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For over a century the nervous system of decapod crustaceans has been a workhorse for the
neurobiology community. Many fundamental discoveries including the identification of electrical
and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na+/K+-pump were made
using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for
neurobiological research is the unique access to large, accessible, and identifiable neurons,
and themany distinct and complex behaviors that canbe observed in lab settings.Despite these
advantages, recent decades have seen work on crustaceans hindered by the lack of molecular
and genetic tools required for unveiling the cellular processes contributing to neurophysiology
and behavior. In this perspective paper, we argue that the recently sequencedmarbled crayfish,
Procambarus virginalis, is suited to become a genetic model system for crustacean
neuroscience. P. virginalis are parthenogenetic and produce genetically identical offspring,
suggesting that germline transformation creates transgenic animal strains that are easy to
maintain across generations. Like other decapod crustaceans, marbled crayfish possess large
neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating
neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled
crayfish neurons are accessible through standard physiological and molecular techniques,
including single-cell electrophysiology, gene expression measurements, and RNA-interference.
We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target
genes using the ‘Receptor-mediated ovary transduction of cargo’ (ReMOT) method. Finally, we
consider the impact these approaches will have for neurophysiology research in decapod
crustaceans and more broadly across invertebrates.
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INTRODUCTION

The History
For more than 70 years, the thoroughly studied nervous system of decapod crustaceans has been a
workhorse for a large segment of the neurobiology community. Approximately one hundred
laboratories currently work on the nervous system of decapod crustaceans, on a variety of topics
that range from cellular and synaptic processes to learning, memory, and behavior.
Electrophysiological experiments in the crustacean nervous system have yielded many
fundamental discoveries. These include the discovery of the Na+/K+-pump (Skou, 1957) and
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electrical and inhibitory synapses (Farca Luna et al., 2010;
Jirikowski et al., 2010), and the characterization of
fundamental aspects of synaptic function. Early works on
endplate potentials at the neuromuscular junction (Katz and
Kuffler, 1946; Fatt and Katz, 1953) and on the role of GABA
as an inhibitory transmitter (Bowery and Smart, 2006) were
instrumental in understanding the basics of chemical synaptic
transmission in all animals. The identification of connectivity,
modulators, and transmitter systems in several crustacean species
(Skiebe, 2001; Nusbaum and Beenhakker, 2002; Skiebe, 2003;
Daur et al., 2016; Stein et al., 2016; Stein, 2017) revealed many
principles of neuronal functioning, including lateral inhibition
and the processing of visual stimuli (Hemmi and Tomsic, 2012;
Zieger et al., 2013; van Oosterhout et al., 2014), presynaptic
inhibition of sensory receptors (Soedarini et al., 2012),
neuromodulator actions (Stein, 2009; Nusbaum and Blitz,
2012), coordination of neural circuits (Mulloney and
Smarandache-Wellmann, 2012), network dynamics (Nadim
and Bucher, 2014), the generation of rhythmic motor activity
(Marder, 2000; Nusbaum and Beenhakker, 2002; Selverston et al.,
2009), the control and selection of stereotyped behaviors by
modulatory command neurons (Edwards et al., 1999;
Nusbaum and Beenhakker, 2002; Marder and Bucher, 2007;
Stein, 2009; Harris-Warrick, 2011), and recently the
characterization of degenerate circuits (Marder and Rue, 2021).

Many factors contribute to the enduring usefulness of decapod
crustaceans for the study of neural function and behavior. A
particular advantage is that the principles of neuronal operation
can be studied in circuits that are specialized to specific behaviors and
often built from only a few neurons. A given ganglion, such as the
stomatogastric ganglion, for example, controls multiple behaviors
with its ~30 neurons, including the chewing and subsequent filtering
of food. As such, the number of cells committed to a single behavior
can be even further reduced. Crustacean neurons also tend to be large,
with somata reaching up to 100 μmin diameter. This provides unique
access to the cell-intrinsic physiology and facilitates otherwise
challenging intra- and extracellular electrophysiological recordings.
Many neurons are even uniquely identifiable between individuals and
have well-defined homologs in related species. This enables
comparative studies of neuronal function and behavior at the
single cell level (Schmidt-Rhaesa et al., 2015; Stein et al., 2016). It
also allows studies that address evolutionary changes to the function
of individual neurons—a feature essentially absent in studies of brains
with more neurons. Finally, whole circuits can be isolated from the
animal and kept alive for up to several weeks (Luther et al., 2003;
Sakurai and Katz, 2009) with minimal saline and superfusion
requirements. As a result, network reconstruction and homeostatic
mechanisms of repair and re-organization after nerve injury can be
analyzed at the cellular and circuit levels. Neurons can also be
dissociated and placed in cell culture for physiological and
molecular analyses (Turrigiano et al., 1994).

