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Avian infectious bronchitis (IB) is a widely distributed poultry disease that has huge economic impact on poultry industry. The
continuous emergence of new IBV genotypes and lack of cross protection among different IBV genotypes have been an important
challenge. Although live attenuated IB vaccines remarkably induce potent immune response, the potential risk of reversion to
virulence, neutralization by thematernal antibodies, and recombination andmutation events are important concern on their usage.
On the other hand, inactivated vaccines induce a weaker immune response and may require multiple dosing and/or the use of
adjuvants that probably have potential safety risks and increased economic burdens. Consequently, alternative IB vaccines are
widely sought. Recent advances in recombinant DNA technology have resulted in experimental IB vaccines that show promise
in antibody and T-cells responses, comparable to live attenuated vaccines. Recombinant DNA vaccines have also been enhanced
to target multiple serotypes and their efficacy has been improved using delivery vectors, nanoadjuvants, and in ovo vaccination
approaches. Although most recombinant IB DNA vaccines are yet to be licensed, it is expected that these types of vaccines may
hold sway as future vaccines for inducing a cross protection against multiple IBV serotypes.

1. Background

Avian infectious bronchitis (IB) is an economically important
poultry disease affecting the respiratory, renal, and reproduc-
tive systems of chickens. Although IB was first identified in
NorthDakota,USA [1], epidemiological evidences confirmed
the circulation of several IBV serotypes in different parts of
the world. Currently, both classic and variant IBV serotypes
have been identified in most countries, thus making IB
control and prevention a global challenge [2, 3]. The disease
is associated with huge economic losses resulting from
decreased egg production, poor carcass weight, and high
morbidity. Mortality rate could be high in young chickens

especially with other secondary complications such as viral
and bacterial infections [4].

Vaccinationhas been considered to be themost cost effect-
ive approach to controlling IBV infection [5]. However, this
approach has been challenged by several factors including the
emergence of new IBV serotypes (currently over 50 variants)
that show little or no cross protection [6]. Importantly,
some IBV strains to which vaccines become available might
disappear as new variants emerged and thus necessitate the
development of new vaccines [5]. Until recently, most IBV
vaccines are based on live attenuated or killed vaccines
derived from classical or variant serotypes. These vaccines
are developed from strains originating from the USA such
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Figure 1: Predicted 3-dimensional structure of S1-glycoprotein (a) and nucleocapsid protein (b), determinants of Massachusetts strain of avian
infectious bronchitis virus. Structures are drawn using SWISS homology modeller available online at http://swissmodel.expasy.org/.

as M41, Ma5, Ark, and Conn and Netherlands, for example,
H52 and H120, as well as European strains such as 793/B,
CR88, and D274. However, studies have shown that vaccines
against these strains often lead to poor immune response
especially against local strains. Live attenuated IB vaccines
have also been shown to contribute to the emergence of new
pathogenic IBV variants [7, 8]. Notably, changes in geograph-
ical distribution and tissue tropism have been observed in
QX-like strains that initially emerged in China and spread
to cause great economic loss to poultry farmers in Asia
[9], Russia [10], and Europe [11–14]. This review is aimed
at describing progress and challenges associated with IBV
vaccine development. Some aspects of viral-induced immune
responses are discussed.

2. Review

2.1. Aetiology and Genome Characteristics. Avian infectious
bronchitis virus (IBV), together with Turkey coronavirus and
Beluga whale coronavirus, belongs to a Gammacoronavirus
subgroup, familyCoronaviridae, orderNidovirales. Although
antigenically different, members of Coronaviridae family
such as SARS and MERS coronavirus share common struc-
tural protein organisation. Coronaviruses genome ismade up
of a single stranded enveloped RNA that measures from 27 to
32 kb,making them the largest of theRNAviruses [15]. Partic-
ularly, IBVgenomehas an average diameter of 80–120 nmand
a typically large club of 20 nm, with heavily glycosylated spike
projections. Four different genes encoding for the structural
proteins are found in IBV genome. These are designated as
spike (S), envelope (E), matrix (M), and nucleocapsid (N).
The structural protein genes are also interspaced by genes
coding for nonstructural and accessory proteins, arranged in
the order of 5 to 3 directions as UTR-1a/1ab-S3a-3b-E-M5a-
5b-N-3-UTR-poly(A) [16]. Of the structural protein genes,
the S1 and N proteins contain epitopes responsible for host
immune response (Figure 1).

