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Allogeneic CAR Cell Therapy—
More Than a Pipe Dream
Kenneth J. Caldwell , Stephen Gottschalk and Aimee C. Talleur*

Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis,
TN, United States

Adoptive cellular immunotherapy using immune cells expressing chimeric antigen
receptors (CARs) has shown promise, particularly for the treatment of hematological
malignancies. To date, the majority of clinically evaluated CAR cell products have been
derived from autologous immune cells. While this strategy can be effective it also imposes
several constraints regarding logistics. This includes i) availability of center to perform
leukapheresis, ii) necessity for shipment to and from processing centers, and iii) time
requirements for product manufacture and clinical release testing. In addition, previous
cytotoxic therapies can negatively impact the effector function of autologous immune
cells, which may then affect efficacy and/or durability of resultant CAR products. The use
of allogeneic CAR cell products generated using cells from healthy donors has the
potential to overcome many of these limitations, including through generation of “off the
shelf” products. However, allogeneic CAR cell products come with their own challenges,
including potential to induce graft-versus-host-disease, as well as risk of immune-
mediated rejection by the host. Here we will review promises and challenges of
allogeneic CAR immunotherapies, including those being investigated in preclinical
models and/or early phase clinical studies.

Keywords: allogeneic, CAR, cell therapy, immunotherapy, cancer
INTRODUCTION

Adoptive cellular therapy refers to the isolation of immune cells, followed by ex vivo manipulation
and subsequent delivery into patients as a therapeutic intervention. An area of interest is the
exploration of cellular or immunotherapeutic approaches for the treatment of oncologic diseases,
including using chimeric antigen receptors (CARs) (1–3). CARs combine the specificity of an
antibody with signaling domains of effector cells and costimulatory molecules (1–3). When
constitutively expressed on the surface of an immune cell through non-viral or viral transduction,
CARs enable an effector cell to recognize targets in an antigen-specific manner. CARs designed to
target a specific tumor-associated-antigen (TAA) can then be used for anticancer therapy (1–3).

Cell therapywithT cells expressingCARs (CART cells) represent a significant advance in thefield of
cancer immunotherapy and is fueling the development of CAR-based immunotherapies using other
immunecells. Themost successfulCARcell therapyapproach thus far has been the treatment ofpatients
with highly relapsed/refractory CD19-positive hematological malignancies using CD19-CAR T cells
derived from autologous T cells. Across numerous institutions, using a variety of CAR constructs and
manufacturing strategies, CD19-CAR T cell therapy has been extremely efficacious (4, 5). This success
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led to the FDA approval of three such products: tisagenlecleucel
(Kymriah, Novartis), axicabtagene ciloleucel (Yescarta, Kite
Pharmaceuticals), and brexucabtagene autoleucel (Tecartus, Kite
Pharmaceuticals) (6–9). Additionally, autologous CAR T cells have
shown robust anti-tumor activity for hematological malignancies
targeting BCMA, CD20, CD22, and CD30 (10–13).

The autologous (patient-derived) CAR T cell paradigm has also
highlighted the limitations of such therapies, including the
challenges of leukapheresis, manufacturing and efficacy in an
often heavily pre-treated patient population (14). Seeking to
overcome these barriers, allogeneic CAR strategies are actively
being developed. Significant challenges of using allogeneic cells
exist and center upon the inherent immunologic mismatch
between donor and recipient. However, despite these challenges,
allogeneic CAR strategies hold the potential to offer quicker, more
efficacious and more accessible CAR therapies.

In this review, we will discuss a variety of allogeneic CAR cell
therapy platforms that are being developed, including the use of
different immune cells and/or subtypes, as well as gene-editing
techniques (Figure 1). Additionally, we will highlight clinical
experiences with allogeneic CAR cell therapies and on-going
clinical trials to treat malignancies.
THE NEED FOR ALLOGENEIC
CAR THERAPIES