The Problem
While decapod crustaceans have excelled in studies of neuronal
physiology, research has made slow progress in the adoption of
genetic and molecular tools. Previous studies were mostly
restricted to gene expression measurements and system-wide

suppression of genes through RNA interference (RNAi) (Sagi
et al., 2013; Northcutt et al., 2016), with few exceptions (Dearborn
et al., 1998; Yazawa et al., 2005; Posiri et al., 2013). That resulted
in the conundrum that the activities and circuits that underlie
many fundamental behaviors are well-characterized, but genetic
and molecular insights into neural functioning are often missing.
For example, a paradigm-shifting finding from the crustacean
stomatogastric ganglion is that within a neuronal circuit, multiple
combinations of intrinsic and synaptic conductances can lead to
the same functional output. Models of the crab stomatogastric
nervous system have long predicted that this is the case (Prinz
et al., 2003). Experimental evidence from the same system
supports the model predictions, showing substantial variability
in ion channel expression levels between individuals of the same
species and between neurons of the same type (Schulz et al., 2006;
Golowasch, 2019). This variability is degenerate, as its effects are
not observable unless the system is challenged by extreme or
pathological conditions. It is under these conditions where
circuits and their behaviors become unpredictable, and
differences between individuals are revealed. While the
stomatogastric nervous system is one of the best studied
crustacean nervous tissues (Stein, 2017), establishing cause-
and-effect relationships between genes and neuron physiology
has proven challenging. For instance, despite numerous studies
on this topic, we are no closer today to having an answer to the
origins of circuit parameter variability, nor do we understand
how this variability is controlled. It is for this reason that others
have called for establishing a new model system to study the
molecular and genetic underpinnings of neuronal function in
decapod crustaceans (Schulz and Lane, 2017).

In genetic model systems, neurons and circuits can be
identified with genetic markers, recorded with optical imaging,
and manipulated with light-induced ion channels and pumps, for
instance. No doubt that pairing these techniques with the
outstanding access to the behavioral performance of these
animals has opened many new avenues to study neuronal
function, behavior, and neuropathologies. Yet, solely by
themselves, these techniques are unable to provide access to
many of the neuronal and circuit dynamics that are crucial for
neuronal functioning. Even the most sophisticated molecular
techniques are unable to capture changes in membrane
conductance or input resistance, for instance. Routine
electrophysiology from intact circuits is challenging in many
genetic model systems, and this absence of physiological
tractability remains an obstacle for understanding how
neuronal and circuit dynamics interact to generate behavior.

Perspective: Combining Old and New Tricks
Through The Study of Genes, Neurons, and
Behavior in Crayfish
The marbled crayfish, Procambarus virginalis (Figure 1Ai), has
the potential to innovate how we study neuronal function and
behavior, because it allows integrating genetic and molecular
insights with circuit and cellular physiology. It has recently joined
the list of sequenced animals with a high coverage genome and
transcriptome (Gutekunst et al., 2018), complementing and
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expanding the list of sequenced decapods (Kenny et al., 2014;
Song et al., 2016; Yuan et al., 2018). Unlike its previously studied
relatives that are typically wild-caught, P. virginalis fulfills
standard requirements for laboratory culture. It exhibits
robustness against handling stress and is inexpensive to house
and upkeep. Marbled crayfish start to reproduce 90–140 days
after hatching, with breeding periods of 21–37 days, and
interclutch periods of 50–85 days (Seitz et al., 2005).
Clutch sizes can reach several hundred eggs (Vogt, 2010) with
a hatching success rate of up to 80% (Seitz et al., 2005; Vogt,
2008).

