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The Contribution of Neanderthals
to Phenotypic Variation in Modern Humans

Michael Dannemann1 and Janet Kelso1,*

Assessing the genetic contribution of Neanderthals to non-disease phenotypes in modern humans has been difficult because of the

absence of large cohorts for which common phenotype information is available. Using baseline phenotypes collected for 112,000

individuals by the UK Biobank, we can now elaborate on previous findings that identified associations between signatures of positive

selection on Neanderthal DNA and various modern human traits but not any specific phenotypic consequences. Here, we show that

Neanderthal DNA affects skin tone and hair color, height, sleeping patterns, mood, and smoking status in present-day Europeans. Inter-

estingly, multiple Neanderthal alleles at different loci contribute to skin and hair color in present-day Europeans, and these Neanderthal

alleles contribute to both lighter and darker skin tones and hair color, suggesting that Neanderthals themselves were most likely variable

in these traits.
Introduction

Interbreeding between Neanderthals and earlymodern hu-

mans has been shown to have contributed about 2%Nean-

derthal DNA to the genomes of present-day non-Africans.

This Neanderthal DNA has apparently had both positive

and negative effects. Together with the rapid decrease in

Neanderthal ancestry after introgression, the depletion of

Neanderthal DNA around functional genomic elements

in present-day human genomes suggests that a large

fraction of Neanderthal alleles are deleterious in modern

humans.1–4 However, recent studies have also identified

a number of introgressed Neanderthal alleles that have

increased in frequency in modern humans and that

might contribute to genetic adaptation to new environ-

ments. Adaptive variants in genes related to immunity,

skin and hair pigmentation, and metabolism have been

identified.4–11

The majority of Neanderthal alleles in the genomes of

people today are, however, not strongly adaptive and are

therefore present at low frequencies (<2%) in present-

day populations. To date, the number of individuals for

whom genotype and phenotype information is available

has been limited, making it difficult to study archaic alleles

that are at such low frequencies or to link them to pheno-

typic variation. A recent study used the electronic medical

records and genotypes of 28,000 individuals to address the

contribution of these less frequent Neanderthal alleles to

clinical traits in modern humans. It showed that a large

number of Neanderthal variants at different loci influence

risk of a number of disease traits, including depression,

skin lesions, and blood-clotting disorders, and that Nean-

derthals contributed both risk and protective alleles for

these traits.12 However, evaluating the broader contribu-

tion of Neanderthals to common phenotypic variation in

modern humans, or inferring Neanderthal phenotypes,

has not been possible largely because of the limited num-
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ber of studies that collect genotype data together with

common phenotype information.

In addition to collecting genotype data via a custom

genotyping array, the UK Biobank has collected baseline

phenotypes, including traits related to physical app-

earance, diet, sun exposure, and behavior, as well as dis-

ease, for more than 500,000 people.13 The pilot dataset

including genotypes and phenotypes for more than

150,000 of the individuals was recently made available

for study. Using these data, we studied the contribution

of Neanderthals to common human phenotypic variation

in 112,338 individuals from the UK Biobank to determine

the set of traits to which Neanderthals have contributed

and to evaluate the relative contribution of archaic and

non-archaic alleles to common phenotypic variation in

modern humans.
Material and Methods

Datasets from the UK Biobank
We obtained genotype and phenotype data from the pilot phase

of the UK Biobank project.13 Genotyping was performed with

two arrays (UK BiLEVE and UK Biobank Axiom) that share 95%

of markers, resulting in a merged dataset with genotype informa-

tion for 152,729 individuals across 822,111 genomic sites.
Filtering Genotype Data
UK Biobank quality control (QC) included tests for batch, array,

plate, and sex effects, as well as departures from Hardy-Weinberg

equilibrium and discordance across control replicates. We used in-

formation provided by the UK Biobank to remove a total of 40,391

individuals; of these, 480 were related according to a kinship infer-

ence analysis, 17,308 had significantly decreased heterozygosity

levels, and 32,443 had substantial non-European ancestry accord-

ing to self-reported information and a principle-component anal-

ysis of the SNP data. Extensive documentation of the QC for these

data is available on the UK Biobank’s website.
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Annotating Non-archaic and Archaic-like SNPs
A total of 825,927 polymorphic sites were genotyped. We took a

two-step approach to annotate SNPs on the basis of whether

they carried an allele of putative archaic origin. First, we identified

potentially introgressed alleles by selecting SNPs that had one

fixed allele in Yoruba individuals, an African population with

little to no inferred Neanderthal DNA (1000 Genomes Project14

phase 3), and a different allele in a heterozygous or homozygous

state in the genome of the Altai Neanderthal15 and that segregated

in any of the UK Biobank individuals (we refer to these variants as

archaic-like SNPs [aSNPs]). We then expanded this by requiring

that the identified aSNPs overlap confidently inferred tracts of

Neanderthal introgression in modern humans4 that have a Nean-

derthal posterior probability greater than 0.9 and a length of at

least 0.02 cM. In the construction of this introgression map, a

number of criteria were used to ensure that the identified haplo-

types were highly likely to be of introgressed origin: (1) alleles

were required to be shared between non-Africans and Neander-

thals but not be present in sub-Saharan Africans, (2) haplotype

lengths had to be consistent with admixture �50,000 years ago,

and (3) haplotypes had to have a lower divergence to a Neander-

thal reference genome than to African genomes.

