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Abstract

Background: Genomic islands are associated with microbial adaptations, carrying
genomic signatures different from the host. Some methods perform an overall test
to identify genomic islands based on their local features. However, regions of
different scales will display different genomic features.

Results: We proposed here a novel method “2SigFinder “, the first combined use of
small-scale and large-scale statistical testing for genomic island detection. The
proposed method was tested by genomic island boundary detection and
identification of genomic islands or functional features of real biological data. We
also compared the proposed method with the comparative genomics and
composition-based approaches. The results indicate that the proposed 2SigFinder is
more efficient in identifying genomic islands.

Conclusions: From real biological data, 2SigFinder identified genomic islands from a
single genome and reported robust results across different experiments, without
annotated information of genomes or prior knowledge from other datasets.
2SigHunter identified 25 Pathogenicity, 1 tRNA, 2 Virulence and 2 Repeats from 27
Pathogenicity, 1 tRNA, 2 Virulence and 2 Repeats, and detected 101 Phage and 28
HEG out of 130 Phage and 36 HEGs in S. enterica Typhi CT18, which shows that it is
more efficient in detecting functional features associated with GIs.

Keywords: Genomic island detection, Genomic signature, Small scale test, Large
scale test, Boundary detection

Background
The diversity of bacteria has increased, and can adapt to environmental changes. The

adaptability of these microorganisms is partly due to horizontal gene transfer (HGT).

In 1990, Hacker et al. discovered some viral gene clusters from some Escherichia coli

genomes, but no other closely related species were found, these viral gene clusters

were named Pathogenic Islands (PAIs) [1]. PAIs can be divided into many types,
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including symbiotic islands, metabolic islands, secretory islands, and resistant islands.

Generally, genomic islands (GIs) are used as a standard term to refer to a group of

genes that are 10–200 kb in length after horizontal transfer. The area of horizontal

transfer was originally called the GIs until the gene function was fully determined.

Based on their gene function, a more specific term was provided for their basic use [2].

In the genomic era, the importance of GIs should be taken seriously. With new gen-

omic sequencing technology, we aim to identify genomic regions of other species that

are different from other species or strains. Generally speaking, the more relevant tax-

onomy is a method to identify genomic islands associated with functions [3, 4]. Such

as, the genomic islands are associated with the secretion system, iron absorption func-

tion, secretion of toxins and adhesions, all of which increase the survival rate of patho-

gens in the host [5, 6]. Pathogens can initially regulate the detectability of

chromosomes and exhibit different pathogenic phenotypes [7, 8]. GIs in bacteria induce

many adaptation processes, such as metal resistance, antibiotic resistance, and second-

ary metabolic characteristics, thereby providing environmental and industrial benefits

[9, 10]. Therefore, the identification of GIs in different genomes has been a key factor

in the study of microbial evolution and function.

In large-scale comparative genomics, GIs have characteristics such as different se-

quence composition, direct flanking, migration-related genes, and tRNA genes, which

should be explored and used to identify GIs [4, 11–13]. Genomic islands are scattered

using a system model different from the host. Therefore, their differences can be deter-

mined by comparison with the differences of 16srrna [14]. Some detection algorithms

have been developed: local alignment methods [15], and whole alignment methods

[16]. These methods are based on multiple genomic alignments are inconsistent or

unique, aligned with genomes that may be considered GIs and conservative regions. At

the same time, several methods for constructing and applying multi-layer large-scale

genome comparisons have been reported for complex situations. For example, Mobilo-

meFINDER revealed that tRNA genes are shared across several related genomes.

Mauve searches for genomic islands around homologous tRNA [17]. GI identification

using this method is related to interrupted tRNAs, and genomic islands that do not

have tRNA may be lost. The above question can be solved by MOSAIC, which are used

to determine whether a strain-specific region should be inserted into the tRNA region

[18]. However, we often incorrectly identify inversions and translocations as a strain-

specific region. Another widely used GI prediction method is IslandPick [19]. For a

simple genome, IslandPick can first select the optimal comparative gene without any

prejudice, and then call Mauve for genome-wide comparison construction. IslandPick

avoids duplication with help of rechecking Mauve’s alignment regions [20, 21]. The

above algorithms are based on genomic comparison methods and can therefore be lim-

ited to using annotations or closely related but unavailable genomes. Since there are

many genomes, the genome of the target species should be carefully selected [22].