Importantly, for genetic studies, all individuals are female
triploids (Vogt et al., 2015) that produce genetically uniform

offspring via apomictic parthenogenesis—oocytes develop
without fertilization or meiosis (Seitz et al., 2005; Martin et al.,
2007; Vogt, 2010; 2011). In case of new strains or mutants, this
preserves the introduced manipulation without the need for
outcrossing. Maintaining even only a few adult animals can
ensure a steady supply of eggs for genetic manipulations as an
individual can complete up to 7 reproductive cycles during its
lifetime (Vogt et al., 2004). Eggs are large (~1.6 mm diameter,
Figure 1Aii), develop externally, and can be raised without
maternal care (Henryon and Purvis, 2000; Leonard et al.,
2001; Seitz et al., 2005). The fact that all developmental stages
are easily accessible for experimental manipulation offers many
advantages over the mammalian intrauterine development or

FIGURE 1 | (A) (i) Photo of pregnant marbled crayfish. Credits: Carola Städele. (ii) Magnification of stage 2 oocyte (10–15% development) with circular blastophore.
(iii) Freshly hatched juvenile (stage 1). (iv) Two translucent stage 2 juveniles. Digestive tract and hepatopancreas are clearly visible. (B) (i) Brightfield image of adult
stomatogastric ganglion with neuronal somata of the pyloric and gastric mill central pattern generators. (ii) Confocal image of two stained stomatogastric neurons.
Somata, axons and neuropil are visible. (iii) Intracellular recording of lateral gastric (LG) neuron in the stomatogastric ganglion. Signal to noise ratio and waveform of
the membrane potential oscillations are similar to other crustaceans (Stein et al., 2022). (C) (i) Staining of the two bilaterally symmetric lateral giant neurons in the marbled
crayfish ventral nerve cord. (ii) Immunohistochemical staining against Serotonin in a marbled crayfish ventral nerve cord ganglion. (D) (i) Oocyte containing GFP after
ReMOT treatment. (ii) A control oocyte shows no GFP staining. (iii) Overlay of GFP (left) and anti-GFP immunohistochemistry (middle) in oocyte. Right: Yellow delineates
overlap in GFP and anti-GFP fluorescence signals. (E) Sequence alignment between putative MC eyeless and fly eyeless transcripts. Colored bars: significant alignment
with scores between the two sequences. Overall e-value is provided.
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metamorphosis in other arthropods, such as flies. Importantly,
eggs, embryos, and juveniles (Figures 1Aiii,iv) are translucent
and have a high tolerance to physical manipulation (Vogt, 2007),
so they can easily and rapidly be assayed for naturally occurring
or experimentally-induced phenotypes. This includes defects in
patterning and limb formation that can be assessed because of the
slow short-germ development, i.e., the sequential addition of
body segments during morphogenesis.

The marbled crayfish nervous system shares many
similarities with other decapod crustaceans. For example, the
architecture of the embryonic CNS of marbled crayfish and the
Australian crayfish (Cherax destructor) are strikingly similar
(Carr and Boudreau, 1996), including their aminergic and
peptidergic transmitter systems (Polanska et al., 2007; Rieger
and Harzsch, 2008). Our data show that their stomatogastric
ganglion has large identifiable neurons that are similar in
morphology (Figures 1Bi, ii) and activity patterns to
lobsters, crabs and other crayfish (Figure 1Biii). Similarly,
the medial and lateral giant neurons in the ventral nerve
cord (Edwards et al., 1999) are easily identifiable
(Figure 1Ci), and aminergic neurons can be stained
(Figure 1Cii). Even as juveniles, animals and neurons are
large enough for electrophysiological investigations. Juveniles
are also translucent, which permits the visualization of labeled
cells and optogenetic control of neural function. Importantly,
crayfish, including marbled crayfish, have a rich repertoire of
behaviors that make them well-suited for neuroethology and for
studying the underlying causes of behavioral symptoms of
diseases. The brilliant work of Huxley at the end of the 19th
century already described many crayfish behaviors, their natural
history and basic physiology, and provided guidance and
concepts for future researchers (Huxley, 1880). Today,
ethograms of many crayfish escape (Edwards et al., 1999;
Herberholz and Marquart, 2012) and social behaviors
(Heckenlively, 1970; Copp, 1986; Figler et al., 1995; Yeh
et al., 1997; Issa et al., 1999; Vorburger and Ribi, 1999;
Herberholz et al., 2001; Baird et al., 2006) have been
developed and the underlying circuits are known to varying
degrees. This has already established them as model organisms
for social dominance (Edwards et al., 2003; Abe and Nagayama,
2021), anxiety (Fossat et al., 2014), intoxication (Swierzbinski
et al., 2017; Venuti et al., 2021), and decision making
(Herberholz and Marquart, 2012). Crayfish can learn to
perform tasks and have been used to study learning and
memory (Krasne and Bryan, 1973; Kawai et al., 2004).
Finally, crayfish have been used for studies ranging from
kinematics and locomotion to the neuronal control and
coordination of behavior (Farca Luna et al., 2009), suggesting
that they could be well-suited for studying the wide variety of
genetic disorders that affect motor control.