We then collapsed sets of SNPs that were in high linkage disequi-

librium (LD) into one representative tag SNP. To do so, we used

PLINK16 (parameters: –ld-window-r2 0.8 –ld-window 99999) and

computed LD between all SNPs among the 152,729 individuals

by combining sets of SNPs with r2 > 0.8 into clusters. For clusters

with at least one aSNP, we selected a random aSNP as the tag

SNP. In clusters without aSNPs, we chose a random tag SNP.

Non-archaic SNPs and aSNPs with no other SNPs in high LD

were defined to be their own tag SNP. We identified a total of

534,341 tag SNPs, of which 6,671 were of putative archaic origin

and 527,670 were of non-archaic origin.

To ensure a robust correlation between genotypes and pheno-

types, we required each tag SNP to have a reasonable representa-

tion of both alleles. We therefore kept all tag SNPs where at least

100 individuals were heterozygous and at least 20 were homozy-

gous for the minor allele, resulting in 6,210 archaic-like tag SNPs

and 439,749 non-archaic tag SNPs.
Phenotype Data
Baseline phenotype data were available for different subsets of

individuals (Table S1). Of these phenotypes, we used the 136

(including diet, cognitive functions, physical measurements, and

self-reported medical conditions) for which data were available

for at least 80,000 individuals (Table S1). We excluded phenotypes

with complex measurements (e.g., electrocardiography). Pheno-

types were represented either in categorical form (72 phenotypes)

or as continuous variables (64 phenotypes) (Table S1).
Correlation of Genotype and Phenotype Data
Linear or logistic regression is typically used in association

testing to account for potentially confounding covariates such

as sex, age, and ancestry; however, applying this standard

approach to the UK Biobank is challenging because some of

the phenotypes are represented in categorical form for two or

more categories, whereas other phenotypes are continuous.

Linear regression or generalized linear models are widely used

for continuous variables and require knowledge of the distribu-

tion of data to be modeled. This distribution is likely to differ

between phenotypes, and its assessment is not always trivial.
The America
Logistic regression is typically applied to binary phenotypes,

such as disease phenotypes. However, many of the categorical

phenotypes in the UK Biobank have more than two categories

and therefore cannot be transformed into binary data. Another

option is to use a multinomial logistic regression, which would

require testing each of the categories independently and would

vastly increase the complexity of the analysis. We therefore

used the chi-square test (for categorical data) and Spearman’s cor-

relation (for continuous data) because these statistics make fewer

assumptions and are directly applicable to the two classes of

phenotypes (categorical and continuous) in the UK Biobank.

We excluded categorical data categories for which fewer than

1,000 individuals were available. However, neither test accounts

for covariates such as ancestry, age, and sex. There is a strong cor-

relation between ancestry and the presence of Neanderthal al-

leles. We therefore carefully selected individuals with very little

variation in ancestry. There is no a priori reason to assume any

correlation between Neanderthal ancestry and factors such as

age and sex (and no previous study has shown such a correla-

tion). We explicitly tested the impact of these factors on our re-

sults by (1) comparing results of linear models with and without

covariates and (2) showing that these results were consistent

with the results we obtained with a chi-square test (Table S2).

To do so, we selected all 21 binary phenotypes and computed

an association with all aSNPs by using (1) a chi-square test, (2)

a logistic regression without any other covariates, (3) a logistic

regression with age and sex as covariates, and (4) a logistic regres-

sion with age and sex as covariates and all interactions between

age, sex, and genotype.

We found that the correlation between association p values with

archaic alleles was between rho ¼ 0.99999 and rho ¼ 1 (Spear-

man’s correlation) for the comparisons of (2) and (3) and of (2)

and (4), suggesting that including age and sex has only a marginal

impact on the estimation of the association p value.

To estimate the similarity between the results of a logistic regres-

sion without covariates (2) and those of a chi-square test (1), we

also correlated association p values between the binary pheno-

types and archaic alleles for (1) and (2) and found that they ranged

between rho ¼ 0.65 and rho ¼ 0.67 (Spearman’s correlation; all

p << 1.0 3 10�16), suggesting that both tests show highly similar

results.

Additionally, we correlated genotypes for all aSNPs used in

this study with age and sex and found that there was no signif-

icant correlation between these two factors and the aSNP geno-

types (false-discovery rate [FDR] < 0.05, min FDRsex ¼ 0.33, min

FDRage ¼ 0.28).

These results suggest that age and sex have very little impact on

our calculation of the phenotype association for binary pheno-

types, and we infer that non-binary phenotypes are also not likely

to be affected by these factors. Applying more sophisticated

methods to the analysis of specific phenotypes could increase

power to detect additional associations.

For both tests, we considered associations that reached p< 1.03

10�8 as significant. This addresses the multiple-testing problem

encountered when the associations between 136 phenotypes

and approximately 6,000 aSNPs are evaluated (family-wise error

rate ¼ 1.0 3 10�8 3 6,000 3 136 ¼ 0.01).
Phenotypic Impact of Archaic and Non-archaic Alleles
For all tag aSNPs, we computed an association p value between

genotype and phenotype for each phenotype. We then clustered
n Journal of Human Genetics 101, 578–589, October 5, 2017 579



tag aSNPs into archaic allele-frequency bins of size 1% and selected

frequency-matched non-archaic tag SNPs by matching the num-

ber of non-archaic alleles from each frequency bin to the number

of archaic alleles. For each phenotype, we created 1,000 random

frequency-matched non-archaic sets and computed for each tag

SNP an association p value for the phenotype.