2.2. Spike Glycoprotein. The S-protein is heavily glycosylated
transmembrane protein that spanned from 1,160 amino

acids, giving rise to 150–200 kDa. It possessed a cleaved
signal sequence, one transmembrane domain, and a short
C-terminal tail [17]. IBV S-protein is made up of 3400
nucleotides posttranslationally cleaved into S1 (520 AAS
residue) at the amino terminal and S2 (625 AAS residue)
at the carboxyl terminal. The two glycosylated proteins
(S1 and S2) are anchored in the hydrophobic region near
the carboxylic part of the S2 and cleaved by furin or its
related enzymes in the Golgi complex [18, 19]. Typically, S1-
glycoprotein plays a role in receptor binding, while the S2
contributes aids in the fusion of the virus [20]. Of the two
S-glycoprotein genes, the S1-gene is the important immuno-
genic component and contained epitopes responsible for
neutralizing antibody [21, 22]. It also determines receptor
binding as well as membrane fusion via virus-to-cell and cell-
to-cell interactions [20].

2.3. The Nonstructural Genes’ 3a, 3b, 5a, and 5b Proteins. The
IBV genome possesses two small nsp genes, 3 and 5, that
express three (3a, 3b, and 3c [E]) and two (5a and 5b) gene
products, respectively. The 3a, 3b, 5a, and 5b proteins of IBV
show a unique sequence characteristic when compared to
members of group I and II coronaviruses [23]. Although the
specific function of small protein remains unknown these
genes are thought to contribute to virus virulence [23, 24].
Studies on the function of 5a-ns segment using reverse
genetics have identified a possible link between ns-protein
and virus virulence; however, their contribution to virus
replication may be less relevant [25].

2.4. Matrix Protein. The coronavirus matrix protein (M-
protein) slightly protrudes to the surface and is situated
between 220 and 262 aa, which is glycosylated on the N-
terminal domain [26]. Although members of group 2 coro-
navirus are O-glycosylated, IBV and members of group 1
coronaviruses are glycosylatedwithN-linked oligosaccharide
molecules [27]. The role of glycosylation of M-protein is
still not clear; however, using the MHV model, it was
found that cell infectedwithMHVcontainingN-glycosylated
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M-protein induces a better interferon response compared to
those infected with O-glycosylated M-protein, while nongly-
cosylated M-protein MHV infection resulted in a very poor
interferon response [28, 29].

2.5. Nucleocapsid Protein. During viral replication, direct
interaction occurs between N- and M-proteins [30] and
similarly between N and nsp3a [31]. Similarly, an indirect
interaction has been suggested between N and S as a result
of S-M-protein segments interaction [30]. Nucleocapsid pro-
tein functionally binds with the genomic gRNA to form
a helical ribonucleoprotein complex (RNPC), thus aiding
transcription, replication, translation, and packaging of the
viral genomeduring the replication process [32]. Coronavirus
N-protein also plays role in the induction of cytotoxic T-
lymphocytes response due to the presence of CTL-inducing
epitopes located at its carboxylic terminus [33, 34]. In addi-
tion, novel linear B-cells epitope peptides have been mapped
within the nucleocapsid N-terminal domain [35].

2.6. Small Envelope Protein. The IBV small envelope “E” pro-
tein is a scant protein and contains highly hydrophobic trans-
membraneN-terminal and cytoplasmic C-terminal domains.
This protein has been suggested to be associated with viral
envelope formation, assembly, budding, ion channel activity,
and apoptosis [36, 37].

2.7. Serotypes and Strain Variations. Currently, there are sev-
eral classical and variant IBV strains that have spread in dif-
ferent countries [38].These strainsmay be closely or distantly
related as represented in the phylogenetic tree (Figure 2).
Variation may arise due to a small change as little as 5% in
the S1 amino acid composition and may lead to alteration
in cross protection among closely related serotypes. Thus,
the nature of IBV-S1 sequences is taken into consideration in
designing novel control strategies [39, 40]. Despite being first
identified in USA, the classical M41 serotype and the Dutch
H120 serotype are the most widely used vaccine viruses [3].
However, the World Organization for Animal Health (OIE)
recommended that the distribution of IBV serotypes should
influence the choice of vaccine for use in each geographic
region. For example, M41, Arkansas, and Connecticut are
common in USA, while 4/91 (793/B, CR88) and D274
are predominately found in Europe [41, 42]. Recently, the
Chinese QX variants have emerged to cause outbreaks in
Europe, Asia, the Middle East, and Africa, demonstrating
a shift in geographical distribution and importance of the
QX-like genotype. This variation in strain distribution is
indeed a challenge to IBV control programmes. It is expected
that other serotypes will continue to emerge as a result of
RNAmutation and recombination that lead to viral selection
pressure [3, 43]. Other local variants are common within
specific regions and/or countries, but their global distribution
is yet to be ascertained [44].

