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ABSTRACT Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are
under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our
understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these
analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we
performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred
mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic
regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to
�25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or
mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting
variants. Lastly, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects
of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized
RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility.
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THE advent of genome-wide investigation of DNA variants
and gene expression have revolutionized our understand-

ing of biology. Systems genetic approaches often utilize

variation in DNA and RNA to identify genes and pathways
associated with clinical traits (Rockman and Kruglyak 2006).
These approaches have been used in studies of plants (Fu
et al. 2009), flies (Ayroles et al. 2009), yeast (Storey et al.
2005), mice (Doss et al. 2005), and humans (Schadt et al.
2003, 2008). Analyzing variation in gene expression in a
segregating population for genetic regulation is a critical as-
pect of systems genetics. Originally, genomic positions that
were found to regulate quantitative traits were deemed quan-
titative trait loci (QTL); correspondingly, loci that regulate
the messenger RNA (mRNA) transcript levels are called ex-
pression quantitative trait loci (eQTL). QTL and eQTL anal-
yses have identified numerous candidate genes for obesity,
diabetes, and cardiovascular disease, indicating that certain
genetic variants interact critically with environmental factors
that predispose an organism to disease.
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The initial studies investigating eQTL were performed in
model organisms and the identified eQTLwere split into two
distinct classes based on the location of the associated single
nucleotide polymorphism (SNP). These classeswere defined
as cis-eQTL and trans-eQTL based on whether the SNP re-
sided close to or far from the regulated mRNA’s gene of
origin. In the case of a cis-eQTL, a genomic variant located
in proximity to the gene in question is associated with the
gene’s expression. The associated SNP is often thought to be
in linkage disequilibrium (LD) with the functional genomic
variant affecting gene expression. For cis-eQTL a number of
possibilities exist, such as promoter and enhancer variants.
Trans-eQTL refer to SNPs associated with gene expression
that are located distal to the locus containing the gene in
question. Trans-eQTL can be located on a different chromo-
some or at a distal location on the same chromosome, and
suggest an alternative regulatory mechanism. More re-
cently, many groups have characterized eQTL and the ge-
netic architecture of gene expression in humans. Several
important findings have emerged, including the discovery
that cis-eQTL, sometimes referred to as “local eQTL,” are
pervasive and often enriched for known genome-wide asso-
ciation study (GWAS) loci (Civelek et al. 2017). Trans-
eQTL, also referred to as “distant eQTL,” have been found
to affect hundreds of genes, are often regulated by the same
transcription factors (Brynedal et al. 2017), and at times
may be transcription factors themselves (Albert et al.
2018). Additionally, there may be complex relationships be-
tween cis-acting and trans-acting eQTL, as there is evidence
that SNPs regulating genes as cis-eQTL can also mediate the
effects of trans-eQTL (Yao et al. 2017).

eQTL studies have also begun to investigate the genetic
regulation of noncoding RNA. MicroRNAs (miRNAs) are
noncoding RNAs that regulate gene expression at the post-
transcriptional level and have been implicated in a range of
diseases, including cardiovascular diseases and metabolic
syndromes (Rottiers and Naar 2012). The identification of
microRNA expression QTL (mirQTL) has complemented
GWASs and further emphasizes the complex genetic regula-
tion of both miRNA and mRNA. For example, recent data
suggests that miRNA are associated with cardiometabolic
traits, and Mendelian randomization analysis has demon-
strated that these miRNA associations may be causal
(Nikpay et al. 2019). Determining the underlying mecha-
nisms of eQTL and mirQTL, the interaction of these two
classes of RNA, and how eQTL and mirQTL respond to envi-
ronmental perturbation remains to be fully elucidated.

Human GWAS have been impressive in their ability to
associate variants with disease traits, but are limited in their
ability to quantify and control environmental effects, their
ability to probe tissues, and by the sample sizes needed for
robust power. To address these limitations, model organisms
canbeused to identify eQTLandmirQTL inmultiple tissues, or
under a variety of conditions, such as diet, associating the results
with clinical traits and disease susceptibility (Mehrabian et al.
2005; Bhasin et al. 2008; Yang et al. 2009).

Recently, genetic mapping panels have been developed
which incorporate variation from more than two parental
strains. Using complex breeding strategies, these multiparent
advanced generation intercross panels have high genetic res-
olution and have been employed in a number of model organ-
isms, including Arabidopsis (Kover et al. 2009), Drosophila
(Mackay et al. 2012), and mice (Aylor et al. 2011). In mice,
two related multiparent advanced generation intercross pop-
ulations exist, the Collaborative Cross (CC) and the Diversity
Outbred (DO), and both are generated from eight mouse
strains, of which five are classical inbred (A/J, C57BL/6J,
129S1/SvImJ, NOD/LtJ, and NZO/HlLtJ) and three are
wild-derived inbred (CAST/EiJ, PWK/PhJ, and WSB/EiJ)
strains. In comparison to traditional approaches in mice, the
inclusion of the wild-derived strains increases genetic diversity
and reduces identical-by-descent “blind spots” (Yang et al.
2007). The primary difference between CC and DO popula-
tions is that the CC is a recombinant inbred panel while the DO
is maintained as an outbred population using a randomized
breeding scheme. The DO contains �45 million SNPs (Yang
et al. 2011; Churchill et al. 2012) and displays a wide variation
in phenotypes mimicking the variation observed in humans.
Because of the DO population’s allelic diversity, the DO have
been utilized in high-resolution genetic mapping of complex
traits, including atherosclerosis (Smallwood et al. 2014), re-
sponse to toxicants (French et al. 2015), the microbiome
(Kemis et al. 2019), and diabetes (Keller et al. 2018), as well
as studies focused on gene expression (Munger et al. 2014;
Tyler et al. 2017), metabolomics, and proteomics (Chick et al.
2016). Collectively, these studies utilizing DO mice have pro-
vided additional insight into the complex genetic architec-
ture that underlies clinical traits and disease susceptibility
(Svenson et al. 2012; Chesler et al. 2016; Winter et al. 2017).

Little is known about the genetic regulation of hepatic
mRNA andmiRNA under different dietary conditions; explor-
ing these trends in the liver is highly relevant due to the liver's
roles in cardiometabolic diseases. We have previously iden-
tifiednovel interactionsbetweeneQTLandclinical traits in the
DO, including atherosclerosis (Smallwood et al. 2014), the
atherosclerosis-associated plasmametabolite trimethylamine
N-oxide (Coffey et al. 2019), and plasma cystatin C (Huda
et al. 2020). In this study, we investigate the global regulation
of hepatic mRNA and miRNA expression in DO mice fed two
different diets: a high-fat cholic acid (HFCA) diet designed to
trigger atherosclerosis, and a high-protein (HP) diet. We
identify eQTL and mirQTL, classify them as cis or trans, and
characterize the QTL by defining heritability, genetic resolu-
tion, and effect size inmultiple QTLmodels. Finally, we assess
the effect of diet on each of these components and identify
eQTL driven by different founder alleles as a result of diet.

Materials and Methods

Experimental animals and diets

Details of the mouse experiments have been reported pre-
viously (Smallwood et al. 2014; Coffey et al. 2017, 2019). In
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brief, 292 female DO mice (J:DO, Jackson Laboratory stock
number 009376, outbreeding generation 11) were obtained
from the Jackson Laboratory (Bar Harbor, ME) as 146 full
sibling pairs at 4 weeks of age. Mice were housed in groups
of five per cage in a HEPA-filtered, climate-controlled, facility
under a 12-hr light-dark cycle and provided with nonirradi-
ated pine bedding and free access to sterile water. Mice were
maintained on defined synthetic diet, AIN-76A, until 6 weeks
of age, to control for variability in the components of stan-
dard chow (D10001; Research Diets, New Brunswick, NJ).
Afterward, one sibling from each of the 146 sibling pairs was
randomly assigned to one of the diets for a total of 18 weeks
(Figure 1). Thus 146 mice were transferred to a synthetic
HFCA diet composed of 20.0% fat, 1.25% cholesterol, and
0.5% cholic acid, to induce atherosclerotic lesions, while the
remaining 146mice were transferred to a nonatherogenic HP
diet composed of 5.0% fat and 20.3% protein (D12109C and
D12083101, respectively; Research Diets). All procedures
were approved by the Institutional Animal Care and Use
Committee at University of North Carolina at Chapel Hill
(protocol number 11-299).