To determine whether the archaic p value distributions were

shifted to lower or higher significant p values than the non-archaic

distributions, we determined the distances between the sets of

archaic and non-archaic distributions. More specifically, for each

phenotype, we computed empirical p values for the component

aSNPs with associations p< 1.03 10�4 and compared their cumu-

lative density distribution with the 1,000 non-archaic cumulative

density p value distributions (Table S3). We selected the aSNP at

which the distance between the archaic distribution and the

non-archaic distribution was largest. We corrected all p values

for each phenotype for multiple testing by using the Benjamini-

Hochberg approach.

Candidate-Gene Analysis and Molecular Mechanism
Given that archaic alleles are typically present on longer haplotypes

that we cannot determine directly from the UK Biobank array data,

weused the1000Genomes14 (phase3) individuals to identify aSNPs

that were not directly genotyped in the UK Biobank. We computed

LDbetween these by using PLINK (see AnnotatingNon-archaic and

Archaic-like SNPs) andcombinedsetsofaSNPswith r2>0.8between

all pairs into a haplotype. We defined the borders of the inferred

archaic-like haplotype to be the most distant two aSNPs (Table 1).

We then assigned all 13 candidate tag aSNPs with an association

p value < 1.03 10�8 (Table 1) to archaic haplotypes inferred from

1000 Genomes.

To determine the targets of these significantly associated aSNPs,

we identified overlapping protein-coding genes (Ensembl version

GRCh37) or assigned the haplotype to the nearest gene if there

was no direct overlap. For each archaic-like haplotype, we identi-

fied protein sequence and regulatory variants among the aSNPs

in each haplotype and computed the predicted effect of the amino

acid changes by using the VEP.17 Two of the haplotypes with

significantly associated aSNPs carried an archaic missense allele

(Table 1). To determine whether significantly associated aSNPs

might modify gene regulation, we used a previously published

set of associations between archaic haplotypes and differential

expression in 48 human tissues from the Genotype-Tissue Expres-

sion (GTEx) dataset.18 Of the haplotypes with significantly associ-

ated aSNPs, eight were also associated with the expression change

of a nearby gene (within 50 kb) in at least one tissue (Table 1).

Testing whether Inferred Archaic Haplotypes Exceed the

Length Expected by Incomplete Lineage Sorting
We tested whether the lengths of archaic haplotypes exceeded the

length of segments resulting from incomplete lineage sorting (ILS)

by using a conservative age of the Altai Neanderthal according to a

mutation rate of 1.0 3 10�9 per base pair per year and applying

the approach presented by Huerta-Sánchez et al.19 and the average

recombination rates20 at the inferred haplotype. We corrected the

p values obtained from that approach for multiple testing by using

the Benjamini-Hochberg method and added them to Table 1.

Haplotype Trees for Candidate Loci
For each of the 13 inferred archaic haplotypes with significant

phenotype associations, we extracted the genomic sequences of
580 The American Journal of Human Genetics 101, 578–589, Octobe
all 1000 Genomes phase 3 individuals, as well as the genome

sequences of the Altai Neanderthal, Denisovan, and chimpanzee

(pantro4) (Table 1). We removed non-variable sites and sites where

either of the archaic individuals was polymorphic. We then clus-

tered the haplotypes of the combined set of modern and ancient

humans together with the chimpanzee into core haplotypes by

combining haplotypes that differed by fewer than�1/1,000 bases.

Rooted neighbor-joining trees based on the consensus sequences

of the resulting core haplotypes and with chimpanzee as an

outgroup were computed and are displayed in Figure S1.
Results

We analyzed 136 baseline phenotypes in 112,338 individ-

uals of British ancestry from the UK Biobank pilot study.

A total of 822,111 SNPs directly genotyped in this cohort

were classified as either ‘‘archaic’’ or ‘‘non-archaic’’ on the

basis of their inclusion in a previously published map

of Neanderthal ancestry4 and their similarity to the Altai

Neanderthal genome15 (Material and Methods). We note

that LD between Neanderthal introgressed alleles tends

to be higher than LD between non-introgressed alleles

because of the timing of Neanderthal introgression. To

ensure that the phenotype associations with archaic

and non-archaic haplotypes were unbiased, we selected

a random tag SNP for each set of SNPs in high LD

(r2 > 0.8) and labeled these as ‘‘archaic’’ if the LD set con-

tained at least one ancient SNP and as ‘‘non-archaic’’ other-

wise. To ensure sufficient power to detect the phenotypic

contribution of each allele, we filtered all tag SNPs for a

minimum minor allele frequency (Material and Methods),

resulting in a final set of 6,210 archaic tag SNPs and

439,749 non-archaic tag SNPs. We then retained only

variants on archaic haplotypes that exceeded the length

expected by ILS (Material and Methods).

