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Abstract

Identification of the target genes of microRNAs (miRNAs), trans-acting small interfering

RNAs (ta-siRNAs), and small interfering RNAs (siRNAs) is an important step for under-

standing their regulatory roles in plants. In recent years, many bioinformatics software pack-

ages based on small RNA (sRNA) high-throughput sequencing (HTS) and degradome

sequencing data analysis have provided strong technical support for large-scale mining of

sRNA-target pairs. However, sRNA-target regulation is achieved using a complex network

of interactions since one transcript might be co-regulated by multiple sRNAs and one sRNA

may also affect multiple targets. Currently used mining software can realize the mining of

multiple unknown targets using known sRNA, but it cannot rule out the possibility of co-regu-

lation of the same target by other unknown sRNAs. Hence, the obtained regulatory network

may be incomplete. We have developed a new mining software, sRNATargetDigger, that

includes two function modules, “Forward Digger” and “Reverse Digger”, which can identify

regulatory sRNA-target pairs bidirectionally. Moreover, it has the ability to identify unknown

sRNAs co-regulating the same target, in order to obtain a more authentic and reliable

sRNA-target regulatory network. Upon re-examination of the published sRNA-target pairs in

Arabidopsis thaliana, sRNATargetDigger found 170 novel co-regulatory sRNA-target pairs.

This software can be downloaded from http://www.bioinfolab.cn/sRNATD.html.

Introduction

Small RNAs (sRNAs) is a class of non-coding RNAs with lengths ranging from 18 to 30 nucle-

otides and different functions. In plants, some sRNAs are complementarily matched with spe-

cific bases of the target mRNAs, resulting in cleavage and degradation of the target transcripts.

This kind of regulation can negatively modulate the expression of target genes, and it plays

important roles in many biological processes, such as plant growth and development, disease

resistance, and stress response [1, 2]. sRNAs can be classified according to their distinct
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characteristics into a variety of categories such as microRNAs (miRNAs) and trans-acting

small interfering RNAs (ta-siRNAs).

Identifying and validating the target genes of these sRNAs are important steps for under-

standing their biological functions. sRNAs exert their effect by binding to the 3’-UTR of the

target gene, and their function can be validated using reporter constructs, wherein genes such

as luciferase are cloned upstream of the 3’-UTR of the target gene. The inhibitory effects of

sRNAs on the target genes are quantified by comparing the changes in fluorescence values of

in the presence or absence of sRNAs [3]. However, limited by the technical level, experimental

cost, and experimental cycle, only a small number of sRNA-target pairs have been identified.

Therefore, many computation-based sRNA-target prediction tools have been recently devel-

oped [4–6]. Making full use of the complementary property between sRNAs and their candi-

date targets, predictions can be achieved through large-scale sequence matching [7]. Although

these results identify some genuine targets, false positive results may exist; thus, further experi-

mental verification is required.

A large number of fragmented sequences captured by degradome sequencing can be

mapped to the transcript sequences to find the signals for the enzymatic cleavages guided by

specific sRNAs. Three types of high-throughput degradome sequencing platforms, i.e. parallel

analysis of RNA ends (PARE) [8], genome-wide mapping of uncapped and cleaved transcripts

(GMUCT) [9], and degradome sequencing [10] provide an efficient way to obtain degradation

signals. Bioinformatics tools such as CleaveLand [11], SeqTar [12], PAREsnip2 [13], and

sPARTA [14] make full use of the degradome data for sRNA-target prediction. This prediction

is mainly achieved by performing the following steps: (1) Potential sRNA-target genes are

screened based on sequence complementarity. (2) Specific cleavage sites on potential target

genes are obtained based on the matching analysis of degradome signatures. The regulatory

relationship is determined based on the correlation between the cleavage site and the binding

site of sRNA to the target.

Currently, these tools are well used in different species and in different biological pathways

[15–18]. It is well known that sRNA-target regulation is a complex biological process. The

same mRNA may have multiple sRNA regulators, and the same sRNA may also have multiple

downstream targets [19]. The software tools mentioned above can only predict the regulatory

relationship between known sRNAs and mRNAs, which has the following problems: a) In

addition to the known sRNAs, there may be other unknown sRNAs that co-regulate the target

genes. If the regulatory role is attributed only to the known sRNA, it will lead to a big gap in

the construction of the regulatory network. b) More importantly, if the expression levels of the

unknown co-regulatory sRNAs are much higher than that of the annotated sRNA, the regula-

tory effect of this annotated sRNA on the predicted target might be replaced by the effects of

the unknown sRNAs. Therefore, the key to highly reliable degradome-based identification of

the sRNA-target relationship is to carefully consider the interference by unknown sRNAs.