Marbled crayfish may be a suitable middle-ground between small
invertebrates where behaviors are often measured as a population
response, and larger vertebrates where single animals are studied.
However, there is still a major need to establish reliable methods to
drive or suppress gene expression, and to incorporate molecular tools
that allow target-specific manipulation of identified neurons and
circuits.We suggest that the first steps could include the expression or

knock-out of genes involved in brain functioning or development that
could be monitored by the resulting morphological and behavioral
changes.

Transgenesis to Manipulate Gene
Expression in Marbled Crayfish Neurons
Their apomictic parthenogenesis makes marbled crayfish
uniquely suited for the adoption of transgenesis. However,
there are no established protocols to introduce genetic
constructs into marbled crayfish cells or oocytes. Indeed, we
found that iontophoretic and pressure injections of Green
Fluorescent Protein (GFP) plasmids into freshly laid eggs were
unsuccessful. Similarly, attempts to electroporate the GFP
plasmid failed. Eggs either died within a day after
electroporation or did not incorporate the plasmid.

To address these issues, we are currently pursuing the
“Receptor-mediated ovary transduction of cargo” (ReMOT)
method, which exploits the vitellogenesis pathway in oviparous
species to transport synthetic molecular cargo into developing
oocytes (Chaverra-Rodriguez et al., 2018). This approach was
developed to provide a high-throughput and simple way to
transport genetic constructs into oocytes, with the potential to
affect an entire clutch of offspring. Pregnant animals are injected
with the ReMOT protein and its cargo, which is then transported
into the oocytes. We have already shown that in an in vitro
setting, where eggs were raised without the mother, GFP was
successfully transported into the oocytes. Figures 1Di,ii show a
comparison of one egg treated with ReMOT (i) and a control egg
(ii). GFP fluorescence was only present in the ReMOT treated egg.
To further verify the presence of GFP inside the oocyte, we carried
out anti-GFP immunohistochemistry (Figure 1Diii). There was
good overlap between GFP (green) and anti-GFP signals (red) as
indicated by the overlay (yellow). We also found that marbled
crayfish survive the injection and lay healthy eggs. Similar results
have been reported for the transport of mCherry into oocytes
(Lyko, personal communication).

We now aim to achieve stable CRISPR/Cas-9 gene edits that
result in easily observable, morphological deformities that can be
detected early in development, such as abnormal eye or limb
development. As a first step, we have identified the putative
homolog of the drosophila homeobox gene eyeless (Figure 1E),
which controls early eye development and has already been
demonstrated to alter eye phenotypes in crustaceans
(Nakanishi et al., 2015).

DISCUSSION

Work on decapod crustaceans has been pivotal for our understanding
of basic processes of neural function and has shed light on processes
in virtually all areas of cell and systems biology. We argue that the
marbled crayfish is ideally suited to become a new genetic model for
neurophysiology and behavior. Above all, the basic neurosciences
field will benefit from new tools to study the genetic basis of neural
function. Combining the extensive knowledge base available for
decapod crustaceans with these molecular techniques will reveal

Frontiers in Physiology | www.frontiersin.org July 2022 | Volume 13 | Article 9475984

Stein et al. Marbled Crayfish Genes and Neurophysiology

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


how physiological processes interact with the molecular cell
machinery. The comparably large crayfish neurons allow the
design of hierarchical, step-by-step experimental approaches to
study neuronal processes across levels of organization, linking the
molecular machinery of individual neurons with the dynamic
organization of complex nervous systems. There are very few
systems that allow this level of analysis.