Most CAR cell therapies to date, including the FDA approved
products, are generated using autologous T cells. This has several
important advantages, including infusion of CAR-engineered cell
products without immunologic mismatch between donor and
recipient. However, the use of autologous immune cells also has
clinical and economical disadvantages. Autologous CAR cell
production can be long and complicated. The process includes
navigating the logistics of performing successful leukapheresis for a
patient with relapsed/refractory malignant disease, accessing a
manufacturing/treatment facility, and shipping and manufacturing
Frontiers in Immunology | www.frontiersin.org 2
times that commonly take several weeks. This time delay can be
significant, particularly in a group of patients with aggressive
relapsed/resistant cancers, who are at risk of clinical deterioration
which could preclude proceeding with CAR cell therapy.
Furthermore, generation of a cell product is not guaranteed and for
those whom a product can be successfully generated, a proportion
have limited short- or long-term efficacy. This is likely in part due to
poor autologous immune cell fitness in cancer patients, particularly
following aggressive cancer-directed therapies (15). Earlier
collection of T cells may ameliorate some issues related to
autologous T cell fitness. However, this strategy would only benefit
the subset of patients determined to be at high-risk of needing CAR
therapy early on in their disease process. Lastly, autologous cell
therapy is performed for individual patients and is associated with
significant costs, limitingbroaderapplicationsof this therapy (16, 17).

The use of immune cells fromdonors, or allogeneic cell therapies,
offers many advantages over autologous cells including the potential
to be cost effective, readily available, and provide a higher quality
product (Figure 2). Healthy donor cells confer a more uniform
starting material, allowing for more predictable manufacturing and
performance of generated cell product. Following the single donor to
single recipient model, use of a family member would provide an
easilyaccessibleandhighlymotivatedallogeneicdonor.Furthermore,
allogeneic therapies have the potential to provide a ready to use “off
the shelf” immunotherapeutic, such that a single manufacturing run
would allow dosing for several patients and/or multiple dosing for
individual patients. Likewise, by increasing the scale of production
and creating an inventory or bank of manufactured CAR immune
cells from healthy donors, the cost per patient would decrease while
access to product would increase.
CHALLENGES WITH ALLOGENEIC
THERAPIES

Despite the recognized potential benefits of allogeneic CAR
therapies, they are not without risk and significant challenges
FIGURE 1 | “Off the Shelf” allogeneic cellular therapy production. The production process for an allogeneic cellular therapy starts with collection of peripheral blood
mononuclear cells (PBMCs) via leukapheresis from a health donor. Cells can then be sorted and selected for depending on the desired starting cellular material.
CAR-encoding genes can be either inserted by non-viral or viral transduction or gene editing into immune cells. Additional gene editing can be performed to knock
out genes of interest to mitigate risks such as immunogenicity and/or graft-versus-host-disease. The final product created from a single donor can be expanded,
stored and used to treat multiple patients.
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mustbeovercome inorder to successfully implement this approach.
These challenges stem from the immunologic mismatch between
donor and recipient, and the resultant bidirectional risk to the
cellular product and to the recipient in vivo. If the administered
allogeneic cells recognize and attack healthy recipient tissues, the
cellular therapy may cause unwanted graft-versus-host-disease
(GVHD). Conversely, if the recipient’s immune system
recognizes and reacts against the allogeneic product the cell
therapy may be rejected, limiting the therapeutic effect.
Graft-Versus-Host-Disease
Allogeneic hematopoietic cell transplant (HCT) highlights the
significant risk of GVHD by adoptive transfer of allogeneic T cells
(18). Human leukocyte antigen (HLA) mismatch between donor
and recipient leads to donor immune recognition of, and
subsequent alloreactivity against, recipient tissues (19–21).
Clinically, this is manifested as GVHD. T cells are primarily
responsible for causing acute GVHD, triggering tissue cell death
via FAS ligand, perforin, granzyme and other signaling pathways
(22, 23). The risk of GVHD correlates with increasing donor/
recipient HLA-disparity. Most commonly affecting the skin,
gastrointestinal tract and liver, GVHD carries a significant risk of
post-HCT morbidity and mortality (24, 25). In HCT, the risk of
GVHDmay bemitigated through donor selection, T cell depletion/
selection and/or use of immunosuppressive pharmacologic
therapies (26–30). However, some of these strategies are in direct
oppositionwith thegoalsof allogeneicCARtherapieswhichdepend
onhighly immunocompetent cells. Therefore, decreasing the risk of
GVHD from allogeneic CAR immune cells must balance with the
need to retainhigh levelsof immuneactivity of the effector cell. Such
strategies may include T cell-subset selection or gene editing
approaches, as well as continued exploration of cell products such
as gd T cells, invariant (i)NKT cells, or allogeneic NK cells that do
not induce GVHD.
Frontiers in Immunology | www.frontiersin.org 3
Immunogenicity
Expansion and persistence of CAR immune cells are important to
achieve both short- and long-term efficacy. While desired duration
of persistence may vary based on the malignancy being treated, it
has been shown that prolonged remission of acute leukemia
correlates with duration of persistence of autologous CAR T cells
(31). In the autologous setting, CAR cell longevity can be
compromised through immunological rejection of the CARs
“foreign” proteins. The use of allogeneic immune cells carries
further increased risk of immunogenicity as both the CAR and
effector cells are “foreign.” Acutely, this would result in impaired
short-term responses as cells are rejected before exerting the
intended therapeutic effect. The use of lymphodepleting
chemotherapy prior to infusion of allogeneic CAR cellular
products should mitigate the risk of acute rejection, augmenting
CAR cell persistence (32). However, subsequent recipient immune
reconstitution may result in delayed rejection of the adoptively
transferred cells, providing an opportunity for malignant relapse.
Furthermore, the use of allogeneic cells confers risk of
alloimmunization, where the recipient develops donor-specific
anti-HLA antibodies (DSAs). Alloimmunization is a well-
recognized cause of graft failure and rejection in HCT (33). While
desensitization strategies exist, the development of DSAs may
preclude a patient from proceeding with HCT in the future or
limit re-dosingof the allogeneicCARproduct.Geneticmodification
to remove donor major histocompatibility complex (MHC)
molecules or expansion of donor pools to allow for increased
HLA-matching may mitigate these risks.
ALLOGENEIC CAR STRATEGIES BY
EFFECTOR CELL TYPE