We have previously proposed an approach for regulatory miRNA mining using a reverse

mining method [20], which provides a feasible solution to the above problems. Once the target

gene was predicted, all the potential sRNA regulators of this target could be extracted from

sRNA high-throughput sequencing (HTS) data using the reverse mining method. The extent

of the involvement of these sRNAs in target regulation can be determined according to their

expression levels, so as to reliably identify most of the sRNAs that target a specific mRNA.

Based on this idea, we improved the current degradome-based mining technology of sRNA-

target genes, and developed a novel software named sRNATargetDigger for this purpose.

sRNATargetDigger is easy to download and convenient to use, and it gives the user a good

experience, as well.
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Materials and methods

Data pre-processing

To reliably obtain more sRNA-target pairs, we need sRNA, mRNA, and degradome sequenc-

ing data. sRNA and degradome sequencing data were pre-processed. First, the adapter

sequences were removed and the short sequence (including "N") whose bases cannot be deter-

mined was deleted. Next, the short sequence with a read count of 0 was also deleted, and reads

per million (RPM) was used as the unit for normalization of the expression value of the

sequence. The normalized count of an sRNA/degradome sequence = (the raw read count of

the sequence/ the total read counts of the data set) × 106.

Candidate target gene prediction

In plants, sRNA and target genes show almost perfect base complementarity. A position-

dependent scoring system based on the number of mismatches was used to judge the comple-

mentarity between an sRNA and its target gene(s). For example, the scoring rules proposed by

Allen [21] and Fahlgren [22] have been used in many target gene prediction tools and models.

According to the research results of Axtell et al. [23], the latest psRNATarget [7] tool included

a new scoring rule to expand the seed sequence to 2–13 base pairs (bp), allowing only two mis-

matches (except G:U pairs), and a modified penalty score of the gap and final screening thresh-

old. We screened potential candidate target genes of sRNAs from the cDNA database

according to the psRNATarget scoring rules [7]:

a. G:U pair,a penalty of 0.5 point will be imposed for each occurrence;

b. There are no more than two mismatches (G: U matching is not included) from position

2–13 of 5’end of miRNA;

c. For other nucleotide pairs that do not meet the Watson–Crick rule, a penalty of 1 point will

be imposed for each occurrence. Except for a mismatch at positions 2–13, for each mis-

match the score will be reduced by 0.5 points.

d. In case of bulges, insertions, or deletions, a penalty of 2 points will be imposed for each

occurrence; An additional 0.5 point penalty will be imposed for each nucleotide in the

bulge consisting of more than one nucleotide; two bulges are allowed at most;

e. Mismatches are not allowed in the tenth and eleventh positions;

f. The total penalty points for a nucleotide of 19 bases in length were calculated, and those

with no more than 5 penalty points were set as acceptable complementary sequences.

Degradome-based identification of sRNA-target binding

The target gene cleavage signals caused by sRNA-guided cleavage could be detected using

degradome sequencing. First, the degradome data were matched to the candidate target gene

obtained in the previous step through a fast hash-table-based algorithm, and all of the 5’ end

site information that can be completely matched was recorded. Second, the signal intensity of

the cleavage site and the signal intensity of the degraded background were calculated according

to formula 1 and formula 2, respectively, and the sites with a ratio of both values 5 times or

more were screened as specific cleavage sites.

Formula 1: The signal intensity of the cleavage site = the sum of counts of all sequences that

are matched with degradomes at this site / the sum of the numbers of sequences that are

matched with the degradomes at this site.
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Formula 2: The signal intensity of the degraded background = the sum of counts of

sequences that are matched with degradomes except at the cleavage site / the sum of the num-

bers of sequences that are matched with the degradomes.

According to the regulatory mechanisms of plant sRNAs and their specificities, when an

mRNA sequence and the sRNA sequence satisfy the base complementarity characteristics, and

the specific cleavage can be detected in the middle of sRNA binding site through the degra-

dome, it is likely that there is a specific regulatory relationship between the mRNA and sRNA

(Fig 1).