In addition, some algorithms are also used to detect genomic islands based on the

component of genome sequence. These algorithms can yield high efficiency and must

distinguish anomalous regions from the remaining genomic biases because GI has a dif-

ferent sequence composition from the host. They are useful to quickly identify GIs in a

genome or sequence and do not require additional genomes. Two to nine long oligo-

nucleotide sequences and GC content are often defined as the component of genome
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sequence [11, 23–26]. Such as, abnormal G-C content and codon frequency deviations

are calculated using PAI-Finder to detect GIs, and candidate PAIs are further evaluated

using PAI-Finder to determine whether PAI-like regions partially or completely span

GIs [27]. The PAI database (PAIDB) and PAI Finder are combined on one platform,

where you can download annotated data and prediction information [28, 29].

Hidden Markov Model (HMM) helps to remove or detect abnormal regions contain-

ing component deviations [23, 30–32]. For example, SIGI-HMM has constructed an

HMM model to eliminate ribosome regions with codon usage preferences [30, 31]. In

addition, HMMer can identify the PFAM37 migrating gene map by searching each pre-

dicted gene [12], so IslandPath DIMOB [32] uses HMM to identify migrating gene map

[33]. In contrast, Alien_Hunter improved the prediction of the boundaries of GIs by

introducing a special scoring system based on k-mers variable length and using HMM

models [23]. Although these methods based on Hidden Markov Models are more effi-

cient than other methods in predicting GIs, they require a relatively large amount of

parameter training and a large number of calculations. Therefore, prolonged operations

are necessary to predict one GI.

A sequence is segmented into different regions, and the extraction of constituent

characteristics of the sequence is performed instead of evaluating a set of genes in sev-

eral predictions [34–37]. Measure significant differences between two windows to iden-

tify windows that are different in composition. The centroid method is used to

determine some windows as GIs based on the comparison of windows’ scores [34]. But,

it is limited by host signature estimates based on all windows. As a result, some noise

was observed in the host’s local information. INDeGenIUS finds a cluster of the se-

quences to obtain a “major cluster” and estimates the host’s native signature. In this

way, the previous problems can be solved [35, 36]. However, the measurement of each

oligonucleotide is unnecessary, and some oligonucleotides are considered to be import-

ant indicators of horizontal transfer. Therefore, SigHunt detects the core tetranucleo-

tides based on the related genomes using the tetranucleotide mass fraction instead of

selecting all possible tetranucleotides [37].

Although the above algorithms achieve better performances, there are still some

problems: 1) some methods mainly detect GIs through global testing, and pay attention

to whether the local signature of a region is obviously not the same with the host. But,

these characteristics are directly related to the scale of genomic signatures, for example,

poor local genomic signatures may miss some small details at large scale; in contrast,

small-scale features retain local features, whereas the GI detection is largely affected by

large-scale differences. Therefore, the future developments of GI prediction should use

multi-scale methods to explore the multi-scale genomic signatures; 2) the above algo-

rithms detect some typical regions as possible genomic islands and do not refine the

boundaries. If the predicted boundary of GIs can be further optimized, the effectiveness

and efficiency of the prediction will be improved.

To address these problems, we proposed here a novel method “2SigFinder”, the first

combined use of small-scale and large-scale statistical testing for genomic island detec-

tion. We propose an iterative of a small-scale t-test with large-scale feature selection

techniques for each region of the genome to facilitate quantification of its compos-

itional differences with the host, instead of calculating the distance or discrete interval

cumulative score for each region. We used the higher moments of each tetranucleotide
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and designed an iteration of large-scale statistical testing with dynamic signals from

small-scale feature selection to identify some multi-window segments; in addition, we

split them into optimal distinct segments according to the CG-content bias and detect

the genomic islands. At last, the CG-based segmentation method and the Markovian

Jensen–Shannon divergence are used to optimize the boundaries of genomic islands.