The most widely used CAR platform currently in clinical practice
are CAR T cells. These products are largely manufactured using a
FIGURE 2 | Comparison between autologous and allogeneic cells for use in CAR cell therapies. For details see text.
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batched pool of autologous donor T cells collected via peripheral
blood leukapheresis and the CAR-T product administered
without selection of specific cell types. While this strategy may
work in the autologous setting, to mitigate potential risk of using
allogeneic immune cells strategies using various T cell subgroups
or different immune cell types are being tested in both preclinical
and clinical settings. Here we review strategies being explored to
make allogeneic CAR immune therapy possible, as well as on-
going clinical trials evaluating these strategies (Table 1).

T Cells
T cells are a powerful component of the human immune system,
providing surveillance for, and protection against, foreign antigen.
Antigen recognition occurs via the T cell receptor (TCR), a
heterodimer complex composed of two subunits and located on
the surface of T cells. In a healthy donor, the majority (> 90%) of
circulating T cells have a TCR consisting of an alpha (a) and beta (b)
chain, referred to as anabTcell (34). The remainingT cells contain a
TCR composed of a gamma (g) and delta (d) subunit, gd T cells (35).
Frontiers in Immunology | www.frontiersin.org 4
The interaction between the TCR and antigen triggers a signaling
cascade through the TCR which activates the T cell. ab T cells
recognize foreignornon-self-antigenpresented throughtheMHCon
antigen presenting cells, while gdT cells areMHC-independent (36).
Furthermore, ab T cells can be subdivided based on function (i.e.,
CD4-positive and CD8-positive T cells) and/or degree of
differentiation (i.e., naïve and memory T cells) (37, 38). When a T
cell is transducedwith aCAR, theCARadds an additional receptor to
the T cell without interruption to the native TCR. CAR T cells can
expand and contract in response to antigen stimuli via the CAR,
allowing for robust responses in the setting of active target
recognition, but also potential for memory-surveillance state when
an intended target is not currently present. Below,we reviewdifferent
types of T cells used to generate allogeneic CAR T cells.

T Cells From Prior Allogeneic Transplant Donor
The use of donor lymphocyte infusion (DLI) after allogeneic HCT
is a standard clinical practice. The therapeutic intent of unmodified
DLI centers on the properties of donor T cells, such that they can
TABLE 1 | Selected clinical studies with allogeneic CAR immune cells.

Target Diagnosis Strategy to reduce GVHD and/or rejection Other genetic modification NCT #

T cells
BCMA MM TRAC KO CAR (LV), CD52KO NCT04093596

MM TRAC and B2M KO CAR (knock in) NCT04244656
CD7 T-cell leuk or lymph TRAC KO CAR (*), CD7 KO NCT04264078
CD19 NHL TRAC KO CAR (LV), CD52KO NCT03939026

NHL TRAC KO CAR (LV), CD52KO NCT04416984
B-ALL TRAC KO CAR (LV), CD52KO NCT02808442
ALL * CAR (*) NCT04173988
B-cell leuk or lymph TRAC and B2M KO CAR (LV) NCT03166878
B-cell leuk or lymph TRAC and B2M KO CAR (knock in) NCT04035434
B-cell leuk or lymph * CAR (*) NCT04384393
B-cell leuk or lymph * CAR (*) NCT04264039
Leuk or lymph * CAR (*) NCT04227015
B-ALL or lymph TRAC KO CAR (knock in) NCT03666000
B-cell leuk or lymph * CAR (*) NCT03229876
B-ALL * CAR (*) NCT04166838