RNA isolation

Livers were flash-frozen in liquid nitrogen and subsequently
stored at280� until total RNAwas isolated usingNorgen Total
RNAPurificationKit (Norgen,ON, Canada). RNA integritywas
determined by Bioanalyzer (Bio-Rad, Hercules, CA) and high-
quality RNA (with RNA Quality Index . 7.5) isolated from
livers of 268 of the 292 DOmicewas processed and hybridized
to Affymetrix Mouse Gene 2.1 ST 96-Array Plate (Thermo
Fisher Scientific, Waltham, MA) using the GeneTitan Affyme-
trix instrument, according to the standard manufacturer’s pro-
tocol. All probes containing known SNPs from the eight
founder inbred mouse strains of the DO mouse population
were masked (165,204 probes) during normalization by
downloading the SNPs from the Sanger sequencing website
(http://www.sanger.ac.uk/science/data/mouse-genomes-
project) and overlapping them with probe sequences. To
ensure integrity of downstream qualitative analyses, anno-
tation data from the Affymetrix mogene 21 annotation
database, Bioconductor version, release 3.7 (http://www.
bioconductor.org/packages/release/data/annotation/html/
mogene21sttranscriptcluster.db.html) was used to filter the
remaining transcript cluster IDs for those with reliable and com-
plete annotations.We removed transcript cluster IDs identified as
cross-hybridizing (n = 4954), associated with unlocalized se-
quences (e.g., chr1_GL456210_random), residing on the Y chro-
mosome or mitochondria (n = 69), or without ENSEMBL or
ENTREZ annotations (n = 4766). The total number of unique
probes postfilter was 24,004, corresponding to 23,626 genes. All
transcript cluster IDs were validated by programmatically query-
ing the ENTREZ IDs against the NCBI Gene Database for chro-
mosome and position. Microarray data are available on the
Gene Expression Omnibus repository under accession number
GSE99561.

Small RNA sequencing

High-quality RNA from livers of the DOmicewas also used for
small RNA sequencing (smRNA-seq). Libraries were created
using NEBNext Multiplex Small RNA Library Prep Set for
Illumina (New England Biosciences), and 50-bp single-read
sequencing was carried out on the Illumina HiSeq platform,
resulting in an average of over 16 million reads per sample.
miRquant 2.0 (Kanke et al. 2016)was used to trim off adapter
sequences, align reads to the mouse genome, and quantify
miRNAs and their isoforms (termed isomiRs). A previous
study in mice from the CC mouse panel has shown that
miRNAs do not contain variants across founder strains within
their seed regions, so reads were aligned to the mm9 mouse
genome (Rutledge et al. 2015). Reads were normalized to
reads per millions mapped to miRNAs (RPMMMs). An ex-
pression threshold of at least 50 RPMMMs in about one-quar-
ter of all samples was set to filter out the lowly expressed
miRNAs, which resulted in a set of 246 robustly expressed
miRNAs.

Figure 1 Experimental and analytical design classifies, characterizes, and
explores the relationships between hepatic mRNA and miRNA in the
context of diet. A total of 292 female DO mice were obtained from
Jackson Laboratory as 146 full sibling pairs. After initial maintenance on
a synthetic diet (AIN-76A), one sibling from each pair was randomly
assigned either an HFCA or HP diet for 18 weeks. Extracted hepatic
mRNA was hybridized to the Affymetrix Mouse Gene array and miRNA
was sequenced via Illumina HiSeq. mRNA and miRNA expression values
were used as phenotypes in four QTL genome scans. A: The four models
were diet as an additive covariate (n = 248), diet as an interactive cova-
riate (n = 248), subset of HFCA-fed mice (n = 134), and subset of HP-fed
mice (n = 114). eQTL and mirQTL found in each model were classified as
cis or trans and characterized. B: Interactions between miRNA and mRNA
were assessed and compared between models. C: The role of diet was
explicitly analyzed by differential expression analysis and by identifying
eQTL with significant allele-diet interactions from regression analysis.
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Genotyping

DNAwas extracted and purified from tail biopsies taken from
6-week-old mice using the QIAGEN DNeasy kit, following the
manufacturer’s instructions. Genotyping was performed us-
ing the Mega Mouse Universal Genotyping Array (Mega-
MUGA) by GeneSeek (Neogen, Lincoln, NE) (Svenson et al.
2012).

QTL mapping

QTL mapping was performed using the R (v3.5.1) package
QTL2 (v0.20). The genotypes from theMegaMUGAarray are
assigned DO founder strain probabilities using a hidden
Markov model (Broman and Sen 2009) and haplotypes
are defined as previously reported (Broman 2012a,b). The
genotype probabilities are reduced to the eight founder al-
lele probabilities and used to generate a kinship matrix us-
ing the “leave-one-chromosome-out”method to reduce bias
from same chromosome SNPs (Yang et al. 2014). A genome
scan is performed using a linear mixed model, which re-
gresses the microarray gene expression phenotype matrix
against the allele probabilities at each marker, using the
kinship matrix to control for population structure.

Using the scan1 function in R/qtl2, four separate genome
scanswere performed to assess howgenotype, diet, and gene-
by-diet interactions affect eQTL. The four QTL models are as
follows: diet as an additive covariate, diet as an interactive
covariate, subset of mice fed an HFCA diet (n = 134), and
subset of mice fed an HP diet (n = 114). The phenotypes for
the genome scans were the individual expression data for
each transcript cluster ID. To assess similar effects on
mirQTL, the same models were performed on the miRNA
abundance data. The log of the odds ratio (LOD), which
describes the log-scaled likelihood difference of the full and
null genome scan models, is generated for each SNP on the
MegaMUGA (n = 70,339) genotyping array. Permutation
analysis was used for subsequent filtering (described below),
reducing the initial output to a set of high-confidence QTL.
Confidence intervals for QTL were calculated by determin-
ing the upper and lower physical distances from the peak
where the LOD dropped by 1.8 or more, approximating a
95% coverage of true positives for an intercross population
(Manichaikul et al. 2006). We defined eQTL as cis-eQTL if the
marker with the maximum LOD score was within 4 Mb of the
transcription start site (TSS), and called the remaining eQTL
trans-eQTL (Keller et al. 2018).

Permutation analysis

The significance threshold at P , 0.05 of each QTL was em-
pirically determined via permutation analysis tominimize type 1
and type 2 errors (Huda et al. 2020). The rows of the genotype
data were randomized with respect to the expression data
(miRNA or mRNA) and a maximum LOD score was produced.
This process was repeated 1000 times to create a null distri-
bution of maximum LOD scores for a particular expression
trait (Churchill and Doerge 1994). The 95th quantile of a

phenotype’s null distribution was considered as its individual
significance threshold at P=0.05. For our analysis with diet as
an additive covariate, all transcripts (n = 24,004) were sub-
jected to full permutation analysis.

A modified approach, designed to reduce the computa-
tional complexity of performing 1000 QTL permutations
analysis on 24,004 transcripts three times, was utilized to
identify eQTL for the interactive and diet-specific subsets.
After the initial eQTL model was fit for each transcript, we
completed 50 permutations to generate an initial null dis-
tribution for each candidate, calculating a conservative
threshold by taking the 90th quantile and subtracting the
quantile SE (Cox and Hinkley 1979). The transcripts with
LOD scores above this threshold (90th quantile minus the
quantile SE) were subjected to full 1000 permutation test-
ing. Transcripts with LOD scores above the 95% significance
threshold, as determined by 1000 permutations, were con-
sidered significant.

We initially validated this method with diet as an additive
covariate, which had 1000 permutations performed for each
transcript cluster ID. Using the 50-permutation method, we
found 8867 transcripts to be above our modified threshold.
We subjected these 8867 transcripts to permutation testing
(1000 permutations) and identified the same transcripts with
significant eQTL (n = 6276) as our initial test of all 24,004
transcripts.

Genome scan coefficients

The contribution of each founder strain genotype at each QTL
was determined using the best linear unbiased predictor
(BLUP) for each QTL model (additive, HFCA diet, and HP
diet) using a similar mixed effect model that treated the allele
probabilities as random effects. BLUP scans show contribu-
tions from the eight DO founder strains at each SNP and are
extracted from the peak SNP of each significant eQTL or
mirQTL.

Phenotypic variance explained

For each significant eQTL ormirQTL, the RNA expression and
genotype probabilities at the peak SNP were extracted and fit
to full and null Haley–Knott regression models. The differ-
ences in R2 values between the full model, with genotypes
and covariates included, and null model with only covariates
included, were taken as the phenotypic variance explained by
the QTL.

