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INTRODUCTION

Intracerebral hemorrhage (ICH), accounts for 10–30% 
of all strokes, and is considered the most lethal type of 
stroke due to its high rate of disability and mortality (1, 
2). It has been reported that the mortality rate of ICH 
ranges from 30% to 50% within 30 days after onset (3, 4). 
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Hematoma expansion (HE), which occurs in nearly 30% of 
ICH patients, is an independent prognostic and modifiable 
factor for mortality and poor outcomes in ICH patients 
(5-7). Therefore, it is of great significance to accurately 
discriminate patients at the highest risk for HE, as this 
could influence clinical management decisions.

As the first reported and widely accepted imaging sign, 
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the computed tomography angiography (CTA) spot sign 
is a reliable and effective predictor of HE (8). However, 
considering the limitations of contrast agents and the 
urgency of emergency treatment, noncontrast computed 
tomography (NCCT) is necessary and more convenient 
than CTA for ICH patients. Imaging signs based on NCCT, 
including the black hole sign (9), swirl sign (10), blend 
sign (11), hypodensity (12), irregular shape and density 
heterogeneity (13), have been recently proposed to 
discriminate early HE after spontaneous intracerebral 
hemorrhage (sICH). These imaging signs, which could reflect 
the heterogeneous density of the hematoma, have a high 
predictive specificity of 77.0–95.5% (9-12). However, the 
predictive sensitivity and accuracy of these imaging signs 
are relatively low, which means that predicting HE according 
to these imaging signs may lead to missed diagnoses and 
large errors in disease diagnoses, thus affecting decision-
making in clinical management.

Radiomics is a newly developed method and a 
quantitative analysis that extracts large amounts of imaging 
features with high throughput from radiological images. The 
machine learning (ML) method can automatically optimize 
models from large datasets with multiple variables using 
algorithms. The combination of radiomics and ML algorithms 
could greatly improve the predictive ability of models and 
is widely used in cancer detection and phenotypic subtype 
classification of solid cancers (14-17). Recent studies have 
also applied radiomics or radiological variables based on 
NCCT images to predict HE after sICH, and all models in 
these studies achieved good predictive performances (18-
20). However, few studies have focused on combining 
the advantages of different variables, including clinical 
characteristics, imaging signs, radiomics features of 
hematoma, and ML algorithms to further improve the 
discriminating ability of HE, especially its sensitivity.

In this study, we aimed to construct four types of models 
based on ML algorithms, multivariable, and radiomics 
features derived from the NCCT images of hematoma and 
compared the performances of different models to find 
the best recommended model to discriminate early HE in 
patients with sICH.

MATERIALS AND METHODS

Patient Population
This retrospective study was approved by the Institutional 

Ethics Committee of our hospital (decision number [2019] 

19), and the need for written informed consent was waived.
In our hospital, 1016 patients with sICH were screened 

from our Picture Archiving and Communication Systems 
between April 2011 and March 2019. We included patients 
over 18 years old with sICH who underwent an initial 
CT examination within 6 hours of ictus and a follow-up 
CT examination within 24 hours after the initial CT. The 
exclusion criteria were as follows: patients who underwent 
surgical treatment before the follow-up CT; patients with 
secondary ICH, such as arteriovenous malformation, 
aneurysm, head trauma or brain tumor; patients with 
hemorrhagic evolution of an ischemic infarct; patients with 
primary intraventricular hemorrhage; patients with artifacts 
in their CT images; and patients with multifocal cerebral 
hemorrhage or a maximum length of the baseline hematoma 
less than 3 mm. Finally, 261 patients with sICH admitted in 
our hospital were retrospectively reviewed. The flow diagram 
of the patient selection process is displayed in Figure 1A.

HE was defined as a proportional increase in hematoma 
volume > 33% or an absolute growth in the hematoma 
volume > 6 mL on the follow-up CT scan from the initial 
CT scan (6, 21). According to the definition of HE, all sICH 
patients were assigned into two groups: an expander group 
(n = 110) and a nonexpander group (n = 151). 