CD19/20/22 Leuk or lymph TRAC KO CAR (*) NCT03398967
CD20 Lymph * CAR (*) NCT04176913

B-cell lymph or CLL * CAR (knock in) NCT04030195
CD22 B-ALL TRAC KO CAR (LV), CD52KO NCT04150497
CD70 Leuk or lymph TRAC and B2M KO CAR (knock in) NCT04502446

RCC TRAC and B2M KO CAR (knock in) NCT04438083
CD123 AML TRAC KO CAR (LV) NCT03190278
CS1 MM TRAC KO CAR (LV) NCT04142619**
NKG2DL CRC * CAR (RV) NCT03692429
Mesothelin Mesothelin+ ST TRAC KO CAR, PD1 KO NCT03545815
EBV-specific T cells
CD19 Leuk or lymph Cell product CAR (RV) NCT01430390
CD30 Lymph Cell product CAR (RV) NCT04288726**
gd T cells
NKG2DL ST Cell product CAR (RV) NCT04107142**
iNKT cells
CD19 B-cell leuk or lymph Cell product CAR (RV), IL15 NCT03774654
NK cells
CD19 B-cell leuk or lymph Cell product (cord blood) CAR (RV), IL15 NCT03056339
CD19 B-cell lymph or CLL Cell product (iPSC) CAR, IL15, CD16 NCT04245722
January 2021 | Volume 11
ALL, acute lymphoblastic leukemia; CLL, chronic lymphatic leukemia; CRC, colorectal cancer; NHL, non-Hodgkin lymphoma; MM, multiple myeloma; Leuk, Leukemia; Lymph, lymphoma;
RCC, renal cell carcinoma; ST, solid tumor.
LV, lentivirus; RV, retrovirus; *not disclosed; **not yet recruiting or currently closed for recruitment (as of 10’2020).
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correct mixed donor/recipient chimerism and combat viral
infections (39). However, DLIs are not specific for TAAs and
therefore have minimal anti-cancer benefit, especially outside the
setting of minimal residual disease (39–41). As CAR T cells began
to be explored clinically for the treatment of active disease, an
initial venture into allogeneic CAR T cell products focused on the
post-HCT population using T cells from the HCT donor. Brudno
et al. evaluated the use of allogeneic CD19-directed CAR T cells
derived from an individual patient’s HCT donor to treat patients
with progressive disease after transplant, who had a median donor
chimerism of 100%, demonstrating anti-tumor benefits and safety
of this approach, including no reports of new-onset GVHD (42).
This study exemplified the possibility of increasing the potential for
graft-versus-tumor effect of donor-derived T cells, without
significantly increasing risk of GVHD.

The use of HCT-donor-derived CAR T cells is limited to post-
HCT patients with an available and willing donor, whom are
largely treated at facilities with the capability to manufacture
clinical grade CAR T cell products. Therefore, this method is
innately lacking some of the benefits of an “off the shelf product”
and is not widely accessible. However, several benefits of using an
allogeneic product are retained, including the use of healthy donor
cells, ease of leukapheresis timing and minimal risk of diminished
persistence in vivo due to lack of HLA-mismatch. Additionally, this
approach allows for exploration into the use of CAR T cells in
different disease settings such as prophylaxis post-HCT to reduce
relapse in high-risk populations. Data suggest that this strategy is
feasible without added toxicity and, in addition to providing
leukemic control, may help with control of viral-reactivations
post-HCT via native TCR recognition (43, 44).

Virus-Specific T Cells
The adoptive transfer of allogeneic virus-specific T cells (VSTs)
has emerged as a safe and effective means of providing antiviral
benefit in multiple patient populations (45–48). This has led to
the generation of partially HLA-matched banks comprised of
libraries of “off the shelf,” purified allogeneic VSTs. Importantly,
across numerous clinical studies including in allogeneic HCT
populations, the incidence of GVHD has been very minimal.
Although the complete mechanism is not fully understood,
decreased TCR diversity in VSTs (i.e., memory T cells) is felt
to decrease the risk of alloreactivity (i.e., GVHD).