Fig 1. The workflow of the “Forward Digger” of sRNATargetDigger. The potential targets of the sRNA were screened out from cDNA data using sequence

complementarity. Then, degradome sequences were mapped to these potential targets to identify the actual cleavage signals. Only when the cutting signal was within the

middle of sRNA binding site, the sRNA-target pairs were retained. In the reverse validation step, 30-nt sRNA binding site extracted from the target was used as sequence

complementary bait to search all possible regulatory sRNAs from the sRNA HTS data set. The sRNA-target regulatory relationship was confirmed if the known sRNA

was identified again according to its expression levels.

https://doi.org/10.1371/journal.pone.0244480.g001
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Reverse verification of the sRNA-target regulatory relationship

Since one mRNA can be regulated by multiple sRNAs, it is necessary to perform further vali-

dation of the bound sRNA-target regulatory relationship to rule out the interference from

other unknown sRNAs. According to the previous reports [6, 24–26], if the same site is regu-

lated by multiple sRNAs, the cleavage effect at this site is largely accomplished by the qualified

sRNA with the highest expression. Therefore, we took the cleavage site on the mRNA as the

center and collected 30-nt sequences surrounding this site (15 nt upstream and downstream)

as the candidate sRNA binding regions. Upon using the reverse mining technology, all the pos-

sible regulatory sRNAs were identified from the sRNA sequencing data set and sorted accord-

ing to the expression levels of sRNAs. The sRNAs whose expression levels were less than 1/10

of the highest expression level were deleted. If a known sRNA was identified again, the sRNA-

target regulatory relationship was considered true, and all co-regulatory sRNA information

was outputted (Fig 1). If the known sRNAs were absent, this regulatory relationship was

ignored.

Software test

To test the reliability of the software tools, we used the degradome data, sRNA HTS data, and

cDNA data stored in the public database to verify the sRNA-target regulatory relationship

in Arabidopsis, which has been previously reported in the literature [7]. Since the expression

patterns of many sRNAs and mRNAs were tissue-specific, we considered that this regulatory

relationship was true as long as one tissue passed the “Forward Digger” or “Reverse Digger”-

function module. We downloaded sRNA and degradome HTS data from the GEO database

(www.ncbi.nlm.nih.gov/geo/), comprising the Arabidopsis sRNA HTS data (GSM707682,

GSM707683, GSM707684, GSM707685) and the degradome data (GSM278333, GSM278334,

GSM278335 and GSM278370). The cDNA sequence information of Arabidopsis was down-

loaded from the TAIR10 (http://www.arabidopsis.org/).

The newly discovered co-regulatory sRNAs, which have not been reported in literature [7],

were further tested using PAREsnip2 [13]. The parameters of PAREsnip2 were set as follows: "

allow_mismatch_position_10 = true","allow_mismatch_position_11 = true"," core_region_-

start = 2", "core_region_end = 13", "max_mismatches_core_region = 2", "max_score = 5.5",

and " max_gaps = 2".

Results and discussion

Architecture and features

The sRNATargetDigger software used the degradome and sRNA HTS data to identify the

potential sRNA-target regulatory relationship by including two function modules: “Forward

Digger” and “Reverse Digger” (Fig 2A). Function of “Forward Digger”: sRNAs were known,

and their regulatory target genes were identified from the cDNA data set. Function of “Reverse

Digger”: vice versa, regulatory sRNAs were identified from the sRNA HTS data set according

to the cleavage site on the target gene.

Users can click to enter the “Forward Digger” module (Fig 2B), which requires input of reg-

ulatory sRNA sequence, cDNA data set (for finding candidate target genes), degradome set

(for finding specific cleavage sites on target genes), and sRNA HTS data set (used to verify the

true expression of the regulatory sRNAs and find unknown co-regulatory sRNAs), and the

users need to select the source species of the data from the species using the drop-down box.

The correct selection of species can easily show in the results whether a certain sRNA has been

annotated in the miRBase (release 22). In addition, users can modify result fold conveniently
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Fig 2. The software interface of sRNATargetDigger. A: Main interface. The regulatory relationship between the

sRNA and the target mRNA can be identified bidirectionally by two modules, “Forward Digger” and “Reverse Digger”.