Heritability

To determine the extent to which phenotypic variation is
influenced by genotypic variation, we used a linear mixed
effect model to estimate narrow-sense heritability (h2)
scores of transcript cluster IDs or miRNAs. This was per-
formed using the function est_herit in R/qtl2, submitting
a single, square, kinship matrix and the expression value
of individual transcript cluster IDs or miRNA with eQTL or
mirQTL.
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Enrichr

Using the Ma’ayan Laboratory’s Enrichr Tool (https://amp.
pharm.mssm.edu/Enrichr/), we used the httr R library to
programmatically submit gene sets to all gene-set libraries
available on Enrichr via its Application Programming Interface
(https://amp.pharm.mssm.edu/Enrichr/help#api). We then fil-
tered the results to only include those with adjusted P, 0.05.

Correlation patterns in miRNA and mRNA

Pairwise Spearman correlation was performed on every se-
quenced miRNA (n= 246) and annotated mRNA probe (n=
24,004) pair. The outputs were combined and filtered for
significance at a Benjamini–Hochberg (BH)-adjusted P ,
0.05, resulting in 1,424,040 mRNA-miRNA correlations. Cor-
relations were divided by mRNA into three categories based
on the given model eQTL results: mRNA with significant
eQTL were subdivided into “cis” and “trans,” and mRNAwith

no significant eQTL were designated “no eQTL.” To better
assess the differences between cis- and trans-eQTL, mRNA
with multiple mappings (additive = 331; HP diet = 120;
HFCA diet = 251) were removed for this analysis. Pairwise
Wilcoxon rank-sum tests were performed on the absolute
values of Spearman’s rho for the three groups. Fisher’s
exact test was performed to test for dependence of mapping
status and known miRNA-mRNA interactions. The Mus mus-
culus miRNA catalog was downloaded from miRTarBase re-
lease 7.0 (Chou et al. 2018), and used to identify known
miRNA-gene interactions.

mRNA eQTL and miRNA mirQTL colocalization

The confidence intervals of each eQTL and mirQTL on the
same chromosome were tested for overlap. For those eQTL-
mirQTL pairs with overlapping confidence intervals, a phys-
ical distance between peakmarkerswas calculated. Pairswith
a distance of zero were mapped to the same SNP.

Figure 2 High-resolution hepatic eQTL and mirQTL in Diversity Outbred mice demonstrate complex regulation of expression traits. Results from
expression quantitative trait loci (eQTL) analyses using a genome scan model treating the high-fat cholic acid (HFCA) diet and high-protein (HP) diet
groups as an additive covariate. (A) An eQTL plot visualizes all significant associations between gene expression and structural SNP variants from a
genome scan. The absolute genomic positions of the SNP and gene transcript probe set in the mouse genome are shown on the x- and y-axes,
respectively. The blue line represents cis-eQTL, positions where gene expression variance is associated with a proximal (64 Mb) SNP variant. (B)
Resolution of cis-eQTL is determined by the distance from the SNP to the transcript probe set (x-axis); resolution across all 5460 eQTL-probe pairs
on the same chromosome shows 95.4% of cis-eQTL are within64 Mb of their probe set and tend to have highly significant log of the odds scores (LOD,
y-axis). Cis-eQTL resolution in the DO population is estimated to be 0.32 Mb. (C) Narrow-sense heritability is calculated for the probe set expression of
each significant eQTL in the additive QTL analysis. (D) mirQTL plot of the results from the genome scan of miRNA transcription data with diet as an
additive covariate. (E) Resolution of 18 cis-mirQTL, showing 100% of cis-mirQTL are within 64 Mb. Cis-mirQTL resolution in the DO population is
estimated to be 0.25 Mb. (F) Distribution of narrow-sense heritability for the miRNA expressions with significant mirQTL in the additive genome scan.
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Differential gene expression

To determine the effect of diet on hepatic mRNA andmiRNA,
we performed differential gene expression analysis. Tran-
scripts with a robust multiarray average value of four or
greater in at least 25% of samples were included (Coffey
et al. 2017), which resulted in 11,377 transcripts and
246 miRNA. The Wilcoxon rank-sum test was performed
for both miRNA and mRNA data and P-values were corrected
using the BH method. Significance was set at P , 0.05.

Allele-diet interaction identification

The interactive model generated using R/qtl2 suggested that
many eQTL have unique diet effects from permutation analysis
of LOD scores, but did not allow us to identify eQTL with a
significant allele-by-diet interaction term within the model. To
achieve this, we performed an ANOVA of the allele-diet in-
teraction against the expression of the transcript with a signif-
icant eQTL in the interactive model. Interactive eQTL with a
significant allele-diet interaction term (BH-adjusted P, 0.05)
were subset to eQTL present in both the HFCA and HP diet
models. For this subset, we calculated the founder allele effects
using the R/qtl2 BLUP scan method in each diet model. We
calculated the percent difference of founder effects of the
HFCA diet model, using HP diet as a reference, at each eQTL.
Finally, we summed the absolute value of the change across all
of the founders for each gene, identifying those whose founder
effects are most variable as a result of diet.

Data availability

Microarray and smRNA-seq data are available on the Gene
Expression Omnibus repository under accession number
GSE99561. Genotypes are available at DRYAD: https://doi.
org/10.25338/B87K75. Supplemental material include all
significant QTL identified in this study. Supplemental mate-
rial available at figshare: https://doi.org/10.25386/genetics.
12597794.

Results

Genetic architecture of hepatic mRNA and miRNA
expression vary within the DO population

To identify the global regulation of hepatic gene expression,
we performed a genome scan on all 248 female HFCA- or
HP-fedDOmice (134HFCA-fedand114HP-fed), treatingdiet

as an additive covariate. We identified eQTL and mirQTL in
the full DO cohort. For eQTL, the median LOD score that
corresponded to the 95% of genome-wide type 1 error rate
was 7.51 (Table 1). The distribution of LOD scores significant
at P , 0.05 is shown in Supplemental Material, Figure S1.
Using permuted LOD thresholds for individual transcripts, we
identified a total of 6692 significant eQTL, representing
6321 unique transcript cluster IDs that map to 6276 unique
genes (Figure 2A). We next identified the 5460 eQTL as-
sociated with SNPs residing on the same chromosome as
the gene probe and calculated the distance between the
SNP and the gene’s TSS. The mean absolute distance be-
tween the TSS and the peak SNP’s physical location was
1.25 Mb and the median distance was 0.32 Mb (Figure
2B). To allow for variable recombination rates across
the genome, we used a genomic interval of 4 Mb to clas-
sify transcripts as high-confidence cis-eQTL. Using this
metric, we classified 5207 eQTL as cis-eQTL (Table S1).
To support the decision to classify transcripts using a
4-Mb genomic interval, we tested a 1-Mb interval, which
produced similar distributions of cis and trans due to the
high resolution afforded in the DO (Table S2); therefore,
all subsequent analyses were performed using the 4-Mb
interval.

We treated all 1485 eQTL that did not fall into the cis-eQTL
category as trans-eQTL, where a distal SNP (either.4Mb on
the same chromosome or on a different chromosome) is reg-
ulating the expression of a gene (Figure 2A; Table 2). When
the position of the peak QTL SNPwas plotted against the QTL
probe position, we observed several vertical lines that may
represent trans-eQTL bands. A total of 362 transcript cluster
IDs exhibited multiple mappings, 31 of these trans-eQTL
were the only genetic regulation observed, while 331 had
both cis- and trans-eQTL signals (Table 3). All significant
trans-eQTL are shown in Table S3.

We then identifiedmirQTL in the full DO cohort, treating
diet as an additive covariate, and determined the threshold
of significance by performing 1000 permuted genome scans
on all 246 robustly expressed miRNAs. The median LOD
score for a P , 0.05 threshold was 7.58. We identified a
total of 37 miRNA with significant mirQTL (Figure 2D).
From these, we identified 18 miRNAs whose peak eQTL
was regulated by a SNP residing on the same chromosome
as the miRNA’s physical position. This distance ranged
between 2.87 kb and 2.03 Mb, with median resolution of

Table 1 Means and ranges of permutation thresholds by significance level

Additive model Interactive model High-fat cholic acid diet High-protein diet

Mean Range Mean Range Mean Range Mean Range

mRNA
P , 0.05 7.51 7.14–10.11 10.87 10.27–18.65 7.65 6.98–10.02 7.74 7.08–13.77
P , 0.63 6.21 6.08–7.09 9.32 8.97–14.12 6.35 5.76–7.11 6.41 5.94–8.38
miRNA
P , 0.05 7.63 7.41–8.41 11.67 10.54–14.48 8.1 7.58–9.38 7.81 7.61–8.34
P , 0.63 6.25 6.15–6.54 9.82 9.05–11.42 6.53 6.33–7.03 6.44 6.31–6.75
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0.25 Mb, which corresponds approximately to the same
resolution calculated for mRNA (0.32 Mb) and allows
us to classify all of them as cis-mirQTL. The cis-mirQTL
are shown in Table S4 and trans-mirQTL are shown in
Table S5.