The safety profile seen using allogeneic VSTs created interest in
the development of an allogeneic platform using CAR-transduced
VSTs.Demonstrating feasibility ofVSTsas effector cells, autologous
CAR transduced VSTs targeting TAAs (CD30 [Hodgkin
lymphoma], HER2 [glioblastoma] and GD2 [neuroblastoma,
osteosarcoma]) have successfully been manufactured and infused
into patients, with encouraging safety and efficacy profiles (49–51).
This strategy has also been explored in the post-HCT patient
population using primarily donor-derived VSTs and thus far
results are promising. In one study, CD19-redirected VSTs were
generated using peripheral blood mononuclear cells (PBMCs)
collected from the HCT donor and then infused into patients
with B-cell malignancy at escalating doses (52). Manufacturing
time for this product was significant, requiring culture for 5 – 6
weeks. Treatment was well tolerated with no GVHD and there was
Frontiers in Immunology | www.frontiersin.org 5
evidence of anti-leukemia activity, as well as retained recognition of
viral stimuli. Similar preliminary results have been reported in an
on-going trial evaluating allogeneic EBV-specific T cells transduced
with aCD19-CAR (NCT01430390) (53).Notably, donor sources in
this trial include the HCT donor or 3rd party donors when the
HCT donor is not available, with recipients of the CAR-transduced
3rd party cells also showing encouraging response rates.

Clinical experience to date with allogeneic CAR-transduced
VSTs has shown intended anti-tumor effects with minimal
GVHD risk. Additional benefit includes the finding that viral-
specificity is retained and can trigger CAR T cell expansion in vivo,
thereby potentially providing on-going, intermittent stimulus and
promoting persistence. A limitation of studies thus far centers on
the fact that data are largely confined to CAR-transduced
VSTs derived from a patients’ HCT donor, thereby drastically
minimizing the challenges of rejection and alloimmunization.
Drawing from clinical experiences with unmodified VSTs from
3rd party banks, persistence of VSTs is typically limited to a few
months (48); therefore, we would hypothesize that the issue of
rejection and limited persistence of CAR-transduced VSTs remains.

Memory T Cells
When devising strategies for allogeneic cellular therapies the use
of memory T cell subsets as effector cells may confer a decreased
risk of GVHD. T cell maturation and differentiation inversely
correlates with alloreactivity, such that memory T cell subsets are
less alloreactive than naïve T cells. Therefore, memory T cells are
less likely to cause GVHD in the HLA-mismatched setting (54).
Functionally it has also been noted that the effectiveness and
persistence of CAR T cells is influenced by the degree of
differentiation of the T cell subsets in autologous CAR T cell
platforms (55–58). While the use of memory T cells to generate
autologous CAR T cells is actively being studied using a variety of
CAR constructs (NCT03389230, NCT02146924, NCT02051257,
NCT03288493), their use in the allogeneic setting has not yet
been evaluated.

T cell subsets can be distinguished through identification of
extracellular surface markers, including CD45RO, CD45RA,
CD62L, CCR7 and CD27 (37, 38). Several studies have
highlighted that generating CAR T cells from central memory
(CD45RO+/CD62L+ or CCR7+) T cells or memory stem cells
(Tscm) T cell populations is associated with improved CAR T-cell
effector function (59–61). Other groups have just focused on
utilizing CD45RA-negative T cells, which includes the central
memory and effector memory T cell subsets, since these subsets
havedecreasedalloreactive potential (62).After showingpromise in
animal models, CD45RA-depletion began to be studied in human
allogeneicHCT.Clinical studies demonstrated that this approach is
feasible andcarriedadecreased riskofGVHD,bothwhenutilized in
primary graft manipulation and post-transplant DLI (63–67).
Building upon this clinical experience, the role of memory T cell
subsets as effector cells in CAR therapy has been studied pre-
clinically. Investigators have shown that CD45RA-negative T cells
expressing either a NKG2DL-specific or CD19-CAR have anti-
cancer effects and decreased in vivo and in vitro alloreactivity (68–
70). Using a similar approach, CD19-CAR-engineered CD27-
negative T cells (effector and terminal effector memory subsets)
January 2021 | Volume 11 | Article 618427
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have also shown promise in preclinical models (71). These data
suggest that the approach of using allogeneic memory T cells as
effector cells in CAR therapy may have merit in the clinical arena;
however, additional studies are needed to define the optimal
memory T cell subset, which should be used as a source to
generate memory CAR T cells with reduced alloreactivity.