2.8.RNAMutation andRecombination. Mutation and recom-
bination are important phenomena that shaped coronavirus
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Figure 2:Neighbour-joining phylogenetics showing relationship in S1-
glycoprotein of classical (pink) and variant (blue) IBV strains. The
tree reliability was assessed using 1000-bootstrap confidence and
branching pattern is supported by 91.7–100% bootstraps values and
associated taxa show 82% pairwise identity. Phylogenetic analysis
was carried out using Geneious software version R8.

viral genomes [45]. As with most RNA viruses, mutation
and recombination are two important events that alter
or shape coronavirus viral genome. Consequently, a viral
subpopulation may evolve as a result of these important
genetic events [16, 43, 46]. Although it is difficult to ascertain
how IBV genome evolved, three major theories have been
hypothesised as follows: (i) the lack of RNA polymerase
proofreading activity could lead to errors in RNA genome
which in turn result inmutation especially in the S1 spike gene
(nucleotide insertions, deletions, or pointmutations). (ii)The
use of vaccines especially the live attenuated vaccines type or
presence of multiple infections with different IBV serotypes
contributes to recombination process that favours the emer-
gence of new IBV variants [47]. Mixture between various
genetic mutants of the same coronavirus strains has been
shown to generate quasispecies viruses [48, 49].Mutations, in
the hypervariable S1 domain, may affect viral subpopulation
and result in new viruses with different pathogenicity as well
as virulence [43, 46]. It was found that regions encoding for
the nonstructural proteins 2, 3, and 16, as well as the spike
glycoprotein, exhibited the highest degree of recombination
[50]. Likewise, experimental passaging of IBV in the presence
of other immunosuppressive viruses such as Marek’s disease
virus, chicken anaemia virus, and infectious bursal disease,
has been suggested to affect IBV evolutionary dynamics [51].
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3. Host Immune Response against
Infectious Bronchitis Virus

3.1.Passive Immunity. Maternally derived antibodies (MDAs)
are important components of early protection against infec-
tious agents. It was shown thatMDAs last from days to weeks,
depending on the virus strain. Approximately 97% of birds
with MDAs are likely to be protected against IBV infection
at day one of age. However, this protection may decline to
<30% by age of 7 days, thus demonstrating a limited duration
of protection [52]. Adoptive transfer of antibody also has been
reported to induce 𝛼𝛽 associated CD8+ T-lymphocytes that
protected chickens from infection with virulent IBV strain,
thus signifying the role of passive immunity in IBV infection
[52].

3.2. Innate Immune Responses. The innate immune response
is important as the body’s first line of defence. This response
relies on pathogen-associated molecular patterns (PAMPs)
through specific pattern-recognition receptors (PRRs) that
are displayed on immune cells such as dendritic cells, macro-
phages, lymphocytes, and several nonimmune cells such as
endothelial cells, mucosal cells, and fibroblasts. Importantly,
the type I interferon response which is characterized by the
secretions of chicken interferon alpha and interferon beta
provides efficient and rapid response against viral replication
through the activation of macrophages and natural killer
cells which further lead to the induction of adaptive immune
response. The type II interferon response which is char-
acterized by interferon gamma secretion is predominantly
produced by the activatedNK cells, dendritic cells, andCD4+
CD8+ T-lymphocytes. This will further enhance leukocytes
adhesion, cause NK cells activation, and increase antigen
presentation on the surface of APCs (macrophages and
dendritic cells) and subsequently causes the expression of
MHC-I molecules and the development of adaptive response
[53].

Specifically, the toll-like receptors (TLRs) such as the
TLR4, TLR5, TLR15, and TLR16 are involved in the innate
sensing during viral infections [54]. As with SARS virus
and mouse hepatitis virus (MHV), significant upregulation
of TLR4 has been observed in IBV infection, suggesting its
role in coronavirus infection irrespective of the host species
involved [55]. In IBV infection, innate immune response has
been associated with the secretion of type I interferon in the
trachea, lungs, and kidney shortly after contact with the virus
[56].This response however depends on the virulence of IBV
as well as the host adaptability of the viral strain [57]. Chicken
type I interferons play important roles in the inhibition of
viral replication probably through interaction with TLRs
molecules and pattern-recognition receptors (PPRs) that are
crucial in detecting viral entry into the cells and for bridging
innate and adaptive immune responses [58–60]. This is
supported by the alteration in TLRs expression, especially
TLR2, TLR3, and TLR7 observed in the trachea, lungs, and
kidney following IBV infection [60, 61].