Results
Comparison to the algorithms based on the windows for detecting GIs

We evaluated the effectiveness of our algorithm by detecting GI/non-GIs. Langille et al.

constructed GI analysis data from 675 complete bacterial genomes. All genomes have a

sufficient number of related species or strains, using strict but possibly flexible stan-

dards [19]. They identified some regions stored in all genomes as negative datasets and

built a standard dataset to evaluate the efficient of genomic island detection methods.

The data contains 771 genomic islands, referred to as GI, as well as 3770 non-genomic

island fragments (non-GI), ranging in length from 8 kb to 31 kb. Since these GIs and

non-GIs come from 118 genomes, the genomes of representative species come from

the field of bacteria and archaea.

2SigFinder was used to classify GIs / non-GIs, where the transformed window is 1,

the eye window is 5, the neighborhood size is 10, the long window is 50, 256 core fea-

tures and 4 dynamic features are used, with 10 iterations and 0.05 standard error. Fi-

nally, the 3 kb “raw” genomic islands were used to find the genomic island boundary.

Three published algorithms were also evaluated on the same dataset with default values

[34, 35, 37]. When we used the SigHunt and INDeGenIUS methods, the significance

level 0.05 test was selected to identify genomic islands, where DIAS was calculated

based on all of the tetranucleotides.

The overall accuracy of the 2SigFinder was 85.16%, which achieved the best results,

while the overall accuracy of the other methods was similar, ranging from 80 to 82%

(Table 1). As for accuracy and recall, it is easy to find that the recall rate of 2SigFinder

exceeds 45%, and no other methods. INDeGenIUS got a better precision, but its accur-

acy was lower (19.99%) [35]. The SigHunt’s performance did not meet expectations,

and we infer that it predicts more genomic islands (758), and the average length of the

predicted fragments is smaller (4670 bp) compared with other methods (number: 277–

346, and average length: 13146–22,423 bp). These results indicates that 2SigFinder out-

performs other algorithms in genomic island detection.

Table 1 Comparison of the window-based methods Centroid, INDeGenIUS, SigHunt, and the
proposed 2SigFinder on classification of GIs/non-GI datasets. The precision, recall and overall
accuracy of each method are calculated based on the number of overlapping nucleotides in both
published GIs and predicted GIs

Method Predicted GI At Nucleotide Level (%)

Total Length Total Number Average Length Accuracy Precision Recall

Centroid 5,573,339 320 17,417 82.37 61.35 27.63

INDeGenIUS 3,641,371 277 13,146 82.43 67.94 19.99

SigHunt 5,813,441 758 4670 80.54 51.00 23.95

2SigFinder 7,758,374 346 22,423 85.16 66.59 49.05
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Identification of genomic islands in Pseudomonas aeru-ginosa LESB58

We next evaluated the proposed method 2SigFinder on P. aeruginosa LESB58 genome,

whose genomic islands have been explored widely [38–40]. There are currently 6 prophage

gene clusters and 5 annotated pathogenicity islands in P. aeruginosa LESB58 [38, 41, 42].

We applied 2SigFinder to identify the genomic islands in the P. aeruginosa LESB58 gen-

ome, where transformed window is 4, eye window is 5, neighbourhood size is 4 and long

window size is 100, using 256 core features and 4 dynamic features, with 4 iterations in

IST-LFS and 4 iterations in ILST-DSFS, and 0.05 standard error. At last, 2 kb upstream/

downstream of ‘raw’ genomic islands was used to refine the boundaries of predicted gen-

omic islands. Six algorithms based on the windows and a comparative genomics were also

used to predict the genomic islands with default values [19, 23, 31, 32, 34, 35, 37]. The

level of the same significance test was set to 0.05, and the score results were used

to identify the putative GIs. Figure 1a is the comparison of different detection al-

gorithms on P. aeruginosa. LESB58 [37, 41, 42]. Since Alien_Hunter detected a

large number of hypothetical regions, the predicted GI has the longest length

(Fig. 1b). Note that although Alien_Hunter detected 293 kb in the established

island-encoded 451 kb DNA, but its false positives was large (Fig. 1b). Thus, it gets

the better recall at the expense of its accuracy (Fig. 1c and Tables 2 and 3).

In contrast, comparative genomics IslandPick got better prediction results by detecting

16 genomic islands. In order to further evaluate the predictive ability of GI level, we calcu-

lated the accuracy rate and F1 using the annotated genomic islands with more than 50%

covered by the prediction results. Half of the 5 known genomic islands are predicted by

IslandPick, which lead to high FDR and low F1 score (Fig. 1c and Tables 2 and 3).