Genetically Modified ab T Cells
Several strategies are being explored to improve allogeneic ab T
cells, which are summarized in Figure 3. Gene editing of T cells
to reduce the risk of GVHD and rejection is perhaps the most
promising and widespread approach, particularly for the
development of an “off the shelf” product. Given that GVHD
is driven in large part by TCR recognition of host tissue, gene-
editing approaches focused on the native ab TCR of the effector
cell are under investigation. Many groups have explored
disrupting the T cell receptor constant alpha chain (TRAC) or
beta chain (TRBC). Torikai et al. showed that knocking out the
ab TCR from CD19-CAR T cells did not significantly alter the
cells ability to kill CD19-positive targets (72). This initial report
in 2012 used zinc finger nuclease mediated knockout of TRAC or
TRBC. In recent years, with advancement in gene editing
techniques, numerous groups have demonstrated knockout
of TRAC using transcription activator like effector nucleases
(TALENs) as well as CRISPR/Cas9 (73, 74). Another technique,
targeting the CAR to the TRAC locus, was associated with
improved anti-tumor activity in one preclinical study (74). In
addition to gene-editing approaches, protein-based strategies are
Frontiers in Immunology | www.frontiersin.org 6
being developed to retain the TCR within the Golgi apparatus
using an anti-TCR linked to the KDEL motive (75). While these
techniques have become increasingly efficient, any remaining T
cells that continue to express ab TCR can be removed
magnetically ex vivo using anti- abTCR antibodies. Stenger
et al. showed that TCR knockout of CD19-CAR T cells had
high anti-leukemic functionality in the absence of alloreactivity.
However, the gene-edited CAR T cells did not persist as long in
vivo compared to CAR T cells with endogenous TCR,
demonstrating a possible concern with this technique (76).
Furthermore, modification to the endogenous TCR does not
address the issue of immunogenicity.

To decrease immunogenicity, investigators have targeted b-2
microglobulin (B2M), a component ofHLA class Imolecules that is
present on all T cells (77). As recipient T cell recognition of
allogeneic CAR T cells can occur via interaction of HLA/MHC,
knockout of the B2M gene in CAR T cells may prevent alloantigen
presentation by infused the T cells. This thereby offers another
strategy to limithost recognitionandclearance of infusedallogeneic
CART cells. Ren et al. showed that CART cells including knockout
of B2Mhad reduced alloreactivity in vivo (78). Kagoya et al. showed
that B2M knockout to eliminate HLA class I as well as knockout of
class IImajor histocompatibility complex transactivator (CIITA) to
eliminate HLA class II improved CAR T cells persistence in vitro
(79). Other strategies tomitigate immunogenicity rely on depleting
resident immune cells. Lymphodepleting chemotherapy prior to
cellular infusion by itself should reduce immune-mediated
clearance of CAR T cells, however immune responses to
FIGURE 3 | Strategies to improve allogeneic CAR T cells. (A) Elimination of the ab TCR by knockout of TRAC or retaining TCRs within the Golgi apparatus reduces the
risk of allogeneic T cell recognition of healthy host tissues, thereby decreasing risk of graft-versus-host-disease (GVHD). (B) Elimination of MHC I on allogeneic T cells by
knockout of b-2 microglobulin (B2M) reduces the risk of host T cell recognition and elimination CAR T cells, increasing likelihood of allogeneic CAR T cell persistence.
(C) Knockout of CD52, a T cell marker, allows for the use of CD52 antibody (anti-CD52) for enhanced lymphodepletion of host T cells without affecting infused allogeneic
CAR T cells. (D) Expression of alloimmune defense receptor (ADR) destroys alloreactive host T cells targeting 4-1BB, decreasing the risk of rejection.
January 2021 | Volume 11 | Article 618427
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components of the CAR have been reported (80–82). To increase
immunosuppression post-CAR T cell infusion, investigators have
explored the use of the monoclonal antibody, alemtuzumab, which
targets the pan-lymphocyte antigen CD52 (83). Since the mean
half-life of alemtuzumab is 6.1 days (84), this approach would
require the knockout of CD52 on allogeneic CAR T cells to prevent
their depletion post infusion (85). Since the use of alemtuzumab is
associated with an increased risk of viral reactivation/infection (e.g.
cytomegalovirus, adenovirus) after allogeneic HCT (86, 87), close
monitoring of recipients of alemtuzumab and CAR T cells is
warranted for now since the risk of viral reactivation/infection in
the setting of CAR T cell therapy is currently unknown. Lastly,
active depletion of alloreactive host T cells is being explored
including the expression of so called alloimmune defense
receptors (ADRs) on infused allogeneic T cells that selectively
recognizes 4-1BB, a cell surface receptor that is temporarily
upregulated by activated host T cells (88).