Phenotypes in the UK Biobank are represented either

as categorical (72 phenotypes) or continuous (64 pheno-

types) data (Table S1). Linear or logistic regression is typi-

cally used in association testing to account for potentially

confounding covariates such as sex, age, and ancestry. To

avoid testing each of the categories independently, which

vastly increases the complexity of the analysis, we applied

two different tests: for continuous data, we applied Spear-

man’s correlation to test for an association between each

tag SNP and the phenotypic measurement, whereas for

categorical data, we used a chi-square test to test for associ-

ations between tag SNPs and phenotypes (Material and

Methods) and considered only associations that reached

p < 1.0 3 10�8 as significant. By comparing our results

to those of linear models for subsets of the data, we found

that covariates such as age and sex had very little impact

on our calculations of phenotype association (Material

and Methods and Table S2).

For 11 phenotypes, a total of 15 associations reached

genome-wide significance (p < 1.0 3 10�8; Tables 1 and

S4). Among these 15 associations were Neanderthal alleles

that increase both sitting height and height attained at age
r 5, 2017



Table 1. Archaic Alleles with Genome-wide-Significant Phenotype Associations

Phenotype
Meta-
phenotype Tag aSNP

Association
p Value

Neanderthal
Allele
Frequency Data Type

Archaic
Haplotype
(hg19)

Overlapping
Gene(s)

Missense
Mutations Associated eQTLs FDR ILS Test

Hair color (natural
before graying)

sun
exposure

chr16: 89,947,203
(rs62052168)

3.7 3 10�202 0.097 categorical chr16: 89,813,988–
90,008,296

SPIRE2, TCF25,
MC1R, TUBB3,
FANCA

– FANCA: muscle (skeletal), lung,
pancreas, esophagus (muscularis),
adipose (subcutaneous), nerve
(tibial), artery (tibial), whole blood

1.84 3 10�9

SPIRE2: muscle (skeletal), heart
(atrial appendage), adipose (visceral;
omentum); skin (not sun exposed;
suprapubic), minor salivary gland,
esophagus (muscularis), esophagus
(mucosa), esophagus (gastresophageal
junction), testis, skin (sun exposed;
lower leg), adipose (subcutaneous),
nerve (tibial), artery (tibial), heart
(left ventricle), cells (transformed
fibroblasts), artery (aorta), pituitary

TCF25: uterus, brain (putamen;
basal ganglia)

TUBB3: vagina, esophagus (mucosa)

MC1R: breast (mammary tissue)

DBNDD1: breast (mammary tissue),
skin (not sun exposed; suprapubic),
skin (sun exposed; lower leg),
whole blood

GAS8-AS1 (MIM: 605179): testis

DEF8: skin (sun exposed; lower leg)

GAS8 (MIM: 605178): brain (spinal
cord; cervical c-1)

Skin color sun
exposure

chr6: 45,553,288
(rs115127056)

4.21 3 10�30 0.075 categorical chr6: 45,533,261–
45,680,205

RUNX2 – RUNX2: brain (cerebellum), brain
(hippocampus), brain (cerebellar
hemisphere)

<2.2 3 10�22

Ease of skin tanning sun
exposure

chr9: 16,804,167
(rs10962612)

1.59 3 10�22 0.77 categorical chr9: 16,720,122–
16,804,167

BNC2 – BNC2: muscle (skeletal) 1.62 3 10�12

Hair color (natural
before graying)

sun
exposure

chr14: 92,793,206
(rs77004437)

4.56 3 10�21 0.089 categorical chr14: 92,767,097–
92,801,297

SLC24A4 – SLC24A4: muscle (skeletal) 0.008

Skin color sun
exposure

chr9: 16,904,635
(rs62543578)

1.6 3 10�14 0.19 categorical chr9: 16,891,561–
16,915,874

BNC2* – – 0.001

(Continued on next page)
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Table 1. Continued

Phenotype
Meta-
phenotype Tag aSNP

Association
p Value

Neanderthal
Allele
Frequency Data Type

Archaic
Haplotype
(hg19)

Overlapping
Gene(s)

Missense
Mutations Associated eQTLs FDR ILS Test

Comparative height
size at age 10 years

early life
factors

chr19: 31,033,240
(rs56199929)

3.97 3 10�14 0.16 categorical chr19: 30,982,165–
31,041,053

ZNF536 – – 1.79 3 10�6

Pulse rate
(automated
reading)

blood
pressure

chr6: 121,947,984
(rs55913590)

6.48 3 10�14 0.029 continuous chr6: 121,910,814–
122,062,861

GJA1* (MIM:
121014)

– – 3.8 3 10�4

Morning or evening
person (chronotype)

sleep chr2: 239,316,043
(rs75804782)

3.57 3 10�10 0.12 categorical chr2: 239,316,043–
239,470,654

ASB1 ASB1 (chr2:
239,344,412)

TRAF3IP1: testis, liver <2.2 3 10�22

Skin color sun
exposure

chr11: 89,996,325
(rs74918882)

5.54 3 10�10 0.041 categorical chr11: 89,996,325–
90,041,511

CHORDC1* – – 0.03

Impedance of
leg (left)

impedance
measures

chr15: 84,716,986
(rs12902672)

1.46 3 10�9 0.27 continuous chr15: 84,703,470–
85,114,447

ADAMTSL3
(MIM: 609199),
GOLGA6L4

ADAMTSL3
(chr15:
84,706,461)