Fig. 1 Performance of the proposed 2SigFinder (2SF), SIGI-HMM (SH), Al-ien_Hunter (AH), Centroid (CE),
IslandPath-DIMOB (IPA), INDeGenIUS (IN), SigHunt (SI) and IslandPick (IPI) on the detection of genomic
islands in P. aerugino-sa LESB58. a Predicted GIs found by all of the methods, and the known genomic
islands are shown as vertical grey bars. b Overall length of the predicted genomic islands, true positives
and false positives of all of the evaluated methods at the nucleo-tide level. c Precision, false positive rate
(FPR) and F1-score of all of the evaluated methods at the island level, in which the precision, false positive
rate and F1-score are calculated based on the number of known GIs that are more than 50% covered by
the results of the prediction methods
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2SigFinder predicted 10 genomic islands with large average length (Table 3). We ob-

served that about 50% of the predicted 277,741 nucleotides were found in annotated

genomic islands. It got a large true positive, and its false positive is also low (Fig. 1b).

We then found that half of the 6 annotated genomic islands were predicted by 2SigFin-

der, resulting in the high accuracy and F1 (Fig. 1c and Table 3).

Through a comprehensive study, AlienHunter was found to be sensitive, but it has

high false positive. Some algorithms based on the windows found some genomic

islands, but their sizes are small. Thus, the results indicates that 2SigFinder is more effi-

cient in identifying genomic islands.

Identifying functional features in S. enterica Typhi CT18

Comparative genomics found that genomic island is often accompanied by different in-

sertion sequences, repeat sequences and migratory tRNA genes. These features can bet-

ter discover the function of genomic islands. Therefore, we further studied these

Table 2 Total length, average length and number of genomic islands predicted by 2SigFinder,
SIGI-HMM, Alien_Hunter, Centroid, IslandPath-DIMOB, INDeGenIUS, SigHunt and IslandPick on
detection of genomic islands in P. aeruginosa LESB58, and total number of the overlapping
nucleotides in both known GIs and predicted GIs Data as well as the number of the known GI
with at least 50% covered by results of prediction methods

Method Predicted GI Nucleotides
in both RGIs
and PGIsa

RGIs/PGIsb

(> 50%)Length Number Average length

IslandPick 275,178 16 17,199 209,001 5

IslandPath-DIMOB 95,919 10 9592 59,146 3

Sigi-HMM 110,465 21 5260 83,573 0

Alien Hunter 822,570 71 11,585 292,823 6

Centroid 308,000 14 22,000 121,503 4

INDeGenIUS 160,000 10 16,000 88,473 3

SigHunt 292,029 29 10,070 78,836 2

2SigFinder 571,783 10 57,178 277,741 6
aTotal number of the overlapping nucleotides in both known GIs and predicted GIs Data
bNumber of the known GI with greater than 50% covered by results of prediction methods

Table 3 Precision, false positive rate (FPR) and F1-score of the proposed method 2SigFinder, SIGI-
HMM, Alien_Hunter, Centroid, IslandPath-DIMOB, INDeGenIUS, SigHunt and IslandPick on detection
of genomic islands in P. aeruginosa LESB58, and the precision, false positive rate and F1-score are
calculated based on the number of the known GIs with greater than 50% covered by results of
prediction methods

Method Method Precision FDR F1-score

comparative genomics IslandPick 31.25 68.75 37.04

Sequence

composition

HMM-based

methods

IslandPath-DIMOB 30 70 28.57

Sigi-HMM 0 100 0

Alien Hunter 8.45 91.55 14.63

Window-based

methods

Centroid 28.57 71.43 32

INDeGenIUS 30 70 28.57

SigHunt 6.90 93.10 10

2SigFinder 60 40 57.14
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functional features associated with the real genomic islands and predicted genomic

islands from different prediction methods. We used the annotated genome to search

for some characteristic genes in the genome islands. We looked for genes containing

ribosomal proteins, genes with partner degradation functions, genes associated with en-

ergy metabolism, treated them as highly expressed genes, and counted their total num-

ber within genomic islands [39]. We used REPuter software to find repeated sequence

fragments in genomic islands [40], and downloaded the annotation file from the US

National Center for Biotechnology Information and looked for the insertion sequence

within the genomic islands.

