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ABSTRACT

Motivation: Some first order methods for protein sequence analysis
inherently treat each position as independent. We develop a
general framework for introducing longer range interactions. We
then demonstrate the power of our approach by applying it to
secondary structure prediction; under the independence assumption,
sequences produced by existing methods can produce features that
are not protein like, an extreme example being a helix of length 1.
Our goal was to make the predictions from state of the art methods
more realistic, without loss of performance by other measures.
Results: Our framework for longer range interactions is described
as a k-mer order model. We succeeded in applying our model to
the specific problem of secondary structure prediction, to be used
as an additional layer on top of existing methods. We achieved our
goal of making the predictions more realistic and protein like, and
remarkably this also improved the overall performance. We improve
the Segment OVerlap (SOV) score by 1.8%, but more importantly
we radically improve the probability of the real sequence given a
prediction from an average of 0.271 per residue to 0.385. Crucially,
this improvement is obtained using no additional information.
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1 INTRODUCTION
The prediction of secondary structure remains very important in
the field of protein biology, even if the methods have matured and
development of the algorithms is a far less active area than a decade
ago. One of the reasons for this decline in activity is that most
of the competing methods have converged on a similar level of
performance beyond which they have been unable to improve, and
possibly because the level of performance that they achieve is, by
bioinformatics standards, exceptionally good. This is reflected in the
fact that the Critical Assessment of Techniques for Protein Structure
Prediction (CASP; Moult et al., 1995) competition for protein
structure prediction ceased to assess this as an official category
some years ago, as has the EVA (Koh et al., 2003) continuous
benchmarking project. Accurate prediction of secondary structure
elements from an amino acid sequence remains very useful to
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biologists in its own right, but it is worth pointing out that it is
also an essential component of tertiary structure prediction, which,
in contrast, is far from solved and continues to be a highly active
area of research. In addition, sequence comparison methods have
more recently incorporated local structure tracks (such as secondary
structure or burial). The extra information utilized by the new
methods has led to considerable improvements in fold recognition
and alignment accuracy.

There are many different methods for secondary structure
prediction (e.g. Cuff et al., 1998; Jones, 1999; Katzman et al., 2008;
Ouali and King, 2000; Pollastri and McLysaght, 2005; Rost, 1996),
all using neural networks. Analysis of the results of the last CASP
competition to include secondary structure (Aloy et al., 2003) gives
a good indication of the state of the art, and the range of methods
available; for this work we chose to use PREDICT-2ND (Katzman
et al., 2008), which is named as one of the three leading original
methods. Despite secondary structure prediction methods being able
to correctly assign either helix, strand or loop to roughly 80% of the
individual positions in a protein sequence, the overall prediction is
not protein like.

For example these methods are capable of predicting a helix of
a single amino acid in length (although consequently most have
implemented an ad hoc filter to remove them). What we aim to
achieve in this article is to create a model which makes the overall
predictions of existing methods more realistic and protein like
without loss of performance as measured on a per-residue basis.
It is possible that in doing this we may improve prediction accuracy,
even if it is not our original goal.

The idea of implicitly using more than one amino acid has been
around for some time (Nagano, 1973; Chou and Fasman, 1978),
but many protein sequence comparison methods, when making a
prediction, implicitly treat positions in a protein sequence with some
level of independence. Even in cases where a sliding window is
used, predictions are dependent on the neighbouring amino acids,
but not usually directly on neighbouring predictions. While an
independence assumption is an acceptable approximation when
comparing individual amino acid sequences, it fails dramatically
for many local structure alphabets. To give a specific example,
when a position in a sequence is an α-helix, the adjacent positions
are highly likely (∼90% chance) to also be α-helical. In fact, we
have observed three broad types of correlations that violate the
independence assumption:

(1) Short range: if H stands for a helix and A for an anti-parallel
strand, there are three times more occurrences of HH, 14
times more occurrences of AA, but at least 10 000 times fewer
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occurrences of HA and AH than one would expect based on the
frequencies of H and A under the independence assumption.