Notably, the distribution of trans and ciswere different for
eQTL and mirQTL, as cis-eQTL made up 78% of the eQTL
compared to only 49% of the mirQTL. The trans-mirQTL
(n = 19) were found on chromosomes different from the
physical location of their miRNA (Table 2).We identified four
miRNA that had more than one mirQTL.

Heritability and effect size of eQTL and mirQTL in the
DO population

To further explore the genetic architecture of hepatic mRNA
andmiRNA,we sought todetermine thevarianceexplainedby
each significant eQTL and the narrow-sense heritability (h2)
of each eQTL’s associated gene. Among the genes with eQTL,
the heritability ranged between 0.0 and 1.0, with amedian h2

of 0.295 (Figure 2C). The variance of expression levels
explained by the peak eQTL SNP ranged between 0.027
and 0.776, with a median of 0.173. There was a significant
positive correlation (rho = 0.52, P , 2.2 3 10216) between
narrow-sense heritability of gene expression and variance
explained by eQTL (Figure 3A). The allele probabilities of
the peak SNP associated with cis-eQTL explained 20.2%
of the variation in gene expression, while the peak SNP as-
sociated with trans-eQTL explained significantly less varia-
tion (Wilcoxon rank-sum, P , 2.2 3 10216), at 13.61%
(Figure 3C).

We next assessed the heritability of mirQTL, which were
generally less heritable than eQTL. Among the miRNA with
mirQTL, the heritability ranged between 0.0 and 0.66, with a
median h2 of 0.18 (Figure 2F). The variance explained by the
peak mirQTL SNP ranged between 0.091 and 0.358, with a
median of 0.14. Similar to the finding in eQTL, there was also
a correlation between narrow-sense heritability of gene ex-
pression and variance explained by mirQTL (Figure 3B). The
allele probabilities of the peak mirQTL SNPs associated with
cis-mirQTL explained 14.32% of the variation in gene ex-
pression. Trans-mirQTL explained 12.98% but this differ-
ence was not found to be statistically significant (P = 0.071;
Figure 3D).

Wild-derived alleles influence eQTL and mirQTL

A significant feature of the DO population is that allele
distributions are composed of, on average, 12.5% from each
of the eight founder strains at any given locus, meaning
37.5% of the genome is inherited from the three wild-
derived founder strains (CAST/EiJ, PWK/PhJ, and WSB/
EiJ) (Chesler et al. 2016). These three strains contribute a
significant portion of the genetic variants in the DO popu-
lation. Thus, we sought to determine if any of these strains’
individual allele effects disproportionally contribute to
eQTL and mirQTL. To do so, we mean-center-scaled the
BLUP allele effects for the eight founder strains at the peak
SNP of each eQTL (Figure 4A) and mirQTL (Figure 4C). The
scaled founder effect sizes from all significant eQTLs dem-
onstrated an enriched signal for alleles contributed by
CAST/EiJ and PWK/PhJ strains (Kruskal–Wallis on the ef-
fect sizes, P , 2.2 3 10216) (Figure 4B). Dunn’s post hoc
analysis, with BH multiple comparison correction, con-
firmed that CAST/EiJ and PWK/PhJ allele effects were sig-
nificantly larger than all other founder strains (P , 1.0 3
10216). Testing for this same effect in mirQTL was incon-
clusive; Kruskal–Wallis one-way ANOVA did not indicate
statistically significant differences among founder strain
mirQTL contributions (P , 0.069; Figure 4D).

Characterization of hepatic mRNA and
miRNA interactions

We investigated if similar genetic architecture affects hepa-
tic mRNA and miRNA expression by examining eQTL and
mirQTL with overlapping confidence intervals (Materials and
Methods). We identified 33 mirQTL whose confidence inter-
val overlapped with the confidence interval of 817 eQTL. The
miRNAs were approximately evenly distributed between cis
and trans regulation, with 16 miRNAs being regulated in
trans and 18 in cis. mRNAs were regulated more frequently
by local variants as there were 643 cis-eQTL and only 174 -
trans-eQTL. The distance between the SNPs regulating
mRNA and miRNA averaged 4.86 Mb and ranged between
0 and 161Mb (Table S6). Notably, several mRNA andmiRNA
were regulated by the same SNP and in these cases all were
cis-eQTL and cis-mirQTL. The functional relevance of having
cis-eQTL and cis-mirQTL co-regulated at the same locus re-
mains to be fully elucidated.

Table 2 Summary of eQTL results by model

Runa Additive model Interactive model High-fat cholic acid diet High-protein diet

mRNA
Cis (% total) 5207 (77.81) 4415 (71.73) 3738 (67.11) 2098 (61.43)
Trans (% total) 1485 (22.19) 1740 (28.27) 1832 (32.89) 1317 (38.57)
Total 6692 6155 5570 3415

miRNA
Cis (% total) 18 (49) 9 (39) 8 (47) 1 (8)
Trans (% total) 19 (51) 14 (61) 9 (53) 11 (92)
Total 37 23 17 12

a Cis and trans designations are defined as QTL peaks whose probes are within 6 4Mb of the starting site or not, respectively.
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A single miRNA can affect the expression of multiple
mRNAs and thus play critical roles in the regulation of gene
expression. So, in addition to shared genetic regulation,
one can hypothesize that the correlation structure between
miRNA and mRNA will result in significant interactions. We
correlated expression levels of each miRNAwith each mRNA
and generated 5,904,492 correlations, of which 1,424,040
were significant after BHmultiple comparison correction. The
direction of the correlation may inform the biological associ-
ation between the miRNA and mRNA and we observed a
similar number of positive correlations (n = 729,631) and
negative correlations (n = 694,409). We next categorized
each of the correlations into three categories: miRNA:cis-
eQTL, miRNA:trans-eQTL, and miRNA:no-eQTL. There were
376,051 significant miRNA:cis-eQTL correlations, 94,407 sig-
nificant miRNA:trans-eQTL correlations, and 953,582 signif-
icant miRNA:no-eQTL correlations (Figure S2). The median
(6SEM) absolute Spearman’s rho for mRNAwith trans-eQTL
was 0.234 6 0.00016 and was significantly different from
both cis-eQTL and no-eQTL (cis-eQTL: P , 2.2 3 10216,
0.233 6 0.00035; no-eQTL: P , 1.1 3 1025, 0.232 6
0.00011). Although statistically significant, it is difficult to
conclude whether the absolute expression of miRNA favors
one form of genetic regulation.

Our global analysis of miRNA and mRNA was broad;
therefore, we sought to characterize the miRNA-mRNA cor-
relations based on known interactions. Of the 1,424,040
significant correlations, 1916 had validated miRNA-mRNA
interactions on miRTarBase (Table S7) and 60% were posi-
tively correlated.Wenext characterized thesehigh confidence
miRNA-mRNA interactions based on the genetic regulation of
the mRNA associated with the miRNA. Fisher’s exact test on
the dependence of mapping status (mapping: 470,458; no
mapping: 953,582) and validated miRTarBase interaction
(interaction: 1928; no interaction: 1,422,112) reveals that
validated miRNA-mRNA interactions were roughly 11% less
likely (odds ratio 0.89, 95% CI 0.81–0.98, P , 0.02) to be
found between miRNA and mRNA with a mapping eQTL
(Table 4). This finding supports that miRNA-mRNA interac-
tions are more likely observed in the absence of a strong ge-
netic signal.

Diet has profound effects on the genetic regulation of
hepatic mRNA and miRNA expression

Having classified and characterized hepatic mRNA and
miRNA while controlling for diet, we next sought to investi-
gate the specific effects of diet on gene andmiRNA expression
(Figure 1C). We performed differential expression analysis

Figure 3 eQTL and mirQTL differ in heritability and effect size in Diversity Outbred mice. (A and B) Narrow-sense heritability scores and R2 differences
between full and null Haley–Knott regression models (phenotypic variance explained) were calculated for every significant eQTL and mirQTL in the
additive genome scan models and colored by their LOD score. Polynomial and simple regression models were fit to the mRNA and miRNA data,
respectively, to understand the association between heritability (x-axis) and phenotypic variance explained by the eQTL (y-axis). (C and D) Wilcoxon rank-
sum tests reveal a significant difference in the phenotypic variance explained between cis- and trans-eQTL and a similar but insignificant (P $ 0.05)
difference in the phenotypic variance explained between the cis and trans-mirQTL.
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by diet using the mRNA and miRNA that passed the robust
multiarray average and RPMMM thresholds (Materials and
Methods). A total of 8674 (76%) mRNA and 195 (79%)
miRNA were differentially expressed, indicating a predomi-
nant effect of diet on the overall transcriptional profile (Ta-
bles S8 and S9). We classified the differentially expressed
genes by their eQTL status in the additive model and found
that 42% had an eQTL. In comparison, only 13% of differen-
tially expressed miRNA had a mirQTL (Table 5). Using Fish-
er’s exact test, we calculated thatmRNA are less likely to have
an eQTL when they are differentially expressed (odds ratio
0.79, 95% CI 0.73–0.87, P , 0.001). A stronger but nonsig-
nificant trend was observed with miRNA.

