence of an
EOG as a possible reason for the discrepancy. The current study is
based on amanual scoring of the hypnograms. The use of channel
combinations approximating the signal of classical PSG channels
combined with suitable channel labels, instead of direct cEEGrid
channels, could also be one reason for a better agreement, as
supposed in (25). In the current study, κ scores for N1 sleep

TABLE 5 | Resulting confusion matrices of (A) condition Fpz+EOG test-retest

(missing participant number 5, since not included in Fpz+EOG 1st Rating), (B)

condition Fpz+EOG vs. cEEGrid and (C) condition Fpz+EOG vs.

cEEGrid+EOG.

(A) Fpz+EOG test-retest Art W N1 N2 N3 REM

Art 63 19 1 1 0 5

W 4 927 96 18 2 8

N1 0 58 370 260 0 53

N2 0 117 168 2,870 226 23

N3 1 7 2 39 1,495 0

REM 0 102 91 104 1 1,562

(B) Fpz+EOG vs. cEEGrid Art W N1 N2 N3 REM

Art 100 8 2 19 1 2

W 63 769 47 135 10 98

N1 27 86 257 306 3 60

N2 135 71 133 2,958 244 82

N3 2 2 1 198 1,753 1

REM 83 23 70 399 2 1,191

(C) Fpz+EOG vs cEEGrid+EOG Art W N1 N2 N3 REM

Art 70 13 21 14 0 14

W 84 714 85 133 3 103

N1 29 51 300 295 1 63

N2 63 11 96 3,288 121 44

N3 6 3 1 241 1,705 1

REM 35 14 75 126 0 1,518

Each count refers to the annotation of a single 30 second segment. The respective

hypnograms of all participants were concatenated to create the confusion matrices. Only

the first 5 h and 20min of rating results of participant number 1 entered the analyses of

(B, C), since several cEEGrid electrodes separated from the skin during the second half

of the night.

ranged from 0.37 to 0.46 across all conditions, mirroring the often
noted difficulty to identify the transition from wake state to N1
sleep even in fully equipped PSG settings (28).

The strength of this study – collecting data at home while
participants sleep in their beds – also depicts its limits. By using
miniaturized, portable equipment, the comparison of the new
system was not to a full PSG but to an approximation of it
using just a single frontal electrode at Fpz in addition to the
EOG electrodes. The minimal setup according to the AASM
to determine sleep stages demands three scalp electrodes at
positions F4, C4 and O2, referenced to the mastoid (30). The
Fpz position was chosen based on studies showing sleep staging
to work well-when based on a single channel forehead recording
(17, 18). In addition, we aimed for EEG positions on hairless skin.
In future studies, a validation of a re-designed position layout
against the gold standard of sleep laboratory PSG will be needed
to give a better representation of its accuracy. In the current
study, we used the SMARTING amplifier without utilizing the
built-in gyroscope. For future applications, movement sensors
such as accelerometers and gyroscopes included in the hardware
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FIGURE 4 | Correlation analysis results averaged over epochs for each single participant and the average over participants (avg). Correlation coefficients between

grapho-elements (K-complexes and sleep spindles annotated at EEG of Fpz) and the corresponding EEG of every possible single channel and bipolar channel

combinations of cEEGrid electrodes are calculated for every epoch, Fisher Z transformed, averaged over epochs (and participants for avg), and transformed back.

may offer additional information for sleep analysis. It would be
worthwhile to track body positions and reconstruct breathing
patterns from chest movements, without adding to the bulkiness
of additional sensors.

Of the relevant characteristics that expert sleep scorer require,
eye movements and grapho-elements are of great importance.
They will likely continue to play a prominent role in defining
hypnograms as the field moves toward automatic sleep stage
detection (31). Concerning eye movements, the cEEGrid proved
a useful approximation to relevant scalp positions but it
was not able to provide sufficient EOG information, at least
when used on a single side only. To improve on the design,
extending the electrode array to include near-eye positions,
or possibly emulating EOG by using two cEEGrids (one on
each ear) and cross-referencing between the two may be
advantageous (22). A recent adaptation of the cEEGrid to
flex-printed forehead EEG delivered high-quality EEG signals
of forehead and facial positions with minimal discomfort
or inconvenience over the course of 8 h (32). Encompassing
standard EOG positions in the grid, this electrode array
may provide a signal suitable for detection of REM, though
it has not been tested for wear during sleep. As noted
previously (21), it is only available in one size, which can
make fitting difficult, especially in the elderly who tend to
have larger ears. The cEEGrid is not flexible and adjustable
enough to be worn comfortably by everyone. Ideally, ear-EEG
electrode grids should be manufactured from a more flexible

material and be available in different sizes to allow easier
self-application.

Concerning grapho-elements, we found that sleep spindles
and K-complexes are best represented in cEEGrid channel
combinations that point in the direction of Fpz in a data-driven
approach. In a future study, we plan to directly compare ear-
EEG channel combinations with EEG measured at several scalp
positions to further validate ear-EEG solutions for sleep EEG
acquisition. Recently, suggestions have been made for the source
of sleep spindle and K-complex generators (33, 34) that may
facilitate an ideal layout of bipolar channels on the hairless skin
to best capture sleep characteristics. In the future, a generator-
driven approach may be helpful to place bipolar channels in a
way that ideally capture the source of sleep stage characteristics
like sleep spindles and K-complexes. Concerning ear-EEG,
the source-sensor relationship has recently been evaluated by
simulations to compare cEEGrid ear-EEG with 128-channel cap-
EEG (23). Using the same forward modeling approach, a new
arrangement of electrodes, i.e., oriented toward a K-complex
generator, may be compared to full scalp EEG to provide an
estimate of sensitivity to the regions in question. This approach
may help in finding the best trade-off between comfortable,
unobtrusive sensors and data quality. Further miniaturization
and optimization of wireless EEG systems is an additional point
to be addressed in future. Current mobile EEG systems already
include movement sensors. Depending on the placement of the
amplifier on the body during night, movement sensors could be
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FIGURE 5 | Exemplarily demonstration of six cEEGrid channel combinations.

Colors represent the magnitude of correlations. Based on the correlation

analysis cEEGrid channel combination that point in the direction of Fpz result

in highest absolute correlation and therefore are best suited to represent

grapho-elements (K-complexes and sleep spindles) annotated in the EEG

recorded at Fpz. Combination R5-R8 pointing in frontal direction due to a

negative correlation value.

used to get additional information, such as body position and
breathing patterns.

The AASM criteria form a helpful standard that has been
refined over decades. However, as the idea of sleep monitoring
moves from hand-coding by trained personal to automatic
decoding with machine learning methods, inflexible procedures
of the PSG may constrain the development of new standards
for identifying sleep stage characteristics. Disruptive technologies
may be needed to help identify normal and abnormal events
during sleep in ecologically valid settings. Ear-EEG acquisition
seems suitable for the development of comfortable, discrete
and robust sleep EEG system that work at home, can be self-
administered and are unobtrusive during wear.
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