Here, we further analysed S. enterica Typhi CT18 whose genomic islands was anno-

tated [23, 43]. There are currently 17 pathogenicity islands in this sequence [23], and

multiple phage has been found as well as the unidentified island [3, 44], resulted in 21

fragments reliably from foreign origin. All the functional features associated with genu-

ine genomic islands have been summarized in Table 4.

2SigFinder was used to detect genomic islands in this sequence, where transformed

window is equal to 4, eye window size is 5, neighbourhood size is 4 and long window

size is 100, using 256 core features and 4 dynamic features, with 8 iterations in IST-

LFS and 10 iterations in ILST-DSFS, and 0.05 standard error. At last, it used 20 kb

around genomic islands to search the GI’s boundary. Six algorithms based on the win-

dow and a comparative genomics were also used to predict the genomic islands with

default values [19, 23, 31, 32, 34, 35, 37]. As before, we employed the same test with

0.05 level to detect the genome islands. All the functional features associated with the

predicted genomic islands have been summarized in Table 4.

To evaluate the predicted GIs, we calculated their features within the real GIs, more

than 50% of which was covered by the results of the prediction method. For Phage and

HEG, 2SigFinder outperforms the other methods, and it detected 101 Phage and 28

HEG out of 130 Phage and 36 HEGs. As for features associated with GIs, including

Pathogenicity, tRNA, Virulence and Repeats, 2SigHunter and Alien_Hunter achieve the

best performance, where 25 Pathogenicity, 1 tRNA, 2 Virulence and 2 Repeats were

identified from 27 Pathogenicity, 1 tRNA, 2 Virulence and 2 Repeats. For the Integrase,

Table 4 Summary of functional features predicted by 2SigFinder, SIGI-HMM, Alien_Hunter,
Centroid, IslandPath-DIMOB, INDeGenIUS, SigHunt and IslandPick on detection of genomic islands
in S. enterica Typhi CT18, and the functional features were based on the number of the related
genes in the real genomic islands which are covered by more than 50% of the results of the
prediction method

Pathogenicity Integrase Phage tRNA HEG Transposase Virulence Repeats IS

Genuine
GI

27 5 130 1 36 9 2 2 3

Predicted
GIS

IslandPick 0 1 10 0 8 0 0 0 0

IslandPath-
DIMOB

0 2 58 0 10 1 0 0 0

Sigi-HMM 16 0 5 0 6 3 0 0 0

Alien_Hunter 25 4 65 1 23 6 2 2 3

Centroid 4 0 3 1 3 0 2 1 0

INDeGenIUS 5 2 1 1 7 0 2 0 0

SigHunt 0 1 15 0 1 2 0 2 0

2SigFinder 25 3 101 1 28 2 2 2 2
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Transposase and IS features, Alien_Hunter outperforms the other methods. The next

best method is 2SigFinder, whereas the other methods lag behind (Table 4).

PAI is a type of GIs that possesses the genetic elements of pathogens of virulence fac-

tors and affects the horizontal transfer of genes of multiple virulence factors. Ten PAIs

are located in this genome as revealed by PAIDB [28, 29], and more information are

summarised in Table 5. To further evaluate the predicted GIs, we counted the number

of PAIs, more than 50% of which was covered by the results of the prediction method.

Figure 2 indicates that Alien_Hunter achieves the best performance, with 9 out 10 PAIs

were identified. The next best method is 2SigFinder, whereas the other methods lag be-

hind. Moreover, Alien_Hunter performs better in detection of Integrase, Transposase,

IS features and PAI because it predicted a lot of genomic islands, and its false positive

is high (Table 6), indicating that it is of limited practical use. These results show that

2SigFinder is more efficient in detecting functional features associated with GIs.

Discussion
Genome islands refer to a type of gene clusters with horizontal origin in the genome,

which is closely related to the rapid adaptation of the organism, making it have import-

ant values such as medical, economic or environmental. Comparative genomics ana-

lyses 16S rRNAs and other orthologs among different genomes to detect genomic

islands. However, it relies largely on genomic comparison methods and thus can be

limited to the use of annotations or closely related but unavailable genomes. Therefore,

the emergence of research into comparison-free method is apparent and necessary to

overcome critical limitations of comparative genomics.