We then analyzed the relationship between effect size, or
phenotypic variance explained, and differential gene expres-
sion for the peak SNP of cis- and trans-eQTL in the additive
model. The median phenotypic variance explained by the
peak SNP associated with the cis-eQTL for a differentially
expressed transcript was 0.186 (range, 0.027–0.751). In con-
trast, for genes without a statistically significant effect of
diet on transcript levels, the median phenotypic variance
explained was higher at 0.238 (range, 0.124–0.761). Thus,
genes affected by diet had less of their variation explained by
the peak SNP associated with an eQTL, underscoring the in-
fluence of the environment on this subset.

Further, analysis of the mode of regulation of eQTL (cis
or trans) coupled with the differential expression results

paralleled our previous finding that trans-eQTL tended to
explain less variance than cis-eQTL. For differentially
expressed transcripts with a trans-eQTL, the variance in ex-
pression explained by the eQTL was 0.124 (range, 0.045–
0.478), whereas the variance for transcripts not affected by
diet was greater at 0.143 (range, 0.104–0.689). Likewise, for
differentially expressed transcripts with a cis-eQTL, the vari-
ance explained was 0.186 (range, 0.027–0.750), which was
less than the variance of nondifferentially expressed tran-
scripts at 0.248 (range, 0.124–0.760). In summary, for both
cis and trans, themedian variance explainedwas significantly
greater for mRNA that were not differentially expressed (Fig-
ure 5, A and B). This pattern was also observed for miRNA;
however, the results were not significant, which may reflect
the relatively low number of mirQTL (Figure 5, C and D).

To further characterize the behavior of differentially
expressed genes and miRNA, we returned to our miRNA-
mRNA interaction analysis. We assessed the magnitude of
the miRNA-mRNA correlation by their mapping (miRNA:cis-
eQTL, miRNA:trans-eQTL, and miRNA:no-eQTL) and dif-
ferential expression status and found that in all instances,
differentially expressed mRNA and miRNA have a statisti-
cally higher (P, 2.223 10216) absolute rho than their non-
differentially expressed counterparts (Figure 6A). Further
classification of the relationship between miRNA and mRNA
based on differentially expressed gene status and classifica-
tion of eQTL indicated that there was no difference in the

Figure 4 Alleles from wild-derived strains
contribute to eQTL and mirQTL. (A) Center-
scaled best linear unbiased predictor (BLUP)
coefficients from eight DO founder strains
are taken at the peak SNP of all significant
eQTL from the additive model. Their relative
effect sizes are visualized and mapped to the
eQTL’s physical location on a circularized
mouse genome. The sixth and seventh tracks
reveal a clear pattern of peak contribution
(dark red and blue bands) from wild-type
founder strains CAST/EiJ and PWK/PhJ that
is consistent across the genome. (B) Boxplot
representation of center-scaled BLUP coeffi-
cients from all significant eQTL in the addi-
tive model. Kruskal–Wallis rank-sum test
indicates significant differences (P , 2.2 3
10216) among founder effects. Dunn’s post
hoc test confirms significantly (BH-adjusted
P , 1.0 3 1024) larger effects from the
CAST/EiJ and PWK/PhJ strains relative to all
other strains. (C) BLUP coefficients from
eight DO founder strains are taken at the
peak SNP of all significant mirQTL from the
additive model. Their relative effect sizes are
visualized and mapped to the mirQTL’s phys-
ical location on a circularized mouse ge-
nome. Patterns of peak contribution by any
particular strain is visually unclear. (D) Box-
plot of center-scaled BLUP coefficients from

all significant mirQTL in the additive model. Kruskal–Wallis rank-sum test does not indicate significant differences (P , 0.064) among founder effects.
Dunn’s post hoc test shows a single significant (BH-adjusted P # 0.05) difference, with PWK/PhJ showing higher contributions over NOD/LtJ.
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miRNA-mRNA correlation structure based on eQTL classifica-
tion if a transcript was not differentially expressed (Figure 6C).
There was a statistically significant but relatively small effect
of eQTL classification in transcripts that were differentially
expressed by diet (Figure 6B). Thus, the effect of environ-
mental factors such as diet have critically important effects
on the relationship between hepatic mRNA and miRNA.

Diet alone affects cis- and trans-eQTL and
mirQTL architecture

We have previously reported that diet significantly affects
miRNA and mRNA expression in the DO population (Coffey
et al. 2017). Moreover, having identified relationships be-
tween expression and genetic architecture, we sought to ex-
plore the effect of diet by comparing the cis and trans
architecture of eQTL from separate genome scans of HFCA-
fed mice (n= 134) and HP-fed mice (n= 114). The number
of total eQTL found differed between diet groups, with
5570 eQTL in the HFCA-fed mice and 3415 in the HP-fed
mice. We identified 3738 cis-eQTL and 1832 trans-eQTL in
the HFCA-fed mice and 2098 cis-eQTL and 1317 trans-eQTL
in the HP-fedmice (Table 2). The relative proportion of trans-
eQTL was similar between diets: �32% of eQTL were trans-
acting in the HFCA diet model results, compared to 38% in
the HP diet model results. The cis-eQTL of the HFCA- and
HP-fed mice overlapped by 46% and 81%, while the trans-
eQTLs overlapped by 1.9% and 2.7%, respectively (Figure 7,
A–F). mirQTL analysis within the HFCA and HP diets, using
individually permuted significance thresholds, yielded few
mirQTL. There were 17 significant mirQTL in the HFCA diet,
8 (47%) of which were cis-mirQTL, and 12 significant
mirQTL in the HP diet, only 1 (8%) of which was a cis-
mirQTL. Overlap analysis revealed that the lone cis-mirQTL
in the HP diet was represented among the cis-mirQTL of the
HFCA-fedmice. Conversely, the HFCA- andHP-fedmice over-
lapped by a single trans-mirQTL.

We then classified the eQTL results from the diet specific
QTL analysis as to their status relative to the differential
expression results. Similar to the trend observed in the addi-
tivemodel,mRNAandmiRNAwere less likely tohaveaneQTL
or mirQTL when they were differentially expressed (Tables
S10 and S11). Furthermore, the odds of an eQTL having a
differentially expressed genewere similar betweenHFCA and

HP diet models (HFCA diet: 0.83, 95% CI 0.76–0.91, P ,
0.001; HP diet: 0.79, 95% CI 0.71–0.87, P , 0.001). To
further explore the role of diet on cis and trans architecture,
we calculated the phenotypic variance explained by eQTL
and mirQTL in each diet model. In both HFCA-fed mice and
HP-fed mice, the median variance explained for cis-eQTL
was similar, at 0.349 and 0.356, respectively. Trans-eQTL
explained 0.244 of the variance in the HFCA-fed mice and
0.282 in the HP-fed mice (Figure S3). This result follows the
trend observed in the additive model that cis-eQTL explain
more variance than trans-eQTL; however, the variance
explained from the diet models is greater than that of the
additive model, suggesting an environmental perturbation
effect.

Overall, 33%ofeQTL in theHFCA-fedmicewere replicated
in the HP-fed mice. This corresponded to 1836 eQTL in total,
which were predominately cis. We identified 1701 concor-
dant cis-eQTL and 35 concordant trans-eQTL overlapping be-
tween models. Power differences between the HFCA- and
HP-fed mice resulted in differences in resolution and led to
different classifications of 100 eQTL (Figure 7, E and F),
guiding our choice to only discuss eQTL (n = 1736) that
agreed in their classifications. We hypothesized that concor-
dant eQTL would have similar effect sizes despite the differ-
ent diets. The correlation of effect size between HFCA andHP
diet models is 0.59 for cis-eQTL and 0.50 for trans-eQTL
(Figure 8, A and B), suggesting a congruent relationship.
Next, we calculated the effects of the eight founder strains
at the peak SNP for each eQTL, using BLUP coefficients in
each diet model. We correlated the allelic effects and
assessed how their correlation related to the distance be-
tween the peak SNPs of the eQTL (Figure 8, C and D). We
observed that allele effects underlying eQTL were highly cor-
related in concordant eQTL in both cis-eQTL and trans-eQTL.