B: “Forward Digger”. Candidate sRNA (regulatory sRNA) is used as query sequence to identify its regulatory target

genes from cDNA data set and the co-regulatory sRNAs of the identified target genes will also be searched from sRNA

HTS data set. C: “Reverse Digger”. The cDNA sequence (target gene) is used as query sequence to identify the

regulatory sRNAs from the sRNA HTS data set according to the cleavage site on the target gene.

https://doi.org/10.1371/journal.pone.0244480.g002
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and save the results to corresponding folders on their computers. The above files that required

to be inputted must be in FASTA format. After the input is completed, click the “Run” button,

and the program will automatically run according to the analysis process shown in Fig 1. The

user can track the running progress of the program in real time from the running prompt

box on the left side of the interface. The “T-Plot” box on the right side of the interface displays

the t-plot map matched with the degradome at the corresponding position of the correspond-

ing gene, and then the final results are outputted in the text box below. The results are sorted

by gene name and sRNA expression counts in descending order for easy reference. After the

operation is completed, the users can find all the results in the result folder.

“Reverse Digger” is an improvement of our previous works [20]; it can reversely identify

regulatory sRNAs based on the cleavage sites on the target genes (Fig 2C). The improvement

was carried out mainly in the following two aspects: a) The original algorithm is limited to

identifying miRNA. However, the other sRNAs (such as ta-siRNA) can also specifically cleave

the target transcripts; “Reverse Digger” reversely identifies almost all these regulatory sRNAs.

b) The original algorithm only provides an analysis process, and the users need to develop a

program and use different software to complete the relevant analysis; “Reverse Digger” is an

integrated pipeline that can automatically complete the analysis by inputting the formatted

data, which is very convenient for most biological researchers.

Software evaluation

We evaluated the sRNATargetDigger software on the sRNA-targets that have been reported in

Arabidopsis. The corresponding benchmark data of Arabidopsis collected from the literature

[7] included a total of 142 pairs of sRNA-target regulatory pairs. In plants, sRNAs are highly

complementary to the target genes, and they often lead to the cleavage of the target gene

mRNA by the Argonaute (AGO) protein; this specific cleavage can be detected using the

degradome [27, 28]. We analyzed the regulatory relationship of 142 pairs of sRNA-targets.

However, the results showed that no specific cleavage signal can be found using degradome in

the middle of the sRNA binding site in 57 target genes (S1 Table). Therefore, the authenticity

of the regulatory relationship in these 57 pairs of sRNA-targets needs to be further confirmed,

and the possibility that their occurrence time was unmatched with the data set used for our

verification could not be ruled out.

The remaining 85 pairs of sRNA-targets with specific cleavage signals on the target genes

passed the tests of the two analysis modules (“Forward Digger” and “Reverse Digger”) of

sRNATargetDigger (S2 Table). As we expected, sRNATargetDigger found that the regulatory

information reported in the literature [7] was incomplete, and the co-regulatory sRNAs were

missed for 69 target genes in one or more tissues, and 170 novel sRNA-target pairs were identi-

fied (S2 Table). The regulatory pair "ath-miR156a-5p-AT1G27360.4" was taken as an example,

co-regulatory sRNAs had been found in all tissues except the root, they had almost the same

complementarities and binding sites with the target genes, and the levels of AGO1 proteins

was even higher than that of ath-miR156a-5p. Among these novel regulatory sRNAs, four

were found in flowers (sRNA_AT_38, sRNA_AT_39, sRNA_AT_40, sRNA_AT_17) and the

other two (sRNA_AT_39, sRNA_AT_40) were found in leaves and seedlings (Fig 3).

As most of the newly discovered co-regulatory sRNAs have not been reported previously,

their functions in regulating the targets need to be further confirmed by other credible meth-

ods. PAREsnip2 [13] was chosen to perform this confirmation and the 85 pairs of miRNA-tar-

gets supported by the literature [7] were re-analysed. As a result of this experiment, 144 out of

170 novel co-regulatory sRNA-target pairs identified by sRNATargetDigger passed the exami-

nation. For the control, 81 out of 85 miRNA-target pairs passed the test (S3 Table). Thus, the
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credibility of the regulatory relationship in these novel co-regulatory sRNA-target pairs was

confirmed using PAREsnip2.