Table 5 Ten pathogenicity islands reported to be located in S. enterica Typhi CT18, and name, star
position, end position, size and function of these PAIs have been summarized from the
pathogenicity island database (PAIDB)

Name Pathogenicity islands Function

Star End Size(bp)

SPI-1 2,858,736 2,900,586 41,851 Type III secretion system, invasion into epithelial cells,
apoptosis (InvA, OrgA, SptP, SipA, SipB, SipC, SipD,
SopE, prgH)

SPI-2 1,624,920 1,666,524 41,605 Type III secretion system, required for systemic infection
and intracellular pathogenesis by facilitating replication
of intracellular bacteria within membrane-bound
Salmonella-containing vacuoles

SPI-3 3,883,613 3,900,553 16,941 Invasion, survival in monocytes, Mg2+ uptake
(MgtC, B, MarT, MisL)

SPI-4 4,322,993 4,346,383 23,391 Type I secretion system, putative toxin secretion,
apoptosis, required for intracellular survival in
macrophages, genes weakly similar to RTX-like toxins

SPI-5 1,085,068 1,092,563 7496 Effector proteins for SPI-1 and SPI-2 (SopB, SigD, PipB)

SPI-6 302,092 360,757 58,666 safA-D and tcsA-R chaperone-usher fimbrialoperons6

SPI-7 4,409,511 4,543,148 133,638 Vi exopolysaccharide, SopE prophage and a type IVB
pilus operon

SPI-8 3,132,530 3,139,414 6885 Two bacteriocin pseudogenes, genes conferring
immunity to the bacteriocins

SPI-9 2,743,495 2,759,190 15,696 Type I secretory apparatus, large RTX-like protein

SPI-10 4,683,605 4,716,538 32,934 Phage 46 and the sefA-R chaperone-usher fimbrial operon

Kong et al. BMC Bioinformatics          (2020) 21:159 Page 8 of 15



Several algorithms have been proposed and achieve better performances, but there

are still some problems in genomic island detection. 2SigFinder is a genomic island rec-

ognition method based on small-scale and large-scale statistical tests proposed by this

paper. Through a comprehensive study, we found that AlienHunter was found to be

sensitive, but it predicts more genomic islands, and the average length of the predicted

fragments is smaller. Comparative genomics got better prediction results, but the num-

ber of genomic islands is predicted to be less. Some algorithms based on the windows

found some genomic islands, but their sizes are small. 2SigFinder is more efficient in

detecting genomic islands and their functional features. Although 2SigFinder achieved

better performance, it is still not a generic solution to detect all GIs in different organ-

isms. It relies on the observation of different tetranucleotides, thus only limited gen-

omic signatures can be used. Sometimes, the detection of GI by tetranucleotide is not

strong enough, which may lead to false negative prediction. For small genomic islands

and not providing sufficient oligonucleotide patterns from their host genome,

Fig. 2 Overlap percentages between the reported PAI and the predicted genomic islands from Precision,
recall and overall accuracy of SigHunt and INDeGenIUS, in which 0.05–0.2 significance levels are used as
cut-off values to evaluate their performances. All evaluation indexes are calculated at the nucleotide level

Table 6 Overall length of the predicted genomic islands, true positives and false positives of all of
the evaluated methods at the nucleotide level in S. enterica Typhi CT18

Method True positives False positives Overall length of PGIs

IslandPick 106,587 206 106,793

IslandPath 233,096 58,168 291,264

SIGI-HMM 137,308 103,846 241,154

Alien_Hunter 449,085 531,001 980,086

Centroid 68,483 105,517 174,000

INDeGenIUS 61,214 58,786 120,000

SigHunt 102,160 155,840 258,000

2SigFinder 357,218 97,551 454,769

PGI denotes predicted genomic islands
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2SigFinder may also be difficult to detect. Therefore, further research could also be

conducted to determine genomic signatures that are more efficient for genomic island

prediction.