We previously identified that alleles from the wild-derived
strains CAST/EiJ and PWK/PhJ significantly contributed to
eQTL and mirQTL in the full cohort with diet as an additive
covariate. In both HFCA and HP diet models, CAST/EiJ and
PWK/PhJ remained prominent contributors to eQTL and
mirQTL, despite reduced power as a result of dichotomizing
the cohort by diet (Figure S4).

We next investigated the relationships between mRNA
and miRNA in each diet subset and established the median

Table 3 Summary of eQTLs with multiple mappings by model

Runa Additive model Interactive model High-fat cholic acid diet High-protein diet

mRNA
Mixed (% total) 331 (91.4) 265 (78.6) 251 (78.4) 120 (75.9)
Trans only (% total) 31 (8.6) 72 (21.4) 69 (21.6) 38 (24.1)
Total 362 337 320 158

miRNA
Mixed (% total) 3 (75) 1 (100) 0 (0) 0 (0)
Trans only (% total) 1 (25) 0 (0) 0 (0) 0 (0)
Total 4 1 0 0

a mRNA probes that appear as eQTLs at multiple locations on the genome have multiple mappings. There were no multiple mapping eQTLs that all
mapped to the same chromosome (cis only), all others were a mix of cis and trans (mixed) or only trans (trans only).
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absolute magnitude of the miRNA-mRNA correlations. Of
all correlations, miRNA:trans-eQTL in the HFCA diet had
the highest median absolute Spearman’s rho of 0.249 6
0.00034, suggesting a coordinated response between the
RNA classes in the extreme HFCA diet. The median value
for cis-eQTL and no-eQTL were similar at 0.231 6 0.0019
and 0.2316 0.0001, respectively. In the HP diet, the median
rho for trans and cis were similar at 0.230 6 0.00025 and
0.230 6 0.00035, respectively, while transcripts without an
eQTL had a higher median correlation coefficient of 0.2326
0.0001 (Figure S5, A and B). We acknowledge that the num-
ber and distributions of cis- and trans-eQTL are different be-
tween the diets. Therefore, the differences in the correlation
results between diets may in part be attributed to power.

Gene-by-diet interactions reveal the significance of diet
on eQTL and mirQTL

Given our previous reports of diet effects on hepatic gene
expression (Coffey et al. 2017, 2019) and our observation of
differing correlative structures between homologous GWAS
candidate genes and traits in the DO population, we hypoth-
esized that diet could affect the overall structure of eQTL and
mirQTL. Thus, we performed eQTL andmirQTL analysis with
diet as an interactive covariate and identified 6155 significant
eQTL and 23 mirQTL (Figure S6, A and B), after completing
individual permutation thresholds (Table 1). Of these, 4415
eQTL were cis-acting and 1740 were trans-acting, while nine
mirQTL were cis-acting and 14 mirQTL were trans-acting
(Table 2). As expected, the resolution of cis-eQTL and mirQTL
identified in the interactive model were similar to the addi-
tive model, with the median distances between the TSS and
the peak SNP’s physical location being 0.28 and 0.31 Mb,
respectively.

Next, we compared the relative distribution of cis- and
trans-acting eQTL in both the additive and interactive mod-
els. Overlap between significant eQTLs using diet as an in-
teractive or additive covariate revealed large architectural
differences in trans-eQTLs compared to cis-eQTLs. Large
overlap between cis-eQTLs was observed between themodels
with 4321 transcripts with clear cis-acting regulation, and
83% and 98% of cis-eQTLs overlapping from the additive
and interactive models, respectively. Conversely, only 28% and
24% of trans-eQTLs overlapped between the additive and
interactive models (Figure S6E). mirQTL architecture was

also affected by the type of QTL model, as only 8 out of
19 cis-mirQTL (42%) were similar between the additive
and interactive models. Trans-mirQTL had model overlap
similar to trans-eQTL, with 9 out of 24 (37%) represented
in both models (Figure S6F). The sparse overlap of trans-
eQTL may be due in part to their smaller effect sizes relative
to cis-eQTL yet may suggest that genes regulated in trans are
more sensitive to gene-by-diet interactions than those regu-
lated by cis factors.

Concordant eQTL are driven by different founder alleles
in response to diet

The genetic architecture differed between the additive and
interactivemodels, indicating thata subsetof eQTLcouldhave
a distinct response to diet. In support of this hypothesis, we
identified that the allele effects of concordant eQTL in the
HFCA and HP diet models were highly correlated; however,
this was not universal as the correlation of the allele effects
was often below one (Figure 8, C and D). We hypothesized
that a subset of eQTL present in both the HFCA and HP diet
models could be affected by alternative founder alleles. To
test this, we began by identifying eQTLwith significant allele-
diet interactions in the interactive model. To accomplish this,
we performed an ANOVA of the allele-diet interaction against
the expression of the transcript with a significant eQTL. Of
the 6155 eQTL identified in the interactivemodel, 1460 had a
significant allele-diet interaction (P , 0.05) and 390 were
significant after BH correction (BH-adjusted P, 0.05) (Table
S12). We then subset the eQTL present in both the HFCA and
HP diet models to those with a significant (BH-adjusted P ,
0.05) allele-diet interaction, which represented 67 eQTL. We
determined the effect of diet by calculating the percent dif-
ference in the founder allele effects of the HFCA-fed mice
compared to the reference, HP-fed mice (Table S13). We
summed the absolute value of the change across all of the
founders for each gene and highlight the top 20 in Figure 9A
and provide an example (Figure 9, C and D). The cis-acting
mRNA corresponding to Zinc Finger Protein 982 (ZFr982)
demonstrates a distinct response to diet; in the HP diet, the
eQTL is driven by A/J, whereas in the HFCA diet, the same
eQTL is driven by C57BL/6J (Figure 9, C and D).

Table 5 Fisher’s exact test reveals that mRNA are less likely to
have an eQTL when they correspond to a differentially expressed
gene (odds ratio 0.79, 95% CI 0.73–0.87, P < 0.001)

Differential expression

mRNA

Yes No eQTL

eQTL Yes 3541 1253 42%
No 5133 1450 58%

miRNA

Yes No mirQTL
mirQTL Yes 24 9 13%

No 171 42 87%

A stronger but nonsignificant trend is observed with miRNA.

Table 4 Fisher’s exact test reveals that significantly correlated
pairs of miRNA and mRNA are ∼11% less likely to have known
interactions when the mRNA has a significant eQTL (odds ratio
0.889, 95% CI 0.81–0.98, P = 0.02)

Interaction

Yes No

Mapping Yes 588 469,870
No 1340 952,242

Fisher’s exact test did not show significant associations between known interactions
and cis vs. trans mapping, P = 0.15.
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Discussion

GWASshave revolutionizedgenetic studies andexpandedour
understanding of complex trait genetics and genomic variants
associated with disease susceptibility. Numerous studies have
demonstrated that expression traits (eQTL) can be used as
quantitative traits, and integrative studies of eQTL provide
improved candidate selection at GWAS loci (Zhu et al. 2016).
Despite these successes, much remains to be determined in
regard to the genetic architecture. Identification of missing
heritability (Edwards et al. 2013) and gene-by-environment
interactions (Tan et al. 2012) are of particular interest. In the
current study, we reported the global regulation of hepatic
mRNA and miRNA expression using a genetically diverse
population of mice named the DO. Our studies identified
several important results. First, we classified (cis and trans)
the genetic regulation of mRNA and miRNA in DO mice and
proceeded to characterize the eQTL and mirQTL by describ-
ing heritability, phenotypic variance explained, and allelic
contributions. Second, by coupling our correlation and differ-
ential expression analyses, we showed increased correlation

between miRNA-mRNA pairs differentially expressed by diet
and most importantly increased correlation between miRNA-
mRNApairs without an eQTL. Finally, we reported that several
eQTL are driven by different founder alleles as a result of diet.
We discuss each of these in turn.

Classification of genetic architecture of hepatic mRNA
and miRNA

A primary goal of our study was to describe the genetic
architecture of hepaticmRNAandmiRNA expression profiles.
Our initial analysis identified eQTL and mirQTL, using diet as
an additive covariate.We classified these as cis or trans-acting
and used the cis-acting mirQTL and eQTL to estimate reso-
lution. The DO mice have high-resolution mapping as dem-
onstrated by the fact that 95–99% mirQTL and eQTL with
cis-acting variants exert their effect within 1 Mb of the phys-
ical position of the mRNA or miRNA.