Administration of synthetic oligodeoxynucleotides (CpG
ODNs) led to a significant increase in the expression of

interferon gamma (IFN-gamma), interleukin 1-beta, IL-6,
IL-8, and oligoadenylate synthetase [62]. Similarly, tran-
scriptional analysis and cytokine profiling revealed that IL-
1𝛽, MIP-1𝛽, and IFN signalling pathways may serve as a
bridge between innate and adaptive immunities following
IBV vaccination [63]. The mechanism through which IBV
induces antiviral responses is very complex. However, it was
suggested that involvement of the JAK-STAT pathway and
upregulation of genes related to immune response such as
STAT1, MYD88, IRF1, and NFKB2 are crucial to the host
immune response whereas upregulation of genes related to
viral protein synthesis such as elF1 helps the virus to evade
immune defences [60, 64].

3.3. Humoral Response. Humoral immune response is asso-
ciated with the inhibition of viral replication and has been
shown to correlate with IBV-specific antibody titre. Antibody
response following IBV vaccination has been demonstrated
in serum, tracheal swabs, and lacrimal secretion [6]. Studies
have shown that both systemic (IgM and IgG) and mucosal
(IgA) antibodies are essential determinants for effective
clearance of the circulating virus [65]. In addition, IgA, being
the major immunoglobulin molecule for mucosal response,
plays a role in antibody homing at tracheal or other mucosal
points of viral entry [66]. Remarkably, IgM appeared 5 days
after infection (dpi), peaked at days 8–10, and disappeared
around 18 days after infection, while local responses correlate
with increased IgG levels and subsequent clearance of the
virus [56].

3.4. Cell-Mediated Immune Response. The N-gene specific
protein response is associatedwith the induction of CTLs that
are responsible for clearance of IBV-infected cells [34, 67].
The CTLs response peaked after 10 days, correlating with
a decrease in clinical signs and viral clearance from lungs
[68]. A significant increase in the CD4+ and CD8+ T-cells
has been reported following vaccination with S1-gene specific
IBV vaccines; thus S1-gene importantly plays role in cell-
mediated immune response [69]. Viral clearance may be
associated with an increase in the expression of granzymes
A during primary IBV infection and subsequent activation of
NK cells that aid in direct or targeted killing of IBV-infected
cells [70].

3.5. Mucosal Immune Response. Despite advances in the
understanding of mucosal immunology, much is yet to be
learned about mucosal immune responses in birds. IBV
replication at Harderian glands (HG), conjunctiva influences
the development of the mucosal immune response which
is characterized by the secretions/production of the specific
IgA.This response has been further linked with the lymphoid
expansion at the head associated lymphoid tissues (HALTs)
and subsequent induction of CTL response [71]. Ocular vac-
cination of chickenswith a recombinant nucleocapsid protein
(rN) and recombinant S1-protein- (rS-) based IBV vaccine
(via eye drop) induced significant cell-mediated immune
responses without booster vaccination or adjuvants. Birds
vaccinated with such vaccines were shown to be protected
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against infection with virulent virus strain, though the level
of IgA in the mucosa was higher in positive control birds
receiving only H120 live attenuated vaccine [72].

4. Vaccines against Infectious Bronchitis Virus

4.1. Live Attenuated Vaccines. Live attenuated IB vaccines are
the first generation IBV vaccines used to control IBV infec-
tion in the field. These vaccines are commercially available
for application via drinking water or by coarse spray at 1
day or within the first week of age. Since the duration of
immunity following live attenuated vaccines is short, booster
vaccination is carried out with the same or combinations of
other strains, 2-3 weeks after prime vaccination [73]. Most
of the commercially available live attenuated vaccines are
derived from virulent strains such as Massachusetts-based
M41 serotype and the Dutch H52 and H120 strains, although
some strains with regional or local impact have been used in
different parts of the world [74–76].