Several clinical trials using gene-edited allogeneic CART cells are
actively enrolling with some early results presented in abstract
format. Many of these products include knockout of both CD52
andTRAC, to address both risk ofGVHDand rejection. Pooled data
from the CALM (NCT 02746952) and PALL (NCT02808442)
studies (cellular product: UCART19) were presented by Allogene
Therapeutics and Servier. UCART19 features an anti-CD19 scFv, as
well as TRAC and CD52 knockout and was first shown to have
clinical activity in two infants with B-ALL who achieved molecular
remission after treatment (89). Data presented included 17 patients
with relapsed/refractory B-ALL treated with a lymphodepleting
regimen including alemtuzamab, 14 of whom had a CR or CRi.
Additionally, UCART19 showed overall an acceptable safety profile
(90). Neelapu et al. presented early results from the ALLO-501 trial
(NCT03939026), which evaluates an allogeneic CAR T cell product
targeting CD19 with knock out of TRAC and CD52, and includes a
novel CD52 antibody for lymphodepletion prior to CAR T cell
infusion. Twenty-two patients had been enrolled, with response seen
in12of 19 evaluablepatients (7 complete responses) (91).Wanget al.
presented the first 5 patients treated with TruUCART GC027, an
allogeneic anti-CD7 CAR T cell product with knock out of TRAC
and CD7 by CRISP/Cas9 gene editing technology to avoid both
GVHD and fratricide. Four of the initial 5 treated patients showed a
complete response with an acceptable safety profile (92).

Gene editing has emerged as the leading strategy being tested
in the clinic as investigators seek to develop an “off the shelf”
allogeneic CAR therapy platform. As gene editing techniques
advance, this method offers great potential to mitigate potential
risks and downsides associated with the use of allogeneic cells. By
increasing the number of genetic edits made to a single cell the
possibilities increase; however, it will take time to thoroughly
investigate the short- and long-term safety of these gene edited
products in patients.

gd T Cells
Animal models show that gd T cells play an important role in
tissue homeostasis and cancer immunosurveillance (93).
Allogeneic gd T cells have been given to patients with cancer
after lymphodepleting chemotherapy and were shown to expand
in vivo without causing GVHD (94). gd T cells recognize cancer
Frontiers in Immunology | www.frontiersin.org 7
through a broad spectrum of receptors, rather than in a single
clonally expanded fashion, which may mitigate tumor escape via
single antigen loss (95). These T cells are also typically abundant
in tissues, which may provide an advantage over ab T cells when
developing therapeutics to treat solid tumors (93). Their ability
to recognize targets in an MHC independent manner confers a
low risk of alloreactivity and GVHD, thereby increasing the
potential of using allogeneic gd T cells in CAR T cell therapies.

Polyclonal gdT cells transduced with a CD19-CAR have been
shown to expand and demonstrated anti-tumor effects in vitro and
in in vivo murine models (96). Capsomidis et al. demonstrated
CAR dependent antigen specific killing in vitro using GD2-CAR gd
T cells (97). Several companies are now moving forward with
clinical trial development using allogeneic CAR-transduced gd T
cells including, Adicet Bio, Cytomed Therapeutics, GammaDelta
Therapeutics and TC BioPharm (98). Furthermore, a clinical trial
evaluating allogeneic CAR gd T cells targeting NKG2DL for the
treatment of solid tumors has been registered on clinicaltrials.gov,
but is not yet recruiting (NCT04107142).

iNKT Cells
Invariant natural killer T (iNKT) cells are a rare subclass of immune
cells that are restricted by CD1d, a glycolipid presenting HLA I like
molecule expressed on B cells, antigen presenting cells and some
epithelial tissues (99–101). Thus, since iNKT express an invariant
TCR, they do not cause GVHD. iNKT cells have been shown to be
decreased in number and defective in cancer patients (102–104).
iNKT cells also protect from GVHD after allogeneic HCT (105–
107). Preclinical studies of iNKT engineered with CARs targeting
CD19 and GD2 have been effective in murine models against
lymphoma and neuroblastoma, respectively (108–110). CAR-
engineered iNKT cells also appear to be safe in humans and are
promising for “off the shelf” use given the lack of GVHD.
Preliminary results from an ongoing trial (NCT03294954) using
autologousGD2-CAR iNKTcellswith co-expressionof IL15 for the
treatment of pediatric patientswith neuroblastomahave shown this
approach to be feasible and safe (111). Clinical experience of
allogeneic CAR iNKT cells is yet to be published so possible
adverse events cannot be predicted, however an ongoing clinical
trial evaluating allogeneic CAR19-iNKT cells for the treatment of
hematological malignancy (NCT03774654) aims to test safety
and efficacy.