NMB (MIM: 162340): muscle (skeletal),
minor salivary gland, adrenal gland,
pancreas, esophagus (muscularis),
esophagus (mucosa), stomach,
small intestine (terminal ileum),
colon (transverse), testis, skin
(sun exposed; lower leg), artery (tibial),
cells (transformed fibroblasts),
spleen, liver

1.17 3 10�5

WDR73 (MIM: 616144): heart
(atrial appendage), brain (cortex),
thyroid, esophagus (muscularis),
nerve (tibial), ovary, brain (anterior
cingulate cortex; BA24)

SLC28A1 (MIM: 606207): breast
(mammary tissue)

ZNF592 (MIM: 613624): lung,
pancreas, liver

GOLGA6L4: small intestine
(terminal ileum)

SEC11A: brain (anterior cingulate
cortex; BA24)

ALPK3 (MIM: 617608): brain
(cerebellar hemisphere)

ADAMTSL3: brain (amygdala)

Incidence of
childhood sunburn

sun
exposure

chr9: 16,804,167
(rs10962612)

1.49 3 10�9 0.77 continuous chr9: 16,720,122–
16,804,167

BNC2 – BNC2: muscle (skeletal) 1.62 3 10�12

(Continued on next page)
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Table 1. Continued

Phenotype
Meta-
phenotype Tag aSNP

Association
p Value

Neanderthal
Allele
Frequency Data Type

Archaic
Haplotype
(hg19)

Overlapping
Gene(s)

Missense
Mutations Associated eQTLs FDR ILS Test

Sitting height body-size
measures

chr10: 70,019,371
(rs12571093)

1.52 3 10�9 0.16 continuous chr10: 70,009,572–
70,059,496

PBLD (MIM:
612189)

– PBLD: muscle (skeletal), brain (cortex),
brain (caudate; basal ganglia), brain
(putamen; basal ganglia)

0.002

ATOH7 (MIM: 609875): artery
(coronary), breast (mammary tissue),
skin (not sun exposed; suprapubic),
minor salivary gland, adrenal gland,
pancreas, esophagus (gastresophageal
junction), colon (transverse), adipose
(subcutaneous), artery (tibial), brain
(cerebellum), artery (aorta), spleen

MYPN (MIM: 608517): brain
(putamen; basal ganglia)

Hair color (natural
before graying)

sun
exposure

chr6: 503,851
(rs71550011)

2.91 3 10�9 0.07 categorical chr6: 503,851–
544,833

EXOC2 – EXOC2: cells (transformed fibroblasts) 0.004

Daytime dozing or
sleeping (narcolepsy)

sleep chr10: 94,711,457
(rs112294410)

4.09 3 10�9 0.017 categorical chr10: 94,574,048–
94,756,023

EXOC6 – – <2.2 3 10�22

Impedance of leg
(right)

impedance
measures

chr15: 84,716,986
(rs12902672)

5.54 3 10�9 0.27 continuous chr15: 84,703,470–
85,114,447

ADAMTSL3,
GOLGA6L4

ADAMTSL3
(chr15:
84,706,461)

NMB: muscle (skeletal), minor salivary
gland, adrenal gland, pancreas,
esophagus (muscularis), esophagus
(mucosa), stomach, small intestine
(terminal ileum), colon (transverse),
testis, skin (sun exposed; lower leg),
artery (tibial), cells (transformed
fibroblasts), spleen, liver

1.17 3 10�5

WDR73: heart (atrial appendage),
brain (cortex), thyroid, esophagus
(muscularis), nerve (tibial), ovary,
brain (anterior cingulate cortex; BA24)

SLC28A1: breast (mammary tissue)

ZNF592: lung, pancreas, liver

GOLGA6L4: small intestine
(terminal ileum)

SEC11A: brain (anterior cingulate
cortex; BA24)

ALPK3: brain (cerebellar hemisphere)

ADAMTSL3: brain (amygdala)

This table shows archaic alleles with genome-wide-significant associations (column 4, p < 1.0 3 10�8) and their corresponding phenotype (column 1) and meta-phenotype (column 2). Only archaic alleles on confidently
inferred archaic introgressed haplotypes are included. The archaic allele frequency in the UK Biobank cohort is given in column 5. Gene identifiers for overlapping or nearest genes (marked with an asterisk) are in column 8.
Abbreviations are as follows: eQTL, expression quantitative trait locus; FDR, false-discovery rate; and ILS, incomplete lineage sorting.
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FANCA

MC1R

SPIRE2
TCF25

TUBB3

Skin color
chr9:16904635

A

F

89,800,000 89,850,000 89,900,000 89,950,000 90,000,000 90,050,000
chromosome 16

D

Hair color
chr16:89947203

B DEase of skin tanning
chr9:16804167
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Childhood sunburn occasions
chr9:16804167