Live vaccines often are used in broilers and as boosters
for breeders. However, variation may exist among coun-
tries on the type of IBV vaccine strain approved for use.
This should be guided by epidemiological knowledge of
the locally or regionally prevalent strains. For example, in
USA, the M41, H120, Arkansas, Delaware, Florida, and JMK-
derived vaccines are used frequently. In Australia, the B and
C strains are used; in UK/Europe vaccine strains include
M41, 4/91, and CR88. In Netherlands, vaccination using
D274 and D1466 is commonly practiced [74]. For logistics
and economic reasons, some commercially available live
attenuated IBV vaccines have been combined with other
virus vaccines such as those against Newcastle disease virus,
Marek’s disease virus, and infectious bursal disease virus
(IBDV). However, it is not clear whether the combination
may influence immune response to the combined antigen
[77]. Few examples of commercially available live attenuated
vaccines include Nobilis IB-Ma5 (MSD Animal Health, UK)
fromMass serotype; AviPro IBH120 which is also considered
as Mass serotype based vaccine from Dutch H120 strain
(Lohmann Animal Health, Germany); Nobilis 4-91 (MSD
Animal Health, UK); Gallivac CR88 (Merial, USA) from
European strains. Live attenuated vaccine, POULVAC IBQX,
has also been produced against the recently endemic QX-like
IBV strains (Pfizer, France).

Some of the limitations of live attenuated viral vaccines
include reversion to virulence, tissue damage, and interfer-
ence by MDA. Tissue damage due to live vaccines may lead
to pathological disorders or secondary bacterial infections,
especially in day-old chick [78]. Evidence has shown that
despite efforts to reduce viral virulence by using 52 or 120
passages to produceH52 andH120 IBV vaccines, respectively,
these vaccines potentially cause considerable pathology of
the trachea and may lead to a severe outbreak in the field
[79, 80]. Another limitation of live attenuated IBV vaccines is
potential recombination between vaccine strains and virulent
field strains, leading to the emergence of new IBV serotypes
[7, 75, 81]. In one study, vaccination with live attenuatedH120
vaccines was shown to encourage viral spread among broiler

chickens, thus potentially supporting virus transmission and
persistence [82]. To reduce problems associated with vaccine
reversion, researchers explore the options of using reverse
genetic technology to create vaccine virus that is potentially
apathogenic in the host, but capable of replication and
inducing immune response. This has been shown in the case
of Beaudette virus carrying the S1-gene of virulent M41 IBV
strains [83, 84].

4.2. Inactivated or Killed Vaccines. Inactivated or killed vac-
cines have been used either alone or in combination with
live attenuated IBV vaccines [85]. These vaccines usually are
administered by injection to layers and breeders at 13 to 18
weeks of age. Since inactivated vaccines do not replicate, they
are unlikely to revert and cause pathological effects. However,
compared to live attenuated vaccines, killed vaccines alone
induce shorter immune response characterized by antibody
production but not T-cell-mediated responses [34, 86].
Therefore, inactivated vaccines in most cases require priming
with live attenuated vaccines, large doses of adjuvants, and/or
multiple vaccinations. This may increase the costs associated
with vaccine development and marketing, thus limiting their
applications [5]. Being injectable, administration of killed
vaccines is either difficult or impracticable in large poultry
setting. Likewise, issues of injection-site reactions may also
lead to carcass rejection or reduction in value [87].

4.3. Recombinant Vaccines

4.3.1. Viral Vector-Based Vaccines. The use of viral vectors
to deliver gene(s) of interest has been studied extensively.
Remarkably, the ability of adenovirus vector to persist in
cells without causing pathology as well as their tropism
to various dividing and nondividing cells allows sustained
antigen release. It is also possible to package and express
different immunogenic protein subunits in vector-based vac-
cines without the necessary use of a whole virulent organism
[88]. Experimental recombinant vector vaccines have been
developed against IBV. These vaccines were shown to induce
significant increase in the immune response and protect
against IB disease [69].

Although advances in viral vector vaccines seem promis-
ing in providing effective immune response and for reducing
the problems associated with RNA mutation as seen in live
attenuated IBV vaccines [89], this technology does have
limitations that include issue of preexisting immunity or
maternally derived immunity that interferes with the live vec-
tor itself and reduces the uptake of the antigen by the antigen
presenting cells and consequently the transgene expression as
well as specific immune response [90]. Lack of proper protein
folding and glycosylation in the host system and posttransla-
tional modifications may alter the conformation and epitope
arrangement that affect the immunogenicity and efficacy of
the vaccine.These factors are currently given special attention
in design and selection of recombinant IBV vaccines [91].
Recent study using a recombinant adenovirus vaccine con-
taining IBV-S1-glycoprotein reported a significant antibody
response that conferred 90–100% protection, against tracheal
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lesions following homologous and heterologous challenge
with Vic S (serotype B) or N1/62- (serotype C-) IBV strains
[69].