Conclusion
Several methods mainly detect GIs through global testing and pay attention to whether

the local signature of a region is not the same with the host. In this paper, we proposed

a genomic island recognition method based on small-scale and large-scale statistical

tests. The existing methods generally have the predetermined thresholds, and the infor-

mation of each window is limited. In the proposed method, we unique research the

variability of higher moments of each tetranucleotide and designed an iteration of

large-scale statistical testing with dynamic signals from small-scale feature selection to

identify some multi-window segments; in addition, we split them into optimal distinct

segments according to the CG-content bias. After depicting these compositionally dif-

ferent segments, the selection of genomic islands was performed by their IST-LFS

scores. Finally, the CG-based divergence are used to optimize the boundaries of gen-

omic islands. Systematic and quantitative assessment demonstrated that 2SigFinder is

more robust than other existing methods in identifying genomic islands. As for the

functional features associated with the real genomic islands, 2SigFinder is more effi-

cient in inspection of the functions of genomic islands.

Methods
We designed a test-based algorithm to identify GI. The framework is shown in Fig. 3,

and the steps are as follows:

At smaller scales, we used small-scale t-tests to score each window based on the

large-scale selection to evaluate the component differences in each area (Fig. 3a). We

first divided a genome into n windows with 1 kb long and calculated the frequencies f

of the tetranucleotides. For each window, the confidence interval of the mean variance

s2 was estimated as:

s2−zα=2
ss2
N

≤μs2 ≤s2 þ zα=2
ss2
N

ð1Þ

where s2 is the mean value of all windows variances, ss2 is denoted as a variance, α is a

confidence level, and N is the total number of the windows.

In n windows, the kurtosis of each tetranucleotide is defined as follows

ku ¼

X
f i− f
� �4,

nX
f i− f
� �2� �2,

n

ð2Þ

f is the average of a tetranucleotide. If a tetranucleotide has a larger kurtosis, it will

be selected as the information signatures.

Given the ith window, we calculated the two-sample t-test between the host and the

ith window. For each fj of the ith window, we choose its left and right window regions

as a sample ð f i−εþ1
j ;⋯; f ij;⋯; f iþε

j Þ of the signature fj from the ith window. The signa-
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ture fj from the host was represented as ð f t1j ; f t2j ⋯; f tΓj Þ, and tΤ tT is the window num-

ber from the host and Γ denotes the chose signatures. Then, we used the t-test to de-

termine if the average values of the two samples ð f i−εþ1
j ;⋯; f ij;⋯; f iþε

j Þ fji-ε + 1,⋯,fji,

⋯,fji + ε and ð f t1j ; f t2j ⋯; f tΓj Þ fjt1,fjt2,⋯,fjtΓ are equal, and calculated the P-value of in-

formative signature as follows:

P f j
¼ P tj j > f 1j− f

2
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2p
1

2εþ 1
þ 1
tΓ

� �s
0
BBBB@

1
CCCCA ð3Þ

where

s2p ¼
2εs2

f 1j
þ tΓ−1ð Þs2

f 2j

2εþ tΓ−1

Fig. 3 Overview of the 2SigFinder algorithm. a The work-flow of the small-scale t-test with large-scale
feature selection, in which signatures of the host are extracted using the confidence interval of window
variances, and core signatures are selected based on ordered kurtosis. During an iteration, we score each
window using the two-sample t-test and selecte the windows whose scores are large enough to be
considered to be statistically significant. b The workflow of the large-scale statistical test using dynamic
signals from small-scale feature selection. Starting from the higher moments of each tetranucleotide, we
select signatures of the host using the confidence interval of window variances and select dynamic core
signatures using large sliding windows. During an iteration, we score each sliding long window with an
accumulative score and select the windows whose scores are large enough to be consid-ered to be
statistically significant
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f 1j× 1 and f 2j × 1 (s2
f 1j

s12 and s2
f 2j
) denote the average (variances) of the ith region fji-

ε + 1,⋯,fji,⋯,fji + εand the host. Accumulating all the signature p values, the difference

was as follows:

D ¼
XtΓ

j¼1
P f j

ð4Þ

Then we selected some windows with scores large enough to make the data statisti-

cally significant, and delete these selected windows. We updated all windows in the

genome, and then repeated the above steps until no windows were found.