(2) Medium range: the lengths of helices, strands and loops
form well-defined distributions with exponential tails. The
points at which exponential decay sets in are different for
each structural type, and so are the decay constants. Further,
adjacent secondary structure elements are frequently of a
comparable physical length; for example, we found that a
strand of length 4 is followed by another strand of length 4
twice as often as it is followed by a strand of length 5, even
though both lengths occur with roughly the same frequency.

(3) Long range: if a residue lies within a parallel strand, a strand
residue 100 residues away is roughly six times more likely to
also be in a parallel strand than if the first position were an
anti-parallel strand.

As detailed below, in this article, we concentrate in this first instance
on using the first of these three correlations to our advantage, partly
because they are amenable to exact analysis to verify the results.
We have, however, ensured that in formulating our approach we
developed a model general enough to be applied to the other two,
and in principle other higher order sequence information at medium
and long range. Please see Section 4 for more detail.

More specifically the problem we have chosen as a starting point is
that of sampling from a profile of secondary structure sequences, e.g.
one generated by neural networks for structure prediction. We can
measure from real sequences how often we observe each individual
amino acid (1mer), each possible pair (2mer) or every combination
of up to k amino acids (k-mer). Our goal is to change sequence
probabilities to reward k-mers that are typically under-predicted
compared with real sequences, and penalize k-mers that are over-
predicted, so that sequences sampled from the modified system look
protein like across k amino acids.

Here, we present a conditional random field (CRF; Lafferty et al.,
2001) model as a solution to the problem. CRFs have previously
been used in bioinformatics (Do et al., 2006; Liu et al., 2004;
Sato and Sakakibara, 2005) and may be gaining popularity. Protein
amino acid sequences have traditionally been handled with hidden
Markov models (HMMs; Madera and Gough, 2002), but except for
HMMSTR (Bystroff et al., 2000) and a more recent attempt by
Krogh (Won et al., 2007), they have not made much of an impact in
secondary structure prediction. This is because traditional first-order
HMMs cannot handle very well the sorts of overlapping long-range
features that are necessary for a good model of local structure. CRFs
are an appropriate response to precisely this shortcoming of HMMs.

2 METHODS

2.1 A k-mer model of correlated sequences
As a preparation for our full model, we start with a reformulation of a simple
Markov chain of order n−1 in terms of log-odds scores. This formulation
will play a key role in the full model.

Let a sequence y of length L be denoted y1...L , and a subsequence of y
be denoted ym...n. Let us now suppose that sequences in some large training
dataset T can be modelled as Markov chains of order n−1, i.e. that

P(y)=P(y1...n−1)P(yn|y1...n−1)P(yn+1|y2...n)...P(yL |yL−n+1...L−1). (1)

We can express the individual probabilities in (1) in terms of the
distribution of k-mers in T . Let us denote the relative frequency of a k-mer

a in T by Tk(a), where for each value of k the relative frequencies of all
k-mers sum to one. The probability of the initial (n−1)-mer is then simply

P(y1...n−1|T ) = Tn−1(y1...n−1), (2)

and the transition probabilities are

P(ym|ym−n+1...m−1,T )= Tn(ym−n+1...m)

Tn−1(ym−n+1...m−1)
. (3)

Substituting (2) and (3) into (1) gives P(y) in terms of the distribution of
k-mers T , so we shall henceforth denote it by P(y|T ).

We have noticed that P(y|T ) can also be expressed in the following
alternative form:

lnP(y|T )=S·F(y), (4)

where F is a feature vector of k-mer counts and S are the corresponding
k-mer scores, defined as follows:

S1(a1|T ) = lnT1(a1) (5)

S2(a1...2|T ) = ln
T2(a1...2)

T1(a1)T1(a2)
(6)

S3(a1...3|T ) = ln
T3(a1...3)

T2(a1...2)T2(a2...3)
T1(a2)

, (7)

and so on up to n-mers. An important aspect of this formulation is that
Equations (6) and (7) can be understood as log-odds scores, in the following
sense. For k >1, the denominator is in fact the frequency of the k-mer under
a (k−1)-mer model, so

Sk(a1...k |T )= ln
Tk

(
a1...k

)

P(a1...k |Tk−1)
. (8)

In other words, the score is the log-ratio of the observed frequency of a
given k-mer to its expected frequency under a (k−1)-mer model.