Interestingly, a study has shown that some sRNA-target regulatory relationships collected from

the literature [7] exhibit actually tissue-specific weak regulatory relationships. Taken "ath-miR167c-

5p —> ARF8 (AT5G37020.2)" as an example, only in Arabidopsis roots, ath-miR167c-5p was

found to be involved in the regulation of ARF8 as a low-expression co-regulatory sRNA. In the

other three tissues (flowers, leaves and seedlings), its regulatory role was found to be negligible due

to a relatively low-expression level, which cannot pass the “Forward Digger” test. When “Reverse

Digger” was used to reversely search the regulatory sRNAs of ARF8, it was found that ath-

miR167a-5p was the main regulator of ARF8. Its expression in Arabidopsis flowers, leaves, roots,

and seedlings was very high, and had a good match with the target genes (Fig 4). This finding is

consistent with the results of the transgenic experiment by Wu et al., which found that MIR167a

(ath-miR167a-5p precursor) was the major functional miR167 precursor in vivo, whereas MIR167c

(ath-miR167c-5p precursor) had a weak regulatory effect on ARF8 [29]. In addition, sRNATarget-

Digger found that sRNA_AT_16 also has a co-regulatory effect on ARF8 (Fig 4).

As we know, there are often many-to-many regulatory relationships in sRNAs-targets.

When using the conventional degradome-based sRNA-target analysis software, the unknown

co-regulatory sRNAs cannot be identified; thus, the obtained information is not comprehen-

sive. The sRNATargetDigger by integrating with reverse mining technology, can solve this

problem. The tests regarding sRNA-target in Arabidopsis indeed found several co-regulatory

sRNAs that were highly complementary to the target genes, with binding sites almost identical

to known sRNAs. Notably, their expression levels in some tissues even exceeded those of

Fig 3. The miRNA ath-miR156a-5p and the co-regulating sRNAs with their target cDNA (AT1G27360.4) in Arabidopsis. A: Expression of ath-miR156a-5p and

co-regulatory sRNAs in flowers, leaves, roots, and seedlings of Arabidopsis, and their alignments with target genes; green indicates that sRNAs played a regulatory role,

white indicates that the regulatory role of the sRNA could be ignored; red number indicates that the sRNAs played the most important regulatory role. B: T-plot map

obtained after matching of the target gene AT1G27360.4 and degradome. The abscissa indicates the position on the target gene, the ordinate indicates the intensity of

the degradation signal, the red horizontal line indicates the sRNA binding site, and the red dotted line indicates the cleavage site.

https://doi.org/10.1371/journal.pone.0244480.g003
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known sRNAs, indicating that they may play a more important regulatory role. Among them,

we found that the miRNA family members with high sequence identity often regulated some

common target genes; the relevant results agreed also with the literature. For example, ath-

miR169a-5p and ath-miR169d have been shown to co-regulate NFYA2 (AT3G05690.1) [30,

31]; ath-miR172b and ath-miR172c to co-regulate AP2 (AT4G36920.1) [32, 33]; ath-miR396a-

5p and ath-miR396b-5p to co-regulate the GRF family (AT2G22840.1, AT4G37740.1,

AT2G36400.1, AT3G52910.1 and AT2G45480.1) [34]. Therefore, based on the degradome and

sRNA HTS data, sRNATargetDigger can help researchers to build a more comprehensive and

reliable sRNA-target regulatory relationship.

Conclusions

Based on HTS data analysis, we developed a novel software named sRNATargetDigger that

has two function modules “Forward Digger” and “Reverse Digger”, and this software can iden-

tify regulatory sRNA-target pairs bidirectionally. Compared to the other sRNA-target mining

softwares, it has the ability to identify unknown sRNAs co-regulating the same target, so as to

reveal a more comprehensive and reliable sRNA-target regulatory relationship. When the pub-

lished sRNA-target pairs in Arabidopsis were re-examined, all the sRNA-targets with specific

cleavage signals on the target genes passed the tests of sRNATargetDigger. Moreover, it identi-

fied 170 novel co-regulatory sRNA-target pairs. The developed pipeline can automatically

complete the analysis only by inputting data. Therefore, this software may be a popular predic-

tion tool for the plant biologists in sRNA-target research.
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S1 Table. Targets with no cleavage signals detected using degradome in Arabidopsis.
(XLS)

Fig 4. The miRNA ath-miR167c-5p and the co-regulating sRNAs with their target cDNA (AT5G37020.2) in Arabidopsis. A: Expression of ath-miR167c-5p and co-

regulatory sRNAs in Arabidopsis flowers, leaves, roots and seedling and their alignments with target genes; green indicates that sRNA plays a regulatory role, white

indicates that the regulatory role of the sRNA could be ignored, the red number indicates that the sRNA plays the most important regulatory role. B: T-plot map

obtained after AT5G37020.2 and degradome matching.The abscissa indicates the position on the target gene, the ordinate indicates the intensity of the degradation

signal, the red horizontal line indicates the sRNA binding site, and the red dotted line indicates the cleavage site.
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