One of the key strengths of a “systems genetic” approach is
the ability to resolve the genetic architecture of different
scales of data such as mRNA and miRNA expression. In these

Figure 5 Effect size of eQTL is lower in genes and miRNA that are differentially expressed. The allelic effect size is significantly lower (P, 2.223 10216)
in genes that are differentially expressed in both cis- and trans-eQTL. (A) For cis-eQTL, the median variance explained when the transcript is differentially
expressed is 0.186 compared to 0.238 when it is not differentially expressed. (B) For trans-eQTL, the median variance explained when the transcript is
differentially expressed is 0.124 compared to 0.143 when it is not differentially expressed. (C) The allelic effect size is not significantly different in cis or
trans-mirQTL; however, the median of differentially expressed cis-mirQTL is 0.139 compared to 0.169 when not differentially expressed. (D) Similarly,
differentially expressed mirQTL in trans had a smaller median than those not differentially expressed at 0.127 and 0.141, respectively.
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studies, we identified thousands of genes regulated by eQTL
but only dozens of miRNA regulated by mirQTL. The sheer
difference in numbers between these two scales of data are
notable but coincides with previous reports. The lower num-
ber of mirQTL has been previously reported in the Framing-
ham cohort, where 76 miRNAs were regulated by mirQTL
(Huan et al. 2015). We acknowledge that the differences
(or lack of statistically significant differences) reported in
subsequent analyses related to the distributions of eQTL
andmirQTL could reflect themuch smaller number of miRNA
quantitated in the current study.

Our analyses identified differing genetic architecture
affecting mRNA and miRNA but confirmed that cis-acting
variants affecting both mRNA and miRNA explain more
phenotypic variance than trans-acting variants. These results
suggest that miRNA are more likely to be regulated by trans-
acting factors, while mRNA are more likely to be regulated by
cis-acting factors. Over 50% of mirQTL are trans-acting,
whereas ,25% of eQTL are trans-acting. Unlike a recent re-
port of eQTL in yeast, we do not observe that most eQTL are
trans-acting in nature (Albert et al. 2018), but this could be
due to differences in power or model organism of each study.
While the functional consequences of this prominent differ-
ence in genetic architecture of mRNA and miRNA remains
unclear, similar effects have been observed in studies utilizing
CC mice (Rutledge et al. 2015), a genetically related popula-
tion to the DO mice used in this study. Although speculative,
these data from the CC and DO mouse populations suggest
that individual miRNAs on average may be regulated by
fewer transcription factors than individual genes. In such a
scenario, SNPs affecting transcription factor loci would be
expected to have greater effects on miRNA expression than

on mRNA expression, which have multiple transcription fac-
tors regulating their expression.

Identifying the “optimal” definition of cis and trans (or
local and distal) eQTL remains an open question. We note
that we used a liberal definition of 4 Mb to define cis-eQTL,
which reflects the mean confidence interval (�4 Mb) for all
significant eQTL, as determined by the Bayesian credible in-
terval (Materials and Methods). In addition, human GWASs
have observed regions of SNPs that are physically located
�2 Mb apart, in LD and are associated with a complex trait,
such as height (Yang et al. 2012). For these reasons, we chose
to utilize a larger genomic interval (4 Mb) to classify the eQTL.
We mention that using a 1 Mb definition of cis, a similar
window as human GWASs, would classify 923 additional
eQTL, �14%, as trans instead of cis. Importantly, the classi-
fication used here and within many eQTL studies is compu-
tational and not based on functional testing. Recombination
rate and local LD structures will affect any global definition of
cis or trans. Regardless of the classification given to a partic-
ular eQTL, understanding the genetic variant’s contribution
to differences in expression is ultimately the goal, but it is not
yet feasible to test the mode of function or identify the causal
variants for each eQTL.

Much emphasis has been placed on understanding the
missing heritability observed in GWASs. Molecular traits pro-
vide a dense phenotypic space to explore these differences,
and in our current studies, the median heritability of eQTL is
0.295 and mirQTL heritability is 0.18 in the additive model.
The heritability estimates for eQTL are slightly higher than
those recently reported inhumanbloodcells,whichwas0.089
(Lloyd-Jones et al. 2017), and may reflect the relatively
similar environmental variation afforded by studies utilizing

Figure 6 Magnitude of correlation is similar
between miRNA and mRNA with cis, trans,
and no-eQTL and reduced when mRNA are
not differentially expressed. Expression data
were used to generate correlations between
pairs of miRNA (n = 246) and mRNA (n =
24,004) and the results were filtered for
false-discovery-rate-corrected significance
(a # 0.05), resulting in 1,424,040 significant
correlations. miRNA-mRNA pairs were classi-
fied by their eQTL status in the additive
model. A total of 1,055,010 eQTL with tran-
scripts that passed the quality threshold for
the DE analysis were included. (A) Spear-
man’s rho was plotted against the DE status
of the mRNA from the additive genome
model. Median 6 SE for DEG and non-
DEG include 0.245 6 0.0001 and 0.207 6
0.0002, respectively. (B and C) Spearman’s
rho was plotted against the eQTL status of
mRNA (B) that were differentially expressed
by diet and (C) that were not differentially
expressed by diet. For differentially expressed
mRNA with cis, trans, and no-eQTL, the me-

dian 6 SE are 0.238 6 0.0002, 0.245 6 0.0005, and 0.249 6 0.001, respectively. For nondifferentially expressed mRNA with cis, trans, and no-eQTL,
the median 6SE are 0.207 6 0.003, 0.207 6 0.0007, and 0.207 6 0.002, respectively. DEG, Differentially Expresses Gene.
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rodents. Our heritability estimates for mirQTL are quite sim-
ilar to those previously reported in humans, where heritabil-
ity of miRNA ranged between 0.0 and 0.57, with an average
heritability of 0.11 (Huan et al. 2015; Lloyd-Jones et al.
2017). Similar to reports in humans, a subset of both eQTL
and mirQTL in the DO population have heritability at or near
0.0 (Huan et al. 2015). Although the heritability of eQTL and
mirQTLwere similar, results from the additivemodel indicate
that the effect size of eQTL varied considerably between 0.03
and 0.8, while mirQTL were limited to a range of�0.1–0.35.
These differences in effect sizes were also evident when eQTL
and mirQTL were characterized by their type of regulation,
cis- or trans-acting. The phenotypic variance explained by cis-
acting eQTL was 25% higher than trans-acting eQTL, and a
similar trend was observed in mirQTL. Furthermore, these
trends proved to be robust, as cis-acting eQTL explainedmore
variance than their trans-acting counterparts in the diet-
specific analyses.

Studies utilizing the DO population often assign probabil-
ities at eachSNP to theeight founder alleles (Gatti et al.2014).
Three of the founder strains, CAST/EiJ, WSB/EiJ, and PWK/
PhJ, are wild-derived and are more divergent from classical
inbred strains. These strains contain between 900, 1000,
and 5 million private SNPs (Keane et al. 2011), and these
are passed along at relatively equal proportions in the DO

population (Chesler et al. 2016). Thus, the DO population
contains variants that affect complex traits at loci that may
not vary genetically in classical inbred strains (Keane et al.
2011). We hypothesized that variants from these divergent
strains contribute disproportionally to eQTL and mirQTL. To
test this hypothesis, we calculated the allele effects for each
of the founder strains at the peak SNP for each gene or
miRNA. Regardless of the model, the scaled coefficients for
each founder haplotype were significantly higher for CAST/
EiJ and PWK/PhJ alleles at each eQTL, indicating that a
higher proportion of the variation in the expression of these
eQTL and mirQTL are explained by variants from these
strains. Similar effects have recently been reported in the
related CC population (Keele et al. 2020). The authors also
noted both higher magnitude of genetic effects for CAST/EiJ
and PWK/PhJ alleles and relative consistency of haplotype
effects derived from the eight founder strains. The exact
mechanisms underlying these eQTL and the contribution of
specific haplotypes remain to be determined, but are sup-
ported by large-scale resequencing. These efforts have in-
cluded the eight founders of the DO and CC populations
and identified a number of loci that contain novel genes or
novel orthologs and are enriched for proteins associated with
defense and immunity, nucleic acid binding, and transcrip-
tion factors (Lilue et al. 2018). In particular, two of the

Figure 7 Analysis of genome scans from HFCA- and HP-fed mice reveal environmentally driven differences in genetic architecture. (A) Global eQTL
architecture for the HFCA diet model shows numerous, dense trans-bands, in contrast to the (B) HP diet model, which shows notably less colocalization
of trans-eQTL. Both diet models (C and D) show similar precisions from eQTL with probe sets on the same chromosome; resolution of these 3987 eQTL
from HFCA-fed mice and 2273 eQTL from HP-fed mice are estimated to be 0.29 and 2.06 Mb, with 93.81% and 92.32% of cis-eQTL occurring 64 Mb
from their probe sets, respectively. This indicates that structural variants associated with local genetic regulation tend to occur close to the gene itself,
regardless of environmental perturbations. (E and F) A large number of cis-eQTL overlap despite environmental differences, while the lack of overlap in
the trans-eQTL might be indicative of environmental effects.
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founder strains of the DO and CC populations, CAST/EiJ and
PWK/PhJ, contained a number of loci with high sequence
variation, supporting the findings of the current study.