The baseline demographic information, clinical 
characteristics and laboratory tests of the two groups, 
including sex, age, blood pressure at admission, important 
previous medical history (diabetes mellitus, hypertension), 
admission variables (Glasgow coma scale, time of symptom 
onset), and admission laboratory test results (apolipoprotein 
A-I [apoA-I], high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, creatinine, urea, uric 
acid, activated partial thromboplastin time, international 
normalized ratio, fibrinogen level, and platelet count) were 
extracted from the electronic medical record system.

CT Examination and Image Analysis
CT images of 187 patients were obtained with a 128-slice 

CT scanner (Ingenuity, Philips Medical Systems) and those 
of 74 other patients were acquired with a 320-slice CT 
scanner (Aquilion ONE, Canon Medical Systems). The image 
acquisition parameters included a tube voltage of 120 kV, 
smart mAs, matrix size of 512 x 512, and slice thickness of 
1 mm or 5 mm.

To reduce the discrepancies in the image acquisition 
parameters using two different CT scanners, we resampled 
all voxels into 1.0 x 1.0 x 1.0 mm3 from the raw data before 
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image analysis. To assess the consistency of the extracted 
radiomics features from different CT scanners, the intraclass 
correlation coefficient (ICC) of each feature in 20 sICH 
patients with HE scanned by using a 320-slice CT scanner 
and 20 age- and gender-matched patients scanned by using 
a 128-slice CT was calculated, and the study only continued 
if more than 90% of the features from initial CT images of 
two different scanners showed good consistency (ICC > 0.7).

NCCT imaging signs, including the black hole sign, swirl 
sign, blend sign, hypodensity, irregular shape and density 
heterogeneity, were assessed and recorded. The definitions 
of NCCT imaging signs are detailed in the Supplementary 
Materials. The procedure was performed independently 
by three radiologists who were blinded to the clinical 

characteristics of patients to provide a final consensus.

Image Segmentation and Radiomics Feature Extraction
All the included patients were randomly split into a 

training cohort (n = 182) and a validation cohort (n = 
79) according to a 7:3 ratio for model construction and 
validation. An in-house software (Artificial Intelligence Kit 
[AK] version 3.2.2, GE Healthcare) was used for CT image 
alignment. ITK-SNAP software (http://www.itksnap.org/
pmwiki/pmwiki.php) was used for three-dimensional whole-
hematoma segmentation in the cohorts. The region of 
interest (ROI) was manually delineated around the boundary 
of the hematoma on each slice by a radiologist with 5 years 
of experience in neuroimaging.

Fig. 1. System overview.
A. Flow diagram of the ICH patient selection process. B. The workflow of the radiomics analysis of hematoma. AIC = Akaike information criterion, 
GLCM = the gray-level cooccurrence matrix, GLSZM = the gray-level size zone matrix, ICH = intracerebral hemorrhage, LASSO = least absolute 
shrinkage and selection operator, NCCT = noncontrast computed tomography, PACS = Picture Archiving and Communication Systems, RLM = the 
run-length matrix
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To ensure the accuracy of the ROIs, 40 patients were 
randomly selected, and the ROIs were drawn again by 
another radiologist using the same method. The ICC of 
the ROIs in the 40 patients was calculated, and the study 
continued only if the ICC was > 0.7.

In total, 396 radiomics features were extracted 
automatically from each case using the AK software. The 
extracted radiomics features were classified as follows: 
histogram features, Haralick features, form factors, the 
gray-level cooccurrence matrix (GLCM), the run-length 
matrix (RLM), and the gray-level size zone matrix (GLSZM).