NT/NT
G/G
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Figure 1. Archaic Haplotypes Associated with Skin and Hair Phenotypes
(A–D) Neanderthal allele frequency in percentage (x axis) and the number of individuals in the UK Biobank cohort for four aSNPs that
show strong associations with skin and hair phenotypes (y axis): chr9: 16,904,635 (rs62543578) associated with skin color (A),
chr9: 16,804,167 (rs10962612) associated with ease of skin tanning (B) and incidence of childhood sunburn (C) (illustrated are the
average numbers of childhood sunburns for individuals with the three genotypes), and chr16: 89,947,203 (rs62052168) associated
with hair color (D).
(E and F) The genomic locations of introgressed haplotypes for the aSNPs showing significant associations in (A)–(D). Gray vertical lines
denote the extent of the inferred archaic haplotypes on chromosomes 9 (E) and 16 (F). At the top, we show all aSNPs that are within the
inferred archaic haplotypes and are present in any 1000 Genomes individual. The associated tag SNPs directly genotyped by the UK
Biobank are marked in red, and other aSNPs within the archaic haplotypes and genotyped in the UK Biobank are marked in orange.
The associated tag aSNPs represented in (A)–(D) are marked on the x axis.
10 years, alleles that reduce measures of leg impedance

(suggesting reduced body fat composition), and alleles

that increase resting pulse rate (Table 1). Strikingly, more

than half of the significantly associated alleles that we

identified are related to skin and hair traits, consistent

with previous evidence that genes associated with skin

and hair biology are over-represented in introgressed

archaic regions.4,9,11 It was previously only possible to

speculate about the precise effect of the introgressed alleles

on skin and hair phenotypes on the basis of the genes that

were in or near the introgressed haplotypes. We can now

directly determine the effect of Neanderthal alleles on

these traits in modern humans by correlating Neanderthal

ancestry with phenotypes of individuals in the UK Bio-

bank cohort.

The strongest association we found in this study was an

archaic allele under-represented among red-haired indi-

viduals. This archaic allele is on an introgressed haplotype
584 The American Journal of Human Genetics 101, 578–589, Octobe
composed of 71 aSNPs and encompassing five genes:

FANCA (MIM: 607139), SPIRE2 (MIM: 609217), TCF25

(MIM: 612326), MC1R (MIM: 155555), and TUBB3 (MIM:

602661) (rs62052168, p ¼ 3.7 3 10�202; Figure 1 and

Table 1). MC1R is a key genetic determinant of pigmenta-

tion and hair color and is therefore a good candidate for

this association. More than 20 variants in MC1R have

been shown to alter hair color in humans.21–28 None of

the variants resulting in red hair in modern humans are

present in either of the two high-coverage Neanderthal

genomes that have been sequenced (Table S5). Therefore,

Neanderthals appear not to carry any of the variants

associated with red hair in modern humans. Further, a

Neanderthal-specific variant (p.Arg307Gly) postulated

to reduce the activity of MC1R and result in red hair

was identified by PCR amplification of MC1R in two

Neanderthals.29 However, this putative Neanderthal-

specific variant is also not present in the Neanderthals
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genomes that have been sequenced to date, suggesting

that if this variant was present in Neanderthals, it was

rare. Using the high-coverage Neanderthal genomes,

we identified only one additional Neanderthal-specific

MC1R amino acid change for which the effect on hair co-

lor is unknown. However, it is polymorphic among Nean-

derthals, indicating that any phenotype that it confers was

variable in Neanderthals (Table S5). Finally, because the in-

trogressed haplotype we identified in this cohort is under-

represented among red-haired individuals, we conclude

that if variants contributing to red hair were present in

Neanderthals, they were probably not at high frequency.

We also identified strongly associated archaic alleles on

two unlinked introgressed haplotypes near BNC2 (MIM:

608669), a gene that has been previously associated with

skin pigmentation in Europeans.30 The first archaic haplo-

type (chr9: 16,720,122–16,804,167) is tagged by an archaic

allele (rs10962612) that has a frequency of more than 66%

in European populations (Table S6 and Figure 1) and is

associated with increased incidence of childhood sunburn

(p ¼ 1.53 10�9) and poor tanning (p¼ 1.63 10�22) in the

UK Biobank cohort (Table 1). A Neanderthal haplotype in

this region was previously identified by Vernot and

Akey,11 and the association with sun sensitivity is consis-

tent with the previous finding that Neanderthal alleles

on this haplotype result in an increased risk of kera-

tosis.12 All of the Neanderthal-like SNPs overlapping

BNC2 on this haplotype have significant scores in a test

for recent positive selection in Europeans31 (singleton den-

sity score > 3), perhaps indicating their importance in

recent local adaptation.

Interestingly, a second, less-frequent (19%) archaic

haplotype near BNC2 (chr9: 16,891,561–16,915,874;

rs62543578; Table S6) shows strong associations with

darker skin pigmentation in individuals with British

ancestry in theUKBiobankcohort (p¼1.6310�14; Figure1

and Table 1). These results suggest that multiple alleles in

andnearBNC2, some ofwhich are contributed byNeander-

thals, have different effects onpigmentation inmodernhu-

mans. Our analysis identified six additional associations

(p < 1.0 3 10�8) contributing to variation in skin and hair

biology at other introgressed loci (Table 1). Individuals

with blonde hair show a higher frequency of the Nean-

derthal haplotype at chr6: 503,851–544,833 (overlapping

EXOC2 [MIM: 615329]), whereas individuals with darker

hair color show higher Neanderthal ancestry at chr14:

92,767,097–92,801,297 (overlapping SLC24A4 [MIM:

609840]). Two further archaic haplotypes on chromosomes

6 (chr6: 45,533,261–45,680,205, overlapping RUNX2

[MIM: 600211]) and 11 (chr11: 89,996,325–90,041,511;

nearest gene: CHORDC1 [MIM: 604353]) are both signifi-

cantly associated with lighter skin color (Table 1). The

apparent variation in thephenotypic effects ofNeanderthal

alleles in this cohort demonstrates that it is difficult to confi-

dently predict Neanderthal skin and hair color.