2.2 Correcting profile emissions with a k-mer model
We apply the formulation in the previous subsection to the problem of
generating realistic emissions from secondary structure profiles. Our goal
here is to down-weight sequences with k-mers that are frequently produced
in profile samples but occur rarely in real sequences, and conversely to
up-weight k-mers that are sampled less frequently than they occur in real
sequences.

We define a profile X as a sequence of L probability vectors X1...XL ,
where P(a|Xl) gives the probability of observing the letter a at position l of
a sequence emitted from the profile. The total probability for a sequence y
to be emitted from the profile is then

P(y|X)=
L∏

l=1

P
(
yl|Xl

)
. (9)

Our approach is to modify this emission probability by introducing a joint
profile + k-mer model M,

P(y|M)= 1

Z(X,R)
exp

{
lnP(y|X)+R ·F(y)

}
, (10)

where
Z(X,R)=

∑
y′

exp
{

lnP(y′|X)+R ·F(y′)
}

(11)

is the normalization factor (also called the partition function) and R is a set
of k-mer scores. The challenge is to come up with scores that would make
the distribution of k-mers in sequences sampled from the joint model M as
close as possible to the training distribution T .

We have discovered that the following simple iterative procedure
converges on the right answer:

R(0)
k (a) = 0 (12)

R(i)
k (a) = R(i−1)

k (a)+Sk(a|T )−Sk(a|B(i−1)). (13)

Here, we use the superscript (i) to denote variables pertaining to iteration
i of the model, and B(i−1) is the distribution of k-mers observed in a large
set of sequences B(i−1) sampled from iteration i−1 of the model.
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The Sk scores in (13) are undefined when a is absent from T or B(i−1). We
deal with this in one of the following two ways: (i) When a is absent from
both sequence sets, we simply set R(i)

k (a) to R(i−1)
k (a). (ii) When a is absent

from one set but not the other (without loss of generality, let us assume that
it is absent from T but present in B(i−1)), we reset Tk(a) to satisfy

Sk(a|T )−Sk(a|B(i−1)) = 0. (14)

If the new value of Tk(a) is greater than a cut-off value corresponding to
an absolute frequency of 0.5 in the sequence set T , we further reset it to the
cut-off value. We do not renormalize Tk .

In simple terms, the motivation behind the regularization scheme is to
leave R(i)

k (a) unchanged as much as possible, unless the absence of a from T
is too stark and demands an adjustment. We have tried traditional approaches
such as simple pseudocounts, or pseudocounts based on expectations
from (k−1)-mer models, but found that the present algorithm performs
considerably better.

We assess convergence of B(i) towards T using the Kullback–Leibler
relative entropy,

D(i)
k =

∑
a1...k

Tk(a)log2
Tk(a)

B(i)
k (a)

. (15)

In cases where a is missing from one or both sequence sets we follow
a procedure similar to the one described above: (i) when a is absent from
both sets, the T log T

B score is taken to be zero and both Tk(a) and B(i)
k (a)

are kept at zero. (ii) When a is absent from one set but not the other, we
use (14) to reset the zero frequency, subject to the same cut-off as above.
Once a decision has been reached on all zero frequencies, both Tk and B(i)

k
are renormalized.