Radiomics Features Analysis
Dimension reduction was performed as described in 

Figure 1B. First, the ICC value for each feature was 
calculated to assess its reproducibility, and 382 of the 396 
(96%) extracted radiomics features from the segmented 
hematoma regions of the initial CT images presented high 
stability (ICC > 0.7) and were entered into the following 
analysis. Second, univariate analysis was performed using 
the Mann-Whitney U test for continuous variables, and 
a p value < 0.05 was considered statistically significant. 
Third, Spearman correlation analysis was used to eliminate 
high-dimensional feature redundancy. After conducting 
the Mann-Whitney U test and Spearman correlation 
analysis, 322 significant features with p values < 0.05 
were included in the following analysis. Last, the least 
absolute shrinkage and selection operator and stepwise 

regression based on the Akaike information criterion 
were used to select the most powerful radiomics features. 
After the above steps, only 9 radiomics features were 
selected as the input of radiomics models (Fig. 2), 
including 3 RLM features (LongRunLowGrayLevelEmphasis_
angle90_offset7, ShortRunHighGrayLevelEmphasis_
AllDirection_offset7_SD, ShortRunEmphasis_angle45_
offset1), 2 GLSZM features (HighIntensityLargeA
reaEmphasis, LowIntensityLargeAreaEmphasis), 2 
GLCM features (Correlation_angle90_offset4, 
HaralickCorrelation_AllDirection_offset1_SD), 1 form 
feature (SurfaceVolumeRatio), and 1 histogram feature 
(Quantile0.025). Spearman’s correlation was performed 
to analyze the relationship between radiomics features 
and the degree of HE (absolute or relative sICH volume 
growth) in the expander group, and the results are shown 
in Supplementary Table 1.

Model Construction and Machine Learning
The clinical-radiologic model: univariate analysis was used 

to determine predictors among the clinical and radiological 
variables of all the included patients. The variables with 
p values < 0.05 were entered into the multivariate logistic 
regression (LR) analysis, and 4 clinical characteristics 
including sex, diabetes mellitus, platelet count, and apoA-I, 
and 4 imaging signs including the blend sign, black hole 
sign, swirl sign, and heterogeneity were used to construct 
the clinical-radiologic model.

Fig. 2. Radiomics feature selection by means of the LASSO.
A. LASSO regression with 10-fold cross-validation was applied to select the radiomics features that could predict hematoma expansion. Tuning 
parameter selection in LASSO regression. B. LASSO coefficient analysis of the 322 radiomics features. Using 10-fold cross-validation, 16 non-zero 
coefficients were selected. 
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Radiomics models: nine radiomics features and 5 different 
ML algorithms were used to construct models in the training 
cohort. The ML algorithms included the naïve Bayes (NB), 
random forest (RF), LR, support vector machine (SVM), and 
k-nearest neighbors (KNN) algorithms. These models were 
independently verified in the validation cohort. The LR 
algorithm was the second best in the training cohort (the 
area under the curve [AUC] = 0.926) and in the validation 
cohort (AUC = 0.850), and was regarded as the suitable ML 
method for decreasing the influence of overfitting.

The radiomics-radiologic model: nine radiomics features, 4 
imaging signs and the LR algorithm were used to construct 
the model in the training cohort, and the model was also 
independently verified in the validation cohort.

The combined model: nine radiomics features, 4 imaging 
signs, 4 clinical characteristics and the LR algorithm were 
used to construct the model in the training cohort, and 
the model was also independently verified in the validation 
cohort.

Model Evaluation
Receiver operating characteristic (ROC) curves for all 

models were generated, and AUC, specificity and sensitivity 
were calculated to evaluate the discriminative ability of 
each model. The DeLong test was used to compare the 
discriminative performance of different models. Decision 
curve analysis (DCA) was conducted to assess the clinical 
usefulness of different radiomics models.

Statistical Analysis
Statistical analysis was performed using the R software 

(version 3.6.0; http://www.Rproject.org). Continuous 
variables were expressed as medians (interquartile ranges), 
and categorical variables as frequencies (percentages). 
The Shapiro-Wilk test was applied to check the normality 
of continuous variables. The Mann-Whitney U test was 
used for non-normally distributed data. Two-sample t tests 
were used for normally distributed data. Chi-square test 
or Fisher’s exact test were applied to compare categorical 
variables. A two-tailed p < 0.05 was considered statistically 
significant.