Different protein antigens have been coexpressed with
genes encoding for genetic adjuvants for an enhanced
immune response. In this regard, Shi et al. [92] show
that a fowl pox virus vaccine expressing IBV-S1-gene and
chicken interferon-𝛾 gene [rFPV-IFN𝛾S1] enhances humoral
and cell-mediated immune responses that protect chickens
against homologous and heterologous challenge with LX4,
LHLJ04XI, and LHB IBV strains. Expression of IBV-S1-gene
with chicken IL-18 in a recombinant fowl pox virus vector
produced a significant increase in antibody titre, CD4+, and
CD8+ responses. Similarly, expression of IL-18 with IBV-S1-
gene using a fowl pox virus vector (rFPV-S1/IL18) resulted
in 100% (20/20) protection, compared with only 75% (15/20)
protection, rates in chickens receiving a construct containing
S1 alone [93].

Oral immunization of mice with adenovirus vector was
shown to circumvent neutralization of the vector by pre-
existing or maternally derived antibody [94]. Interestingly,
adenovirus vector vaccines have been shown to be promising
for use in poultry oral vaccines. Oral immunization therefore
has several advantages in poultrymedicine such as the ease of
application and reduction in stress associated with injection
handling. Although vector-based oral vaccine may lead to
an adequate transgene specific antibody response, improve-
ments are needed for optimal T-cell response. Modifications
of vector-based vaccines such as dose escalation, nanoparticle
coating, use of dual vectors (e.g., combination of pox and
adenovirus-based vectors) and/or swapping of adenovirus
hexon gene have been attempted to circumvent the effect of
preexisting immunity but with some degree of success and
reported toxicity in other infection models [88].

Lentivirus vectors are finding ways into veterinary vac-
cines, although lentivirus-based IB vaccines are uncommon
[95]. Overall, only simultaneous comparative studies will
assist in understanding the advantages of one vector over
others.

4.3.2. Subunit and Peptide-Based Vaccines. This technology
requires the use of a segment or parts of the viral protein
to induce specific immune response. While subunit vaccines
are derived frompathogen protein or polysaccharide, peptide
vaccines are made from pathogen peptides or a portion of
the genome coding for immunogenic epitope [95]. Epitope
within S1- and N-gene has been targeted for the induction of
neutralizing antibodies as well as CTL responses, respectively
[22]. For example, a study has demonstrated that synthetic
epitope peptide corresponding to S20-S255 reacted well
with polyclonal antibodies against various IBV strains, thus
demonstrating its potential applications for broad-based IB
vaccines [96]. These broad vaccines have also been mapped
between 19 and 69 as well as 250 AAS sequences within the
receptor binding domainwhoseN-terminal plays role in viral
entry [97].

Although, at experimental stages of development, syn-
thetic and peptide vaccines have been shown to be promising

in the control of IBV, some researchers have focused on
developingmultiepitope peptide vaccines for use againstwide
range of IBV serotypes. Recently, Yang et al. [98] have devel-
oped an IBV vaccine based on the multiple epitopes from
S1- and N-protein genes. Expression analyses and immu-
nization study using the designed synthetic peptides yielded
significant humoral and cell-mediated immune responses
that resulted in >80% protection after challenge with virulent
virus. In another development, a Lactococcus lactis bacterial
system was used to deliver peptide vaccines orally and this
approach was also reported to induce mucosal immune
response [99, 100].

4.3.3. Plasmid DNA Vaccines. Unlike recombinant vector-
based vaccines involving a live vector, DNA vaccines use a
plasmid containing the gene(s) that code for an immunogenic
protein(s) of interest [101]. Until recently, no licensed poultry
DNA vaccine is commercially available; however, this tech-
nology has gained considerable attention, and several prod-
ucts are at various developmental or experimental trial stages
[102]. A DNA vaccine designated pDKArkS1-DP has been
developed, based on the S1-genes of Arkansas IBV serotypes.
Vaccination via in ovo route, followed by immunization with
a live attenuated vaccine at 2-week intervals, resulted in a
significant immune response and 100% protection against
clinical disease. On the other hand, birds receiving either in
ovo DNA vaccination alone or live attenuated vaccine alone
had ≤80% protection after challenge with a virulent IBV
strain [103].