2.3 Exact inference for short k-mer models
For short k-mers we can perform exact inference in our model (10)
using standard dynamic programming algorithms (Durbin et al., 1998). For
example, we can use the Viterbi algorithm to calculate the most likely
sequence,

ŷVit = argmax
y

P(y|M), (16)

or the forward–backward algorithm to perform posterior decoding (also
known as marginalization), which for each position i computes the letter
ŷpost

i most likely observed at that position,

ŷpost
i = argmax

yi

∑
y1...i−1

∑
yi+1...L

P(y|M). (17)

We can also use forward–backward to calculate the partition function
Z(X,R) from (11).

However, these exact algorithms require keeping track of all possible
‘sticky ends’ of length n−1. The memory requirements for doing so become
prohibitive even for moderately large n, so we need to turn to sampling.

2.4 MCMC sampling from k-mer models
We used the Metropolis algorithm (Metropolis et al., 1953), which is the
oldest and best known Markov Chain Monte Carlo (MCMC) sampling
method though not necessarily the most efficient. Using our joint model
(10), for each profile we carried out 30 runs of 1000 mutations per position,
retaining only the last sequence from each run and discarding all other
sequences as burn-in. Note that we do not need to know Z for sampling,
because it cancels out in the Metropolis probability ratio. In retrospect we
are aware that the sampling could be done better. An improvement would be
made at no additional cost by doing a smaller number of longer sampling
runs, and keeping significantly more samples from each run. Also, Gibbs
sampling would be more efficient than the Metropolis algorithm (Casella
and George, 1992).

The computational complexity of the exact posterior calculation will not
scale well to long-range models. However, we do not have to calculate

Fig. 1. TheSTR2 alphabet. This 13-state alphabet usesDSSP hydrogen bond
definitions and is defined strictly from DSSP output. The main difference is
that STR2 subdivides the DSSP class E (β-sheet) into seven classes: A M P,
anti-parallel, mixed or parallel β-strand, hydrogen bonded to two partners;
Y Z, anti-parallel edge strand residue, bonded and non-bonded, respectively;
Q, parallel edge strand, both bonded and non-bonded residues; and E, all other
β-sheet residues, typically β-bulges. STR2 groups together DSSP classes H
(α-helix) and I (π-helix) into a single STR2 class H. The remaining five
classes are identical to DSSP: G, 310 helix; T, turn; S, bend; C, coil; and B,
β-bridge.

the posterior decoding described above to get a good approximation of
ŷpost . Instead, we can calculate an estimate y†

d of the posterior decoding
by analysing a set of d samples drawn from the distribution P(y|M). In this

case,
(

y†
d

)
i

is simply the classification most frequently observed at position

i across the sample set. As d tends to infinity, y†
d becomes equivalent to ŷpost .

2.5 The STR2 alphabet
The UCSC STR alphabet, described in Figure 1, is an enhancement of the
DSSP alphabet (Kabsch and Sander, 1983) that was conceived as a response
to the observation that parallel and anti-parallel strands exhibit different
hydrophobicity patterns. This implies that it should be possible to distinguish
between them when predicting secondary structure from sequence (Karchin
et al., 2003). Possibly for this reason, it has been the most successful alphabet
at UCSC in protein alignment and fold recognition tests.

2.6 Training and test datasets
The training and test data used to generate and assess the performance
of the neural networks providing our k-mer model with profiles, and the
k-mer model itself, were drawn from a set of 1763 protein chains known
as dunbrack-30pc-1763, created by Katzman et al. (2008). The set is based
upon output from Dunbrack’s PISCES server (Wang and Dunbrack, 2003)
containing 1875 chains with a maximum sequence identity of 30%, of which
112 were removed; 77 because their chain lengths were less than 50, 26
because the chains were non-globular and 9 because the chains exhibited
very bad clashes as determined by the UNDERTAKER (Karplus, 2009) clash
detector.

Katzman et al. used 3-fold cross-validation on their dataset to test their
neural networks, randomly splitting it into three subsets of 588, 588 and 587
chains and training each one of three networks on two of the subsets while
testing on the remaining one. We cross-validated correspondingly using the
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same three training and test subsets to produce three k-mer models, and the
scores we report are averages over these three sets.