What are initial questions and projects that would benefit from
having better genetic and molecular tools available? Marbled
crayfish neurobiology is currently a wide-open field, and the
number of publications is still very modest. Early work focused on
the development of the nervous system and some of its
neurotransmitters (Vilpoux et al., 2006; Polanska et al., 2007;
Fabritius-Vilpoux et al., 2008; Rieger and Harzsch, 2008). More
recently, studies have investigated adult neurogenesis (Brenneis
et al., 2021), operant conditioning (Okada et al., 2021), phototaxis
(Shiratori et al., 2017), and psychostimulant actions on marbled
crayfish behavior (Jackson and van Staaden, 2019). However,
most of these studies used traditional non-genetic methods.

Innovating the Classical
Arguably one of the best-characterized neuronal circuits is the one
controlling the crayfish lateral giant (LGi) tail-flip escape response
(Edwards et al., 1999; Sillar et al., 2016). In this behavior, the LGi
neuron (Figure 1Ci) initiates a powerful and highly stereotyped
abdominal contraction that moves the crayfish upwards and away
from the source of threatening stimuli. The underlying neuronal
circuit comprises several rectifying electrical synapses, for example
between the primary mechanosensory afferents in the tail fan and the
LGi neuron and between the LGi neuron and the giant motor
neurons. Enabling the rapid and feed-forward flow of electric
current from sensory neurons to motor neurons, these rectifying
electrical synapses lead to a rapid contraction of the anterior
abdominal muscles and the escape tail flip. In fact, it was in the
LGi escape circuit that the first polarized transmission between
electrically coupled cells was discovered (Furshpan and Potter, 1959).

How do electrical synapses achieve their rectifying properties?
Do giant fibers express distinct gap junction isoforms, and, if so,
which ones? How does the escape behavior change if synapses are
not rectifying or if rectification is weakened or strengthened?
Answering these questions would certainly improve our
understanding of crayfish escape responses but may also inform
hypotheses across systems by providing insight into gap-junction
mediated neuronal synchrony, for example. Studying the function
and modulations of gap junction proteins requires access to genes
and transcripts, and ways to manipulate gene expression in
addition to the established electrophysiological techniques.

Using sequence homology with the well-characterized Drosophila
innexins, we have identified five putative gap junction gene homologs
(Figure 2A). Four of them encode the YYQWVamino acid sequence
(Figure 2B), a known conserved domain of invertebrate gap junction
proteins (called innexins) that is consistently found in their
transmembrane domain (Yen and Saier, 2007). Innexins are
known to contain 4 transmembrane domains (Phelan et al.,
1998), and we found at least 4 transmembrane domains in each
marbled crayfish putative innexin sequence (Figure 2C).
Additionally, mRNA extractions indicate the putative innexins

2–5 are expressed in neuronal tissue (Figure 2D). Innexins 2, 3
and 5 are expressed in the brain, while innexins 2, 3, 4, and 5 are
expressed in the ventral nerve cord (Figure 2E). We have also shown
that RNAi reduces innexin 2 expression 2 days after treatment
(Figure 2F). Which innexins contribute to the tail flip circuits can
now be identified bymonitoring changes to the tail flip behavior with
high-speed video recordings.

Similar genetic screening approaches can be used to tease out the
role of neurotransmitter and modulator receptors. Serotonin,
Dopamine, and GABA have well-described influences on the tail
flip circuit, and implications in social behaviors like aggression and
dominance hierarchy (Edwards et al., 2003). Some Serotonin
receptors have been cloned in crayfish (Sosa et al., 2004), but their
role in tail flip, dominance and aggression circuits has not specifically
been examined. What are the functional roles of distinct receptor
subtypes and especially within the context of escape and social
interactions? Are particular subtypes expressed together, or in
particular contexts? Integrating genetic and electrophysiological
techniques in marbled crayfish would allow us to approach these
questions.