Apart from in ovo DNA vaccinations, other novel
approaches have been evaluated. For example, intramuscular
injection of a liposome-encapsulated multiepitope DNA vac-
cine designed from S1, S2, andN regions resulted in increased
numbers of CD4+, CD3+, and CD8+, CD3+ cells, and a
protective immune response in 80% of the immunized birds.
Some of the advantages of epitope-based vaccines include the
ability to package several immunogens in a small delivery
system for targeted antibody and CTL responses [104].

Enhancement of a vaccine-induced immune response
was achieved by coadministration of aDNAvaccine encoding
for IBV nucleocapsid or S1-glycoprotein genes with IL-2
[105] or chicken granulocyte-macrophage stimulating factors
(GM-CSF), respectively [106]. In both cases, significant
increase in the humoral and cell-mediated immune responses
has been reported. However, S1-encoded DNA vaccines
resulted in a better immune response and accorded 95%
protection that was slightly higher compared to the N-
gene-encoded plasmid. In another study, a multivalent IBV-
DNA vaccine encoding for the S1-, N-, and M-proteins was
developed [98, 107]. The efficacy and protective capacity of
each gene specific IBV-DNA vaccine were shown to improve
when a cationic liposome carrier was used. A similar result
was obtained through boosting with an inactivated vaccine
[107].

DNA vaccines have some limitations including route of
administration, since most DNA vaccines are administered
by injection, thus making their application difficult in large
commercial poultry [108]. However, challenges related to
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the route of DNA vaccines administration could be overcome
using in ovo DNA vaccination at the hatchery [103] or by
giving vaccines in drinking water or as a spray vaccine. A
nanoparticle-mediated DNA delivery will assist in protecting
the vaccine against enzymatic degradation and enhances
their availability at mucosal surfaces for mucosal response
[71]. Since DNA vaccines could be used in the presence
of maternal antibodies, their usage in poultry could be
used to overcome challenges associated with vaccination of
young chicks against IBV infection. Other advantages of
DNA vaccines include the induction of both antibody and
T-cells immune response, safety, ability to express multiple
proteins, thermostability, and cost of production.They could
be produced within a short period, thus enabling handling
of the emerging virus threat. Moreover, modifications with
cytokines adjuvant favour their choice in the control of
infectious diseases of poultry [109].

4.4. Reverse Genetic Vaccines. A reverse genetic vaccine
involved a new technology of manipulating one or more viral
genes. Recently, this technology has been employed tomodify
IBV vaccine candidates [24, 110, 111]. For example, a recom-
binant, BeauR-IBV vaccine has been constructed recently by
substituting the antigenic S1-glycoprotein of an apathogenic
Beau-IBV strain with another S1-gene from pathogenic M41
and European 4/91 strains, respectively [112, 113]. These
changes resulted in protective immune responses without
making the new BeauR strain pathogenic [113, 114]. Similarly,
Zhou et al. [84] have constructed a modified H120 (R-H120)
virus that was found to retain some of its biological activities
when rescued after 5 passages in embryonated chicken eggs.
Interestingly, a vaccine using this strain has been reported
to elicit a high level of haemagglutination inhibition (HI)
antibody titre and a comparable protection rate compared
with an intact H120-vaccinated group. The future of reverse
genetic vaccines may be born out of their potentials to
abrogate issues of reversion to virulence as reported with
live attenuated vaccines. Development of reverse genetic IBV
vaccines that may overcome neutralization in the presence
of preexisting immunity, although very difficult, will surely

revolutionise the use of reverse genetic-based live attenuated
IBV vaccines. But whether these newer generation vaccines
will increase or reduce the chances of mutation and viral
selection pressure requires further studies. A summary of
important limitations associatedwith IB vaccines is presented
in Figure 3.

5. Expression and Delivery Systems

5.1. Vaccine Expression System. In recombinant or subunit
vaccines, consideration is given to the presence or absence
of posttranslational modification associated with the vaccine
antigen. However, thorough knowledge of the chemistry and
biology of the immunodominant antigen is needed to guide
selection of a suitable expression system, since outcomes
may differ frombacteria, yeast, mammalian, baculovirus, and
plant expression systems [91]. Different expression systems
have been used to generate recombinant protein antigen.
An attempt, using a vaccinia virus-based IBV vaccine, failed
to produce antigen enough to induce significant antibody
responses in mice [115]. It was proposed that the use of vac-
cinia virus-based vaccinesmay be hindered by issues of safety
regarding vaccinia virus itself, as well as its poor replication
ability in avian cells [116]. In another study, a baculovirus-
based vector was used to express the S1-glycoprotein of
Korean nephropathogenic KM91 strain. Immunization of
chickens with the KM91 vaccine resulted in 50% kidney
protection following a homologous challenge [89]. Similarly,
an S1-glycoprotein of IBV has been expressed in a transgenic
potato under the control of a cauliflower mosaic virus (35S)
promoter gene. This success could be useful in designing
food-based oral IB vaccines for use in poultry [117].