Additionally, it is not clear that phenotypic inference

from single variants for which a function is known on
The America
themodern human genetic background provides sufficient

evidence for extrapolating effects in Neanderthals, espe-

cially given the challenges with predicting complex phe-

notypes in present-day humans on the basis of genomic

data.32

In addition to the introgressed haplotypes contributing

to skin and hair traits, we also found two archaic haplo-

types that contribute significantly to differences in sleep

patterns (Table 1). One of the introgressed SNPs modifies

the coding sequence of ASB1 (MIM: 605758; rs3191996,

p.Ser37Lys; Material and Methods). Archaic alleles near

ASB1 (tag aSNP: rs75804782; Figure 2 and Table 1) and

EXOC6 (MIM: 609672; tag aSNP rs71550011; Table 1) are

associated with a preference for being an ‘‘evening person’’

and an increased tendency for daytime napping and narco-

lepsy, respectively. Humans show wide variation in diurnal

preferences and can be divided into ‘‘chronotypes,’’ which

have been shown to have a genetic component.33 Two pre-

vious studies of chronotypes identified strongly associated

SNPs in the ASB1 region.34,35 Of the 540 SNPs with signif-

icant genome-wide associations in Hu et al.34 (p < 1.0 3

10�8), ten overlapped the region identified near ASB1,

and four of these were labeled as introgressed archaic

variants. Lane et al. identified two ASB1-adjacent SNPs

that showed significant associations with chronotype.35

Neither of these are of archaic origin, but they are in

high LD with aSNPs on the associated haplotype

(maximum r2 ¼ 0.73, based on Europeans in 1000

Genomes phase 3), suggesting that these are not indepen-

dent signals. Given the association scores calculated by

Hu et al.,34 the association is stronger for the set of aSNPs

(p values ranging from 3.4 3 10�6 to 2.6 3 10�9;

rs75804782 has the second-most-significant association

at p ¼ 4.4 3 10�9) than for the non-archaic SNPs reported

by Lane et al.35 (rs3769118, p ¼ 1. 9 3 10�6; rs11895698,

p ¼ 3.2 3 10�6), suggesting that the association is likely

to be driven by the introgressed archaic haplotype. Because

the natural length of day-night cycles differs according to

latitude and influences circadian rhythms, we tested for a

correlation between the Neanderthal allele frequency at

ASB1 and latitude in worldwide non-African popula-

tions.36We found a significant correlation between the fre-

quency of the Neanderthal allele near ASB1 (rs75804782)

and latitude (Spearman’s rho ¼ 0.21, p ¼ 0.03). The fact

that populations further from the equator have higher fre-

quencies of the Neanderthal allele at ASB1 than popula-

tions nearer the equator (Figure 2B) is consistent with the

influence of daylight exposure on circadian rhythm,37

although the functional link between these genes and

chronotype traits is unclear.

Given the large number of associations with skin and

hair traits, it is tempting to speculate that Neanderthals

might have had an outsized contribution to these pheno-

types. However, the number of significant associations

that can be identified for a trait is dependent on how poly-

genic the traits are and how they are measured. Power to

measure the contribution of an allele depends also on
n Journal of Human Genetics 101, 578–589, October 5, 2017 585
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Figure 2. Archaic Haplotype Associated with Chronotype
(A) The Neanderthal allele frequency in percentage (x axis) and the number of individuals in the UK Biobank cohort for the four reported
chronotype phenotypes (y axis; from top to bottom: definitely an evening person, more an evening than a morning person, more a
morning than an evening person, definitely a morning person) for the archaic tag SNP with the strongest association with chronotype
(position chr2: 239,316,043 [rs75804782] near ASB1).
(B) Worldwide frequency of the archaic allele (C, blue) and the modern human allele (T, orange) in the Simons Genome Diversity Panel
populations.
(C) The association p values (y axis; in the form of �log10(p)) with chronotype for all archaic and non-archaic SNPs (squares) genotyped
by the UK Biobank study in the region of the inferred archaic haplotype at chr2: 239,316,043–239,470,654. The tag SNP at chr2:
239,316,043 (rs75804782) is shown in red, other aSNPs are shown in orange, and non-archaic SNPs are shown in black. The
genome-wide significance cutoff of p¼ 1.03 10�8 and the extent of the inferred archaic haplotype are illustratedwith dashed horizontal
and vertical gray lines, respectively. At the top, we show all aSNPs that are within the inferred archaic haplotype and are present in any
1000 Genomes individual. The directly genotyped SNPs from the UK Biobank are illustrated as red (the archaic tag SNP) and orange bars.
One archaic allele that leads to a missense mutation in ASB1 is marked as a green bar.
(D) The cumulative density distribution of p values (zoom in for p < 0.01, x axis log scale) for associations between archaic alleles and
chronotype (red line) and the 95% confidence interval region for 1,000 cumulative density distributions of associations between non-
archaic alleles matched to the Neanderthal allele frequency and chronotype (gray shading).
the minor allele frequency. In the case of archaic alleles,