Expanding the New
The concept of degenerate circuits, i.e., the hidden variability of
neuronal and synaptic parameters between individuals, is the topic
of many recent studies in the stomatogastric nervous system
(Marder and Rue, 2021). How this variability comes about and
how it is controlled is unknown. Degenerate variability could be
caused by three, non-mutually exclusive possibilities: 1) stochastic
events in regulatory genes that control ion channel expression, 2)
life-history-dependent homeostatic plasticity, or 3) regulatory genes
differ between individuals, as well as between cell types. Marbled
crayfish are well-suited to address the question of the origin of this
variability. Their stomatogastric neurons are homologous to
previously studied species and offer the same cellular access to
their intrinsic and synaptic properties (e.g., Figure 1B). In contrast
to species with diverse genetic background and unknown life
histories, such as wild-caught crabs and lobsters that were used
for previous studies, life history can be fully controlled in marbled
crayfish, and genetic diversity is mostly absent. There are already
established protocols for the identification and annotation of
neuronal genes, as demonstrated by the recent characterization
of two putative GABA-A receptor subunits in marbled crayfish
(Stein et al., 2020). Gene expression measurements in crustacean
tissues and even single cells have long been established (Schulz et al.,
2007). While the latter were not developed for marbled crayfish, we
have recently demonstrated that RT-PCR and qPCR of neuronal
genes are feasible using primers derived from the marbled crayfish
genome and transcriptome (e.g., Figures 2D,E).

Into the Future
Marbled crayfish continue to produce new neurons throughout their
life [reviews: (Vogt, 2008; Sandeman et al., 2011; Vogt, 2018;Wittfoth
and Harzsch, 2018)]. There are two major sites of new neuron
production in the crayfish nervous system. The first is in a specialized
proliferation center called the neurogenic niche in the crayfish brain
that contains neuronal precursor cells (Sullivan et al., 2007; Sintoni
et al., 2012). Resembling the situation in vertebrates, precursor cells
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migrate to their destination sites where they give rise to new neurons.
The second site where neurons are added is the olfactory system. The
outer branches of the first antennae bear the olfactory aesthetascs,
each of which contains about 100 bipolar receptor neurons
(Sandeman and Sandeman, 2003). Juvenile marbled crayfish have
only about 10 aesthetascs, but in each moulting cycle additional
aesthetascs are added, so that adults end up with several hundreds of

them (Vogt et al., 2004). The axons of the new sensory neurons must
find their way to the brain, where they must be integrated into the
already existing neuronal network of the olfactory lobe.Most recently,
first insight into the genetic regulatory network underlying
neurogenesis has been provided (Brenneis et al., 2021), but
generally speaking, very little is known about the molecular,
genetic, and physiological profiles of these processes. Further

FIGURE 2 | (A) Blast comparison of marbled crayfish (MC) putative innexin transcripts and identified innexins from Drosophila melanogaster. E-values are given.
Colors indicate score. Scale bars: 200 bp. (B) Amino acid projection of putative MC innexins (top) and innexin amino acid sequences of a domain model from other
species (bottom). MC innexins 1-4 are predicted to contain the innexin hallmark YYQWV amino acid sequences. (C)Motif and domain prediction of putative MC innexin
amino acid sequences. All five innexins contain transmembrane domains and include known innexin motifs in their amino acid sequence (colored bars). (D) and (E)
Gel electrophoresis of innexin sequences amplified using intron spanning PCR primers. (D) Innexins 2-5 had abundant expression in neuronal tissue. Innexins 2 and 3
were additionally expressed in muscle tissue. mRNA was extracted from neuronal tissue (brain, abdominal, and thoracic ganglia) and from abdominal muscles,
respectively. (E) Innexins 2, 3, and 5 showed abundant expression in the brain. Innexins 2, 3, 4, and 5 were expressed in the ventral nerve cord. (F) RNAi-induced
reduction of MC innexin 2, 2 days after treatment with dsRNA. Scrambled dsRNA was used for sham injections. *p < 0.05, ns = not significant, one sample t-test against
housekeeping gene (EIF-α).
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combining these approaches in marbled crayfish will open new
avenues to investigate neurogenesis, axonal path-finding, and
regeneration of neurons.

Roadblocks
There are still many challenges to achieve the goal of establishing
the marbled crayfish as a new genetic model system for
neurophysiology. For example, marbled crayfish are triploid.
This makes the identification and validation of genes involved
in neuronal function slow and cumbersome, as more controls are
needed to ensure the success of potential gene manipulations.
With methods to manipulate gene expression still in their infancy
and established protocols from other animals often failing or
being difficult to adapt, it will require the collaborative effort of
many laboratories to move forward. However, with the ever more
rapid development and availability of new genetic techniques,
such as CRISPR and viruses-mediated genome editing, these
challenges are likely to be overcome quickly.
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