2.6.1 Neural network inputs and training protocol For each chain in the
dataset, we generated two local structure profiles using the PREDICT-2ND
neural networks (Katzman et al., 2008): one using an alignment consisting
solely of a guide sequence, describing the amino acid at each position of the
target sequence, and one from the alignment generated by SAM-T06 seeded
with the guide sequence; we refer to these as single-sequence and alignment
inputs to the k-mer model, respectively.

The PREDICT-2ND neural networks feeding predictions to the k-mer
models are four-layered (others use two layers) feed-forward networks taking
as input a sliding window of 27 residues worth of multiple alignment
profile information (i.e. for residues i−13...i+13) centred around the
residue for which a secondary structure classification is required; a single
output is returned, consisting of 13 STR2 classification probabilities for
the given residue (i), one for each letter in the alphabet. The networks
and the software with which they may be utilized are available at
http://www.soe.ucsc.edu/~karplus/predict-2nd/ and the SAM-T08 (Karplus,
2009) web site.

3 RESULTS
Overview: In Figure 2, we can see an example of the improvement
typically obtained by using the k-mer model to produce secondary
structure predictions over sampling directly from the columns of
the profile. The rows generated directly from the profile frequently
include unrealistic features, such as helices or beta strands of only
one or two residues in length, and the major secondary structure
elements are often fragmented. The k-mer model can only improve
on the profile it is given. For example, in Figure 2, the first strand
of the sequence within the profile is evidently incorrect (at the
very top) with respect to the true STR2 sequence (at the very
bottom). In this case the k-mer model has no hope of correcting
the prediction because it only has available prior information on
secondary structure in general, not specific knowledge of the protein
in question.

Tables 1 and 2 compare the performances (using several different
measures) of the secondary structure prediction under various
decodings of our k-mer model for the given profile, versus the
original profile-only performance (classification based on maximal
probability at each residue position). A profile can be generated by
the neural network from a single sequence, or it can take as input a
multiple sequence alignment. The results are shown for both single
sequence and alignment inputs. The measures presented in the table
are computed as the average over all predictions in the test dataset,
and are normalized for sequence length.

We observe that while achieving the goal of making the predicted
secondary structure more realistic, the k-mer model (sampled
decoding): suffers no significant loss of accuracy as assessed by the
Q3 and Q13 measures; improves somewhat the accuracy according
to the Segment OVerlap (SOV) measure; and dramatically improves
the chance of predicting the real secondary structure sequence.
Unsurprisingly the results are all consistently better when using
profiles derived from multiple sequence alignments rather than a
single sequence. The sampled posterior decoding performs better
than the exact posterior, which in turn performs better than the
Viterbi.
Key performance measures: The first column in Table 1 (SOV)
is the primary key performance measure employed within CASP
(Moult et al., 1995). SOV in its current form was defined

Fig. 2. Improvement due to k-mer model. (A) The improvements can be seen
by comparing the two blocks of secondary structure sequences: above are
the results from sampling columns independently and below are results from
correlated sampling using the k-mer model (10). The STR2 profile is shown
graphically above the alignments, and the true secondary structure is shown
at the bottom, and in (B) which has the same colouring scheme showing the
elements on the PDB structure (1aba). N.B. The quality of individual rows
is important, not the alignment.

by Zemla et al. (1999) and is a segment-oriented definition of
prediction accuracy measured as a percentage (calculated on the 3-
letter alphabet). Also used in CASP is Q3 (Rost and Sander, 1993),
which is simpler per-residue measure of percentage prediction
accuracy for the standard 3-letter EHL secondary structure alphabet.
We generalize the definition of Q to the STR2 alphabet to produce
the third column, Q13, where 13 the size of the STR2 alphabet.