RESULTS

The demographic data, clinical characteristics, laboratory 
tests and imaging signs of the expander group and 
nonexpander group are given in Table 1. Only sex, diabetes 

mellitus, platelet count, apoA-I and the 5 imaging signs 
(blend sign, black hole sign, swirl sign, hypodensity [type 1] 
and hypodensity [type 3], heterogeneity) were significantly 
different between the two groups (Table 1).

The ROC curves of the 5 imaging signs are shown in Figure 
3A. Among the 5 imaging signs, the black hole sign had the 
highest AUC for discriminating HE after sICH (AUC = 0.610), 
and its specificity and sensitivity were 0.853 and 0.367, 
respectively. The ROC curves of the clinical-radiologic model 
are shown in Figure 3B. The AUC, specificity and sensitivity 
of this model were 0.766, 0.775, and 0.645, respectively.

Performance of the Radiomics Models and Verification
The ROC curves of the five radiomics models in the 

training cohort and in the validation cohort are shown in 
Figure 4A and B. The DeLong test showed that the AUCs of 
the radiomics models were significantly higher than those of 
the clinical-radiologic model in discriminating HE (p values 
were 0.001, 0.003, 0.001, 0.002, and 0.003 for LR, NB, RF, 
SVM, and KNN, respectively), with no significant difference 
between the AUC of the radiomics model built using the LR 
algorithm and that built using the 4 other algorithms in 
the validation cohort (p values were 0.052, 0.710, 0.590, 
and 0.300 for NB, RF, SVM, and KNN, respectively). The 
AUCs, specificities and sensitivities of the radiomics model 
built using the LR algorithm were 0.926, 0.914, and 0.818 
in the training cohort, and 0.850, 0.818, and 0.761 in the 
validation cohort, respectively. The decision curves of the 
five radiomics models showed that all models for predicting 
early HE were better than the treat-all-patients measures 
and the treat-none measures (Fig. 4C, D).

The radiomics-radiologic model showed a better 
performance than the clinical-radiologic model, with an 
AUC of 0.946, specificity of 0.943 and sensitivity of 0.805 
in the training cohort (p = 0.001, DeLong test), and AUC of 
0.867, specificity of 0.879 and sensitivity of 0.795 in the 
validation cohort (p = 0.001, DeLong test), (Fig. 5A, B).

The combined model showed a satisfactory performance 
similar to the radiomics-radiologic model, with an AUC of 
0.960, specificity of 0.952 and sensitivity of 0.844 in the 
training cohort, and an AUC of 0.867, specificity of 0.881 
and sensitivity of 0.804 in the validation cohort (Fig. 5C, D).

DISCUSSION

In this retrospective study, we constructed four types of 
models including the clinical-radiologic model, radiomics 
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model, radiomics-radiologic model, and combined model to 
discriminate early HE after sICH. Among these models, the 
combined model showed a satisfactory performance in the 
training cohort (AUC = 0.960) and validation cohort (AUC 
= 0.867) to discriminate HE, and can be used to effectively 
identify sICH patients at risk of early HE.

In this study, the clinical-radiologic model had a better 

discriminative performance and a higher sensitivity (AUC = 
0.766, sensitivity = 0.645) than the black hole sign (AUC = 
0.610, sensitivity = 0.367). In the clinical-radiologic model, 
sex, apoA-I, diabetes mellitus, and the platelet count were 
independently associated with HE. Similar to our study, 
a previous study showed that men with ICH experience a 
higher risk of HE than women with ICH (22). Lower platelet 

Table 1. Patient Characteristics
Variables Expanders (n = 110) Nonexpanders (n = 151) P