which are generally less frequent (�1%–5%), this is of

particular relevance. We therefore tested whether the

impact of archaic alleles on particular traits is more or

less than that of non-archaic alleles by comparing the con-

tributions of archaic alleles with the contributions of 1,000

similarly sized sets of frequency-matched non-archaic tag

SNPs. Phenotypes with an enrichment of low association

p values for archaic alleles could indicate a larger-than-ex-

pected contribution of introgressed archaic DNA to these

phenotypes, whereas an enrichment of low p values for

non-archaic alleles suggests a lower contribution from

archaic alleles to the phenotype. We note that our fre-

quency matching of archaic and non-archaic alleles does

not account for multiple other factors that might differ be-

tween these two sets of variants. For example, the longer

haplotypes associated with archaic introgression mean
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that archaic variants might be more likely to occur

together. However, it is unclear whether the higher num-

ber of archaic alleles on archaic haplotypes would increase

or decrease the chance of being significantly associated

with phenotypes in modern humans. We believe that

further matching of, for example, haplotype length or

number of SNPs of a haplotype introduces new potential

biases and does not solve this problem. For each pheno-

type, we selected the lower tail of the p value distributions

(p < 1.0 3 10�4) for archaic and non-archaic SNPs and

then tested whether the archaic p value distribution was

significantly different from 1,000 non-archaic distribu-

tions (Material and Methods). For the majority of pheno-

types (130/136), we found no difference between the

relative contribution of archaic alleles and that of non-

archaic alleles, indicating that for most phenotypes

measured here, Neanderthal alleles contribute phenotypic
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variation proportionally to non-archaic SNPs at similar fre-

quencies (Table S3). We detected six phenotypes where

there was a significant difference between the p values dis-

tributions for archaic alleles and those for non-archaic al-

leles (FDR < 0.05). Neanderthal alleles contributed more

variation in four behavioral phenotypes influencing sleep,

mood, and smoking behaviors, suggesting that Neander-

thal alleles contribute more to these traits than expected

from their frequency in modern humans. Conversely, for

two associations (ease of skin tanning and pork intake),

non-archaic alleles showed lower association p values

(Table S3), indicating that introgressed Neanderthal alleles

contribute less than frequency-matched non-archaic al-

leles to these traits.
Discussion

Largely on the basis of disease cohorts and signatures of

positive selection, a number of immune, skin, metabolic,

and behavioral phenotypes have been suggested to be

influenced by archaic ancestry. Using the UK Biobank

cohort, we have now been able to test the contribution

of introgressed Neanderthal alleles to 136 common,

largely non-disease phenotypes in present-day Europeans.

We found that skin and hair traits are over-represented

among the most significant associations with archaic

alleles. However, when we compared the contribution of

alleles of Neanderthal origin with the contributions of al-

leles of modern human origin, we found that both archaic

and non-archaic variants contribute equally to skin and

hair phenotypes, consistent with a neutral contribution

from Neanderthals and with the idea that Neanderthals

themselves were likely to be variable with respect to these

traits. In fact, for most associations, Neanderthal variants

do not seem to contribute more than non-archaic variants.

However, there are four phenotypes, all behavioral, to

which Neanderthal alleles contribute more phenotypic

variation than non-archaic alleles: chronotype, loneliness

or isolation, frequency of unenthusiasm or disinterest in

the last 2 weeks, and smoking status. Of these, the signif-

icant association between a Neanderthal variant in ASB1

and preference for evening activity also shows a corre-

lation between the Neanderthal allele frequency and

latitude, suggesting a link to differences in sunlight

exposure for this phenotype. Additionally, the phenotype

of increased frequencies of unenthusiasm or disinterest in

the last 2 weeks was significantly associated with an

archaic haplotype (chr5: 29,936,068–29,974,930; nearest

gene: CDH6 [MIM: 603007]), and Neanderthal alleles

also contributed more often to this phenotype than non-

archaic alleles. A number of the associations we detected,

such as dermatological traits, smoking, and mood disor-

ders, overlap associations found in previous studies.4,11,12

Some of the psychiatric and metabolic phenotypes, such

as obesity, identified in Simonti et al.12 were not replicated

in our study. We speculate that this might partially reflect
The America
differences in the criteria for cohort selection; individuals

in the eMERGE cohort are already undergoing medical

treatment, whereas volunteers for the UK Biobank cohort

are not.

Multiple phenotypes significantly influenced by Nean-

derthal introgression have some link to sunlight exposure.

Given that Neanderthals had inhabited Eurasia for more

than 200,000 years, they were most likely adapted to lower

UVB levels and wider variation in sunlight duration than

the early modern humans who arrived in Eurasia from

Africa around 100,000 years ago.38 Skin and hair color,

circadian rhythms, and mood are all influenced by light

exposure. We speculate that their identification in our

analysis suggests that sun exposure might have shaped

Neanderthal phenotypes and that gene flow into modern

humans continues to contribute to variation in these traits

today.
Supplemental Data

Supplemental Data include one figure and six tables and can be

found with this article online at https://doi.org/10.1016/j.ajhg.

2017.09.010.
Acknowledgments

This research was conducted with the UK Biobank Resource. We

thank Aida Andres, Hernan Burbano, Roger Mundry, Svante
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