Historically, Q3 has been an important measure of secondary
prediction accuracy and so is included for reference, although
evidently predicting true sequences under the 13-letter STR2
alphabet is a far more difficult problem. To calculate Q3,
we translated sequences from their 13-state representation to
the EHL alphabet using the mapping: CST → L, HG → H,
AYZMPQBE → E.
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Table 1. The accuracy of predictions as measured by standard performance
measures: SOV on 3-states, Q3, Q13

SOV (%) Q3 (%) Q13 (%)

Alignment Profile only 81.2 ± 0.2 77.3 ± 0.2 55.8 ± 0.3
Exact Viterbi 79.3 ± 0.2 75.3 ± 0.2 53.4 ± 0.3
Exact post. 80.5 ± 0.2 76.2 ± 0.2 54.2 ± 0.3
Sampled post. 83.0 ± 0.2 77.4 ± 0.2 55.2 ± 0.3

Single Profile only 71.3 ± 0.2 65.8 ± 0.2 45.3 ± 0.3
sequence Exact Viterbi 72.4 ± 0.2 64.5 ± 0.2 43.1 ± 0.3

Exact post. 73.8 ± 0.2 65.4 ± 0.2 43.3 ± 0.2
Sampled post. 75.3 ± 0.2 66.3 ± 0.2 44.2 ± 0.2

The highest accuracy in each column is shown in bold, and the standard error of the
mean is shown after each number.

Table 2. Quality of predictions

P(real seq|X) P(real seq|M)

Alignment 0.271 0.385
Single sequence 0.189 0.325

X is the profile and M is the joint profile + k-mer model. The probabilities are reported
per residue; that is, the quantity shown is [∏P(y)]1/L , where the product is over all real
sequences y in the test set and L is the sum of their lengths.

It can be seen that posterior sampling from our k-mer model on
alignment inputs produces a superior SOV accuracy score to all other
input types and decoding methods (83%), and that performance
is not significantly different for the Q3 measure (77.4%). SOV
and Q3 results are, respectively, 1.8% and 0.1% better than those
produced directly from a profile, and this rises to 4% and 1.5% when
using single sequence rather than alignment inputs. The harder Q13
measure actually shows a small decrease in performance (55.8 to
55.2% and 45.3 to 44.2% for alignment and single-sequence inputs,
respectively).

The difference observed between the sampled and exact posterior
is due to undersampling; if you sample sufficiently this difference
goes away. Furthermore, if we did the training on the exact posterior
instead of the sampled posterior, we would expect the difference to
reverse, with the exact posterior improving on the current sampled
posterior (although perhaps not noticeably).
Confidence scores: the key performance measures above are
commonly used in the field but fail to measure a crucial aspect of the
prediction: almost as valuable as the predicted secondary structure
states, for practical applications, is knowing the confidence of the
predictions. A good way of measuring the overall prediction quality,
taking into account the accuracy of the confidence at each position,
is to calculate the probability of emitting the correct sequence.

Table 2 reports the probabilities per residue of observing the
real sequence being emitted from the profile and from the joint
profile + k-mer model, respectively. It can be seen that, for both
single-sequence and alignment inputs, the odds of observing the real
sequence increase dramatically in the joint model. This improvement
is substantial and represents a major new contribution of this work. It
is therefore worth examining in more detail and we do so in Figure 3,
which shows sampling from the model using the same profile that
we show in the example in Figure 2. Sampling sequences from

Fig. 3. Distribution of scores for samples from profile and corresponding
joint model. Each dot represents a sequence. The axes are the two components
of the joint model M. The red cloud (bottom) represents 50 000 samples from
the profile X; the blue cloud (top) represents 50 000 samples from the joint
model M; circle is the real sequence. The profile used is the same as in
Figure 2.