Male, sex 75 (68.1) 84 (55.6) 0.040*
Age, year 62 (51–71) 61 (51–69) 0.473
Onset-to-CT time, hour 2.0 (1.5–3.0) 3.0 (2.0–4.0) 0.393
Admission SBP, mm Hg 176 (159–196) 176 (155–195) 0.623
Admission DBP, mm Hg 100 (84–110) 100 (90–112) 0.212
Diabetes mellitus 42 (38.1) 38 (25.1) 0.021*
Hypertension 65 (59.1) 95 (62.9) 0.533
Platelets, x 109/L 160.5 (121.8–201.8) 184.0 (148.0–227.0) 0.013*
APTT, second 33.6 (31.3–37.0) 34.4 (31.6–38.1) 0.329
INR 1.02 (0.95–1.08) 1.03 (0.98–1.08) 0.987
Fibrinogen, g/L 2.93 (2.63–3.53) 3.03 (2.56–3.44) 0.587
Creatinine, μmol/L 61.65 (46.15–82.03) 60.2 (47.70–73.0) 0.465
Urea, mmol/L 5.73 (4.62–7.03) 5.36 (4.34–6.50) 0.908
Uric acid, μmol/L 284.7 (207.1–347.2) 293.0 (227.6–385.3) 0.225
HDL-C, mmol/L 1.20 (1.00–1.44) 1.24 (1.05–1.48) 0.327
LDL-C, mmol/L 2.31 (1.74–3.01) 2.54 (1.99–2.91) 0.143
ApoA-I, g/L 1.50 (1.29–1.75) 1.56 (1.38–1.82) 0.024*
GCS score 12 (10–14) 13 (10–14) 0.114
Bleeding location - - 0.394

Deep 86 (32.9) 122 (46.7)
Lobar 3 (1.1) 7 (2.7)
Brain stem 16 (6.1) 18 (6.9)
Cerebellum 5 (1.9) 4 (1.5)

Initial sICH volume, mL 12.65 (6.59–24.22) 11.09 (5.52–20.08) 0.100
Absolute sICH volume growth, mL 10.55 (7.02–20.98) 0 (0–0.12) < 0.001*
Relative sICH volume growth, % 92.5 (55.2–164.6) 0 (0–2.0) < 0.001*
Blend sign 30 (27.3) 23 (15.2) 0.017*
Black hole sign 40 (36.4) 22 (14.6) < 0.001*
Swirl sign 20 (20.0) 6 (4.0) < 0.001*
SAH 8 (7.3) 10 (6.6) 0.838
Irregular shape 79 (71.2) 96 (63.5) 0.163
Hypodensity - - -

Type 1 36 (32.7) 28 (18.5) 0.008*
Type 2 8 (7.3) 12 (7.9) 0.841
Type 3 6 (5.5) 0 0.003*
Type 4 1 (0.9) 0 0.242

Heterogeneity 46 (41.8) 40 (26.5) 0.009*

Data are noted as median and interquartile ranges or numbers and percentages in parenthesis. *p < 0.05. ApoA-I = apolipoprotein A-I, 
APTT = activated partial thromboplastin time, CT = computed tomography, DBP = diastolic blood pressure, GCS = Glasgow coma scale, 
HDL-C = high-density lipoprotein cholesterol, INR = international normalized ratio, LDL-C = low-density lipoprotein cholesterol, SAH = 
subarachnoid hemorrhage, SBP = systolic blood pressure, sICH = spontaneous intracerebral hemorrhage
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Fig. 3. ROC curves of the imaging signs and the clinical-radiologic model for predicting hematoma expansion. 
A, B. The ROC curves of the five imaging signs and the clinical-radiologic model. AUC = the area under the curve, ROC = receiver operating 
characteristic
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count can easily cause bleeding, which may be related 
to HE. The reduction in apoA-I may be associated with 
rupturing blood vessels, which could lead to HE (23). In 
addition, elevated serum glucose levels in diabetic patients 
could accelerate the destruction of the blood-brain barrier 
and impair the integrity of small cerebral vessels, which is 
likely to cause HE (24, 25). Consequently, by adding clinical 
characteristics, the discrimination capability and sensitivity 
of this model can be effectively improved.