An improved “BacMam” virus surface display technology,
a modified strategy from baculovirus vectoring, was used
recently to display the S1-glycoprotein of IBV-M41 serotype.
Subsequent experimental trials with the vaccine resulted in
significant humoral and cell-mediated immune responses.
About 83% of the challenged birds were shown to be pro-
tected, which is comparable to 89% protection obtained in
birds immunized with commercial inactivated vaccine [118].
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5.2. Delivery System. The route of administration and deliv-
ery method used in vaccination may affect vaccine-induced
immune responses, antigen presentation, and type of MHC
molecule involved in the resultant response. Live attenuated
IB vaccines have gained wide application via injection orally
and through aeronasal spray. Killed or inactivated DNA
vaccines and peptide-based vaccines are commonly used
via injection routes. Some improved methods have been
used to deliver recombinant proteins, plasmid DNA, and
peptide vaccine. For example, an IBV-DNA vaccine carry-
ing S1- and/or N-protein of IBV has been delivered orally
using attenuated Salmonella enterica serovar Typhimurium
strain. Interestingly, both humoral and mucosal immune
responses were shown to significantly increase following oral
and intranasal immunization. Vaccinated chickens were pro-
tected against homologous challenge [119]. Other approaches
recorded success using a Lactococcus lactis bacterial system
to deliver IBV vaccine, and this approach led to an efficient
mucosal immune response [99, 100].

Virus-like particle (VLP) has been a new focus of inter-
est in vaccine development. This technology utilizes the
immunogenic properties of a live virus without potential to
retain pathogenic effects [120]. A VLP-based IBV vaccine has
been developed using the IBV-M- and IBV-S-genes. Immu-
nization of mice with the candidate vaccines demonstrated
high levels of cell-mediated immunity, comparable with the
results obtained using H120 live attenuated virus vaccine.
Similarly, a chimeric VLP vaccine has been synthesized using
M1 protein of avian influenza H5N1 virus and fusion protein
“NA/S1” derived from IBV-S1 protein and the cytoplasmic
and transmembrane domains of H5N1 avian influenza NA
protein. The chimeric vaccine induced significant S1-specific
antibodies in mice and chickens, neutralizing antibody in
chickens, and increased IL-4 secretion in immunized mice
[121]. Putting together these findings, there is a huge potential
for VLP-based vaccines as innovative candidate and their use
may provide a delivery system for the newer IBV vaccine
[120].

6. Conclusion

Despite spending huge amounts of money to control IB,
outbreaks involving classical and newly emerging virus
serotypes are constantly reported. The increasing emergence
of IBV genotypes and lack of cross protective immunity
have augmented the pace of interest in the development of
novel IBV vaccines. Though live attenuated vaccines are still
common in the field, theirmodification, for example, through
reverse genetic technology, will be useful for reducing the
effects of reversion to virulence. Viral vector vaccines have
the potential to facilitate efficient protein antigen production
and evoke effective immune response. However, as with live
attenuated vaccines, effects of neutralization by maternal
antibodies are of major concern regarding the use of vector-
based vaccines, since vaccination of parent poultry breeders is
practiced routinely. There is no doubt that newer generation
vaccines such as the recombinant vector DNA vaccines,
plasmid DNA vaccines, andmultiepitope vaccines may stand

as future alternatives as these vaccines have potential to
deliver numerous antigens, thus producing broad-based anti-
body and cell-mediated immune response against numerous
serotypes. Importantly, use of plasmidDNAvaccines circum-
vents the effect of neutralization by preexisting immunity, and
their mode of action could be enhanced by delivery through
different routes such as the mucosal and in ovo routes as well
as the use of novel delivery methods such as nanoparticles
and VLPs. In any case, future IBV vaccines must induce
broad protection against different IBV serotypes, overcome
maternal immunity, meet international safety regulations,
and be easier to apply and cost effective for wider acceptance
by poultry industry.
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