Table 3. The five most encouraged and discouraged k-mers for multiple
alignments

Encouraged k-mers Discouraged k-mers

k-mer Mean score k-mer Mean score

MM 3.4 MA −13.0
EE 3.0 PM −11.7
ZE 2.2 HY −11.4
GG 2.1 GY −11.2
YZ 1.9 TP −11.1

PMS 5.7 CTZ −9.1
HQE 5.1 QEZ −9.0
TMA 4.8 YTC −8.9
YQY 4.7 CTC −8.3
ZQZ 4.1 ZEQ −8.3

YEQY 7.6 CGGC −7.5
HQBB 7.2 CGGS −7.0
QEZM 6.9 CGGT −7.0
QBBQ 6.8 CHHT −6.6
BTQM 6.6 CGGH −6.3

the original profile produces the red cloud. This cloud has largely
negative k-mer scores (vertical axis) highlighting an unprotein-like
characteristic of the sequences. By combining the k-mer model with
the profile, the red sequences are heavily penalized and would no
longer be likely to be sampled. The k-mer model restricts the space
from which sequences can be sampled and what remains is the blue
cloud, which is far more likely to contain the real sequence (circle).
Notable characteristics of the output k-mer distributions Table 3
shows geometric averages over the three training sets for alignment
inputs for some of the most encouraged and discouraged k-mers.
These reflect structural expectations, e.g. the five most discouraged
4mers all feature two-residue helices (none of which is possible
in the real world) and QEZ and ZEQ feature among the
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most discouraged 3mers due to the necessity of maintaining
the parallel/anti-parallel nature of a strand across a beta-bulge.
Other 3mer observations include: all single-residue helices are
discouraged; so are single-residue edge strands; and single-residue
turns except immediately after or right before a helix, and same
for the reverse transitions from parallel or anti-parallel to mixed.
The 4mer observations reinforce some 3mer observations but also
include: 3-turns (characterized by i to i+3 hydrogen bonds) are
unlikely to occur except when adjacent to helices or edge β-strands;
as with β-bulges, strands are more likely to be contiguous than
broken; and double-partner β-strand residues A and P are unlikely to
occur in runs of less than three. The most encouraged 3- and 4mers
are so rare that they are of no importance and most of them are
artefacts, e.g. PM occurs only once in the training set and it happens
to be PMS.

In 3-fold validation of the training, the mean deviation of scores
for the k-mers between sets was relatively low with a value of 0.479,
i.e. on average, scores will not be further than half the mean score
across sets. This indicates that training on each subset resulted in
convergence to similar distributions.
Convergence of the training procedure: for simplicity we will restrict
our discussion to profiles built from alignments, as the behaviour
for profiles built from single sequences is similar. For sequences
sampled straight from the profile, which is the zeroth iteration of
our procedure, the distribution of 1mers is very close to that in
the training set, with the Kullback–Leibler divergence (15) ranging

from D(0)
1 =8×10−5 to 6×10−4 for the three training sets. On

the other hand, the 2- to 4mer distributions are very different and

get progressively worse as k increases, from D(0)
2 ∼4×10−1 to

D(0)
4 ∼1. This is expected behaviour, because the neural network

is essentially trained on 1mer accuracy. After the first iteration,

the 1mers worsen to D(1)
1 ∼1×10−2, but 2- to 4mers improve to

D(1)
2 ∼2×10−2 and D(1)

2 ∼5×10−2. After a total 15 iterations, the
final divergences for models used in the rest of this section are as

follows: D(15)
1 ∼5×10−4, D(15)

2 ∼7×10−4 and D(15)
4 ∼1×10−3.

For comparison, the divergences among the three training sets are
DT−T

1 ∼4×10−4, DT−T
2 ∼8×10−4 and DT−T

4 ∼1×10−2.

4 DISCUSSION OF THE METHOD
The method we present here can be thought of as a graphical model.
The formal structure is that of a dynamic CRF (Lafferty et al., 2001;
Rohanimanesh et al., 2007). Although our model (10) is a CRF,
compared with usual practice in the field there is a major difference,
which is our simple training algorithm (13). The algorithm was
inspired by our reformulation of a Markov chain with memory as
a hierarchical model of k-mers, where the k-mer scores are log-
ratios of the observed frequency relative to the expected frequency
based on the k−1 level of the model. The appearance of log-
odds scores is particularly exciting, because they underlie much
of sequence alignment theory, including statistical assessment of
alignment significance.