In our study, the radiomics models demonstrated a better 
discrimination capability and higher sensitivity than the 
clinical-radiologic model. As reported, heterogeneity reflects 
different ongoing phases of bleeding and thus higher 
heterogeneity of the hematoma tends to mean a higher 

risk of HE (12). Compared with imaging signs, radiomics 
features may have the advantages of a higher resolution 
and quantitative evaluation. A previous study suggested 
that NCCT texture analysis can objectively quantify the 
heterogeneity of ICH and independently predict early 
hematoma enlargement (19). In our study, 9 radiomics 
features belonging to the RLM, GLSZM, GLCM and histogram 
features that described the heterogeneity and shapes of the 
hematoma may be associated with active bleeding and HE 
after sICH.

Furthermore, ML algorithms can handle large numbers of 
imaging features and yield a potential predictive increase in 
accuracy over regression models (26, 27). In our study, we 
applied five common ML algorithms to construct radiomics 

Fig. 5. ROC curves of the radiomics-radiologic model and the combined model for predicting hematoma expansion.
A, B. The ROC curves of the radiomics-radiologic model in the training cohort and the validation cohort. C, D. The ROC curves of the combined 
model in the training cohort and the validation cohort.
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models to discriminate early HE after sICH, and all radiomics 
models showed good discrimination capabilities. More 
importantly, the LR algorithm was regarded as the suitable 
ML method for decreasing the influence of overfitting. 
However, this result was different from the best algorithm in 
Li et al.’s study (28). We speculate that different radiomics 
features, patients and parameters of the constructed model 
may be suitable for different ML algorithms, and the LR 
algorithm, which was especially suitable for constructing 
models with continuous and categorical independent 
variables, was more suitable for our data. Additionally, we 
used DCA to confirm that the radiomics model based on 
the LR algorithm could be widely used in clinical practice 
to discriminate patients at risk of HE. Nevertheless, it is 
necessary to standardize the radiomics features and samples 
to evaluate the optimal algorithm for discriminating HE in 
future research.

To further prove that models based on multivariable, 
radiomics features and ML algorithm can improve the 
discrimination of HE, we used the suitable LR algorithm to 
construct two other models (a radiomics-radiologic model 
and a combined model) to discriminate early HE after sICH. 
As expected, both models showed a good discrimination 
capability and sensitivity in detecting early HE after sICH. 
In line with our study, a combined model integrating 
radiological variables and a radiomics score showed a higher 
AUC than the radiomics model in predicting early HE in ICH 
patients (20). Thus, the better model for discriminating HE 
was based on many variables rather than a single variable. 
In addition, although the radiomics-radiologic model 
achieved a satisfactory discrimination capability in our 
results, the addition of 4 clinical characteristics can still 
improve the sensitivity of the combined model (sensitivity 
= 0.844) in the training cohort and (sensitivity = 0.804) 
in the validation cohort. According to the above results, 
to more sensitively and effectively discriminate early HE 
after sICH, our best recommended model was the combined 
model.

There are several limitations in this study. First, our study 
was a single-center retrospective study based on a small 
sample size, so our findings may not be generalizable to 
other centers. A larger prospective multicenter study in the 
future is needed to verify our findings. Second, only the 
features of hematoma were included in the models, which 
may limit the use of our recommended model. We did not 
analyze the correlation of perihematomal edema with HE, 
which may contribute to the discrimination of HE. Finally, 

as mentioned above, standardized NCCT scans, feature 
extraction and selection, model construction and analysis 
are needed in the future.

In summary, we can improve the ability to detect early 
HE after sICH by constructing NCCT models based on 
multivariables, radiomics features, and ML algorithms. 
Among the four types of models constructed, the combined 
model was the best recommended model for discriminating 
the risk of early HE after sICH.
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