A large-scale statistical test using dynamic signals from small-scale feature selection

On a large scale, we study the variability of the high-order moments of each tetranu-

cleotide and use dynamic signals selected by small-scale features to design iterations of

large-scale statistical tests to identify large, multi-window segments (Fig. 3b).

To assess changes of local signatures surrounding the ith window, we choose 2τ win-

dow surrounding the ith window as its neighbourhood and calculate the normalised

first, second, third and fourth standardized moments of each signature as follows:

NM1
i f it
� � ¼ 1

2τþ 1

Xiþτ

x¼i−τ
f ix ð5Þ

NM2
i f it
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2τþ 1

Xiþτ

x¼i−τ
f ix−NM1

i f it
� �� �2r

ð6Þ

NM3
i f it
� � ¼ 2τþ 1

2τ 2τ−1ð Þ
Xiþτ

x¼i−τ

f ix−NM1
i f it
� �

NM2
i f it
� �

 !3

ð7Þ

NM4
i f it
� � ¼ 2τþ 1ð Þ 2τþ 2ð Þ

2τ� 2τ−1ð Þ 2τ−2ð Þ
Xiþτ

x¼i−τ

fxi−NM1
i f it
� �

NM2
i f it
� �

 !4

−
24τ3

2τ−1ð Þ 2τ−2ð Þ ð8Þ

where NM1
i ð f itÞ, NM2

i ð f itÞ, NM3
i ð f itÞ and NM4

i ð f itÞ are the normalised first, second, third

and fourth standardized moments of the signature f it within the ith window.

We calculated the genomic signatures of the host and estimate the cumulative kernel

distribution function φ for each signature. From the ith window, we use its following δ

continued windows to create the ith large sliding window (LSWi LSWi). We then select

core signatures of these δ continued windows within the ith large windows using or-

dered kurtosis. It is important to highlight here that the core signatures of the large

window will change as the ith window sliding along genome, and thus, we denote this

set of core signatures as dynamic core signatures of this genome.

Count the top θ dynamic core signatures whose values are located outside of their

credibility interval in non-overlapping windows, and sum all count numbers of the δ

continued windows as accumulative score (AS) of the ith large sliding window

AS LSWið Þ ¼
Xδ
i¼1

Xθ
t¼1

f it
� � ð9Þ

Where ð f itÞ is a random indicator function defined as follows:
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f it
� � ¼ 0 fit∈ φ−1

t
α
2

� �
;φ−1

t 1−
α
2

� �� �
1 Otherwise

(
ð10Þ

φt φt is the cumulative kernel distribution function of the dynamic core signature ft,

f it is the value of the dynamic core signature in the ith non-overlapping window, and α

is a confidence level.

Select large sliding windows whose scores are large enough to be considered statisti-

cally significant. Delete the selected large sliding window and update the entire window

of the genome, repeating the steps above until the large sliding window cannot be

found.

Refine the boundaries of predicted GIs

For each multi-window region detected by the above method, we segment it into sev-

eral different fragments based on the GC content deviation, and use the G-C deviation

and Markovian Jensen-Shannon divergence (MJSD) to determine the boundaries of the

predicted GIs. Assume t1 t1 and t2 are the start and end points of a given genomic is-

land S½t1→t2� St1→ t2. We search its boundaries from the expanded region

S½t1−γkb→t2þγkb� St1-γkb→ t2 + γkb. G-C deviation is one of the important sequence fea-

tures, describing the differences between DNA fragments [45, 46]. In order to find the

starting position, the sequence St1-γkb→ t2 is divided into different sub-sequences to

get some points fPCG
S½t1−γkb→t2 �

g . For each point tτ, its MJSD was calculatedStτ→t2 as

follows:

MJSD2 tτð Þ ¼ H2 S t1−γkb→t2½ �
� �

−
tτ−t1−γkbþ 1
t2−t1−γkbþ 1

H2 S t1−γkb→tτ½ �
� �

−
t2−tτ þ 1

t2−t1−γkbþ 1
H2 S tτ→t2½ �
� � ð11Þ

where H2St1-γkb→ tτ and H2Stτ→ t2are the entropies of the S½t1−γkb→tτ � and S½tτ→t2�
respectively, H2St1-γkb→ t2 is the entropy of St1-γkb→ t2.
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