The conclusion during recent rounds of CASP for tertiary structure
prediction has been to try many potential alignments and secondary
structure predictions and to defer judgement until a full 3D model
has been built, and to assess that model. In profile–profile alignment
(Madera, 2008; Sadreyev and Grishin, 2003; Soeding, 2005),

likewise, one is not interested in the single best sequence, but rather
in a large number of samples of plausible ones. For this reason
we argue that the P(real seq|M) quality measure is more important
than the SOV, Q3 or Q13 measures, although these remain the most
popular in the field. The P(real seq|M) measure requires confidences
to be assigned to the sequence at each position and rewards for
accurate confidence as well as correct prediction; a best guess is far
less useful without knowledge of which parts to trust. Calculation of
the partition function (11) is not needed for sampling and majority
voting, i.e. for almost any practical application, but we did this for
the purposes of assessing P(real seq|M); for more complex future
incarnations of the model this in turn may need to be handled
using sampling methods (Wang and Landau, 2001). Another issue
affecting future extensions of the model is that sampling is currently
slow. In our simple 4mer model, the most accepted mutations lie on
the ends of helices and sheets, either extending or shortening them
by one residue. Medium- and long-range models are likely to further
slow the sampling process and create lock-ins due to very long-range
repulsive interactions between parallel and anti-parallel sheets, so
approaches which avoid local minima will need to be explored, e.g.
parallel tempering (Earl and Deem, 2005).

To apply our framework to medium- and long-range interactions,
we need a hierarchical model of whole helices, loops, parallel, anti-
parallel and mixed strands. We can sample the distribution of real
secondary structure lengths and correlations between neighbouring
element lengths, giving us k-mer scores on an alphabet of whole
secondary structure elements. We have already solved the correlated
null model (though this is equivalent to Markov model of order
n−1), for STR2 k-mers by sampling realistic sequences from a
profile. This can be used for alignment, the next step being to
generate a pairwise scoring function which would be a mix of the
traditional substitution matrix and our sequence model.

Not many people are using extended secondary structure
alphabets. Clearly the richer alphabets contain more information,
and in many cases, whether profile–profile, or using multi-track
models, the more information the better. It is likely that the reason
more advances have not been seen in homology recognition due
to the addition of secondary structure is that, we are not using the
information correctly.

5 CONCLUSION
We have succeeded in producing a new method, which is an
additional layer on top of existing neural network-based secondary
structure prediction methods meaning that any improvements we
make, de facto, represent an advance on the state of the art. Our
method has succeeded in our goal of sampling more realistic
secondary structure sequences from a profile without loss of
accuracy; in fact, we have surpassed this goal and actually increased
the prediction performance. We have managed to significantly
increase on the SOV scores (+1.8%) and there is no significant
difference in the less sophisticated Q3 scores (+0.1%) which are
the two industry standard measures, e.g. used in CASP. A more
important measure of the quality of predictions, however, is P(real
seq|M), the probability of sampling the correct sequence from
the model; this takes into account the confidence scores for each
position, essential for practical applications using the prediction.
We dramatically improve this probability from 0.271 to 0.385. Using
the K-mer model, we have demonstrated that when K = 4 we can
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gain the above improvements. Strings of length 4 are well inside the
+/− 13 residue window of the neural network, so the improvements
are achieved without using any new information beyond what the
neural networks are already using. There is still great potential for
further improvement in the future by extending this approach in
different ways: most simply with longer k-mers, but also by creating
an alphabet of whole secondary structure elements. Data indicates
that this will especially improve predictions for parallel/anti-parallel
sheets. Although we demonstrated our method on a specific neural
network, k-mer models can be trained to correct the emissions of
any other neural networks for secondary structure prediction. The
work we present here not only improves on secondary structure
prediction, but also our theoretical framework for modelling higher
order interactions in proteins opens up a way forward for the
advancement of protein sequence analysis in general.
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