NK Cells
NK cells, are of great interest in the treatment of cancer as they
contribute to graft-versus-tumor effect and do not cause GVHD
(112, 113). Endogenous NK cells are part of the innate immune
system and can target cancer cells that downregulate HLA class I
molecules (112). Tumor cells often downregulate their HLA
molecules as an escape mechanism against T cells, making them
susceptible toNK cells (114–116). Clinically, adoptively transferred
non-CAR engineered allogeneic NK cells have shown to be safe in
patientswith cancer (117–120).NKcells are a promising alternative
toT cells forCARengineering given the low risk ofGVHDand their
innate anti-cancer properties. Numerous preclinical studies have
shownCAR engineeredNK cells to be effective against hematologic
malignancy targets (CD19 andCD20), aswell as solid tumor targets
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(WT1 andGD2) (121–126). Notably, Liu et al. published results on
11patientswith lymphoid tumors, treated onan early phase clinical
trial using allogeneic (cord blood derived)NKcells transducedwith
a gene containing a CD19-CAR, IL-15, and an inducible caspase 9
safety switch. In this study, 73% of patients demonstrated anti-
tumor response. Inclusion of IL-15 in the CAR construct may have
contributed to the persistence of the NK cells, which were shown to
expandandpersist for at least 12months.Therewerenomajor toxic
effects of the therapy (127).

Allogeneic NK cells can be prepared form numerous sources,
including peripheral blood mononuclear cells (PBMCs), cord blood,
and pluripotent stem cells (iPSCs) (128). In addition, a NK-cell line,
NK-92, genetically modified to express a CAR, is actively being
explored in early phase clinical testing (NCT03383978) (129).
Current strategies to generate clinical grade NK cells from PBMCs
or cord blood rely on the use of irradiated feeder cells, most
commonly K562 cells genetically modified to express i) 4-1BBL
and membrane-bound (mb) IL15 or ii) mbIL21 and exogenous IL2
(130–132). More recently, exosomes or plasma membrane particles
derived from mbIL21 expressing K562 cells have also been
successfully used for the ex vivo expansion of NK cells (133). iPSCs
present an attractive source for generating NK cells without feeder
cells (134, 135), and an early phase clinical study with unmodified
iPSC-derived NK cells is in progress (NCT03841110). In addition,
iPSC cells can be geneticallymodified and/or gene edited prior toNK
cell differentiation, enabling the provision of an unlimited supply of
modified NK cells (136–138).
DISCUSSION

Autologous CART cell therapy has revolutionized the treatment of
hematological malignancies, highlighting the therapeutic potential
of cellular therapies, as well as opportunities for continued
improvement. Subsequently, the number of CAR therapy trials
has increased dramatically in recent years, exploring new targets,
manufacturing strategies, CAR constructs, patient populations and
effector cells. While many of these trials continue to use autologous
immune cells, the number using allogeneic CAR products are
rapidly increasing. The apparent benefits of allogeneic therapies
have spurred a robust interest indeveloping techniques that counter
the predicted limitations, including exploration of various effector
cell types and gene editing techniques. One hurdle that will
Frontiers in Immunology | www.frontiersin.org 8
definitively need to be addressed is immunogenicity, which
already has emerged as a potential roadblock of autologous CAR
Tcell therapies, especiallywhenno lymphodepletingchemotherapy
is given prior to T cell infusion (139). Thus, recipients of “off the
shelf” cell products might require immune-modulation post cell
infusion to enable their long-term persistence. However, given the
extensive experience with allogeneic HCT and solid organ
transplantation, we believe that immunogenicity will not present
an unsurmountable barrier. While production of “off the shelf”
therapeutic products require increased resources during the
development and manufacturing process, the ultimate goal is to
develop cell products that have a favorable safety and efficacyprofile
and are widely accessible and affordable. However, at present it is
too early to estimate the cost of an allogeneic cell product; this will
depend on the required geneticmodifications, whichmight include
not only viral transduction but also gene-editing. Another driving
factor of cost will be howmany cell doses can be prepared fromone
lot of “off the shelf” cell products since release testing of genetically-
modified cell products is cost intense. Nevertheless, we believe that
continued investment in the optimization of these allogeneic
strategies is warranted based on the current data and that
allogeneic cell products will usher in a new era of cell therapy.
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21. Santos N, Rodrıǵuez-Romanos R, Nieto JB, Buño I, Vallejo C, Jiménez-
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