Relationships between hepatic miRNA and mRNA are
greater when diet affects expression

mRNA and miRNA have different genetic architecture, yet
our data suggests similar correlation between mRNA and
miRNA regardless of the underlying cis and trans regulation.
More detailed examination of the effect of diet suggests that
miRNA-mRNA pairs differentially expressed by diet were
generally more correlated than pairs unaffected by diet re-
gardless of the eQTL’s mapping status. These data support
that miRNA-mRNA associations act as an additional regula-
tory mechanism underlying an organism’s response to the
environment. This global perspective does not address direct
interactions between mRNA and miRNA, which are impor-
tant aspects of gene regulation. Approximately half of the
significant correlations we observed were positive; these

scenarios may be indicative of enriched pathways as opposed
to interactions between miRNA and target mRNA, which
would be predicted to have negative correlations. Clearly, a
number of the correlations contained in the global analysis
are indirect and coincidental. When miRNA-mRNA correla-
tions are restricted to interactions validated in miRTarBase,
we observe multiple interactions associated with cardiovas-
cular and metabolic syndromes. For example, miR-34a is
negatively correlated (Spearman’s rho =20.760) with Auto-
phagy Related 9A protein, ATG9a, a gene previously shown to
be involved in cardiomyocyte hypertrophy and regulated
by miR-34a (Huang et al. 2014). miR-34a is also negatively
associated with growth arrest specific 1, GAS1 (Spearman’s
rho = 20.582), a GWAS candidate associated with plasma
triglyceride levels (Rhee et al. 2013). In addition, we observe
that miRNA with a validated miRNA-mRNA interaction are
�11% less likely to be correlated with a mRNAwith an eQTL.
We do acknowledge that we are more likely to detect QTL
with inflated effect size and are unable to recognize every

Figure 8 Comparison of concordant eQTL pairs in mice fed different diets demonstrates similarities despite different environments. Effect size of eQTL
observed in both HFCA and HP diets are significantly correlated in both (A) cis-eQTL (r = 0.59) and (B) trans-eQTL (r = 0.50). Allele effects underlying
concordant eQTL are highly correlated in both (C) cis-eQTL and (D) trans-eQTL despite different diet perturbations. Black dots represent eQTL with a
significant allele-diet interaction (ANOVA, BH-adjusted P , 0.05). Color gradient represents dot density.
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QTL due to power (King and Long 2017); however, the ob-
servation that most miRNA-mRNA associations occur be-
tween miRNA and mRNA without an eQTL suggests that
coordination between the RNA classes occurs most in the
absence of a strong genetic signal. We also note that
miRNA-mRNA regulatory networks are complex and could
involve indirect effects outside of the classically described
direct binding of a miRNA to a 39UTR (Su et al. 2011).

Diet has varying effects on eQTL and mirQTL

There is much interest in determining the missing heritability
observed inGWASs. One possible cause ofmissing heritability
are differences in environmental exposures, which implicitly
vary in large GWAS analysis. More importantly, the effect of
environment in these large genetic studies is heterogenous
within the study population and often difficult if not impos-
sible to accurately quantify. In the current study,wevarieddiet
in siblings and performed the initial analysis with diet as a
covariate. To further understand the role of diet, we com-
pleteddifferential expressionanalysis ofmRNAandmiRNAby
diet. The proportions of differential expression were similar
between RNA classes, with 76% of genes and 79% of miRNA
differentially expressed, suggesting similar responsiveness to
diet. Additionally, mRNA with a significant eQTL were less
likely to be differentially expressed than nonmapping mRNA.
In miRNA the pattern persisted but was not statistically
significant. When we classified eQTL by their differential
expression status, we clearly observed that phenotypic vari-
ance explained was greater in nondifferentially expressed

genes, perhaps indicating a stronger genetic than environ-
mental signal regulating their expression.

Inbred strains are known to vary in their response to diet
(West et al. 1992), and thus it is quite possible that a fraction
of eQTL are influenced by diet. There have been limited in-
vestigations characterizing how diet affects eQTL status. Con-
somic mice have been used to confirm that alleles from AJ
mice are responsible for Xbp1 and Socs3 diet-specific eQTL
(Pasricha et al. 2015). Studies utilizing a different mouse
population, the Hybrid Mouse Diversity Panel, have noted
diet specific eQTL patterns (Parks et al. 2013). In the current
study, we identified eQTL with a significant allele-diet inter-
action by regression analysis. This subset of eQTL represent
genes whose founder alleles differ in response between diets.
We further identified the top 20 genes whose allele effects
most dramatically changed by diet. For instance, we identi-
fied Zfr982, Zinc Finger Protein 982, whose expression is
associated with an A/J allele in the HP diet and a C57BL/
6J allele in the HFCA diet. While the functional consequences
of a gene-by-diet interaction for Zfp982 remains to be deter-
mined, several of the genes with allele by diet interactions are
GWAS hits. For example, variants proximal to Camk2b have
been associated with numerous traits in humans, including
diabetes (Morris et al. 2012). Functional studies in mice have
demonstrated that Camk2b2/2 are susceptible to obesity
(Bachstetter et al. 2014) and that the enzyme Camk2b is
translated into, CaMKII, is involved in the hepatic insulin re-
sistance that occurs with obesity (Ozcan et al. 2013). Fur-
thermore, there is evidence that expression of Camk2b may

Figure 9 Significant genotype by diet interactions on the mRNA expression. (A) The top 20 genes with the greatest percent change of the best linear
unbiased predictors (BLUP) founder allele coefficients for eQTLs with a significant allele-diet interaction in the HFCA diet with respect to the HP diet. (B)
BLUPs coefficient plot of the eight founder mice strains to the Zfp982 eQTL in the HFCA diet and (C) the HP diet. Color represents the eight founder
mice strains as indicated.
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also be under genetic regulation in humans (Frau et al.
2017; https://www.gtexportal.org/home/locusBrowserPage/
ENSG00000058404.19). These results provide evidence that
gene-by-diet interactions affect the mRNA abundance ob-
served in the DO population and may have important impli-
cations for disease-related phenotypes.

Additional work remains to understand the underlying
mechanisms regulating both differential gene expression
and allele-diet interactions. Integration of multiple scales of
sequencing data may provide additional insight. For exam-
ple, assaying chromatin accessibility or methylation patterns
could help understand the specific variants or DNA modifica-
tions by which diet exerts its effects on gene expression.
Recently, both the genetic regulation of gene expression
and chromatin accessibility (assay for transposase-accessible
chromatin using sequencing) was assessed in 47 strains com-
prising the CC mouse panel (Keele et al. 2020). Keele and
colleagues highlight the tissue specificity of eQTL, the under-
lying DNA modifications corresponding to specific eQTL, and
perform mediation analysis to identify potentially causal var-
iation in chromatin accessibility responsible for specific eQTL.
Diet has been shown to affect chromatin structure (Leung
et al. 2014, 2016) and thus provides a plausible connection
between diet-driven DNA modifications and eQTL. Although
not tested in the current study, it is intriguing to speculate
that some of the differential expression and diet-specific
eQTL are due to changes in chromatin structure.

In conclusion, gene expression studies in a segregating
population provide interesting insights into complex genetic
regulation. In addition, assessing these patterns in the context
of diet helps to reveal the relationships between genetics and
the environment. In the current study, we have classified the
genetic regulation and characterized the genetic architecture
of hepatic mRNA and miRNA in a genetically diverse popu-
lation of mice fed different diets. We observed significant
differences in the regulation, effect size, and overall genetic
architectureofmRNAandmiRNA,andnote thevaryingeffects
of diet on these trends. Overall, these key regulatory differ-
ences underscore the necessity for continued investigation
into how the diverse spectrum of RNA classes are regulated,
how they respond to environmental stimuli such as diet, and
how dysregulation may predispose an organism to disease.
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