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Abstract
Purpose The performance of deep learning may fluctuate depending on the imaging devices and settings. Although domain
transformation such as CycleGAN for normalizing images is useful, CycleGAN does not use information on the disease
classes. Therefore, we propose a semi-supervised CycleGAN with an additional classification loss to transform images
suitable for the diagnosis. The method is evaluated by opacity classification of chest CT.
Methods (1) CT images taken at two hospitals (source and target domains) are used. (2) A classifier is trained on the target
domain. (3) Class labels are given to a small number of source domain images for semi-supervised learning. (4) The source
domain images are transformed to the target domain. (5) A classification loss of the transformed images with class labels is
calculated.
Results The proposed method showed an F-measure of 0.727 in the domain transformation from hospital A to B, and 0.745
in that from hospital B to A, where significant differences are between the proposed method and the other three methods.
Conclusions The proposed method not only transforms the appearance of the images but also retains the features being
important to classify opacities, and shows the best precision, recall, and F-measure.

Keywords CycleGAN · Domain transformation · Semi-supervised learning · Classification · CT · Diffuse lung diseases

Introduction

Deep learning (DL) has been applied to image classifiers in
computer-aided diagnosis (CAD) [17]; however, DL requires
many annotated data. Also, the accuracy of CAD may fluc-
tuate when the imaging devices are different. For example,
since different CT devices and settings show the different
pixel values, CAD showing good performance in a certain
hospital does not always show the same performance in other
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hospitals. In this case, the classifier needs to be retrained,
which requires many training data again.

One of the solutions to normalize the image styles is
domain transformation using CycleGAN [26]. For example,
CycleGAN has been applied to classifying opacities in chest
CT images [16]. However, since CycleGAN does not use
labeled data, the transformation is not always suitable for the
opacity classification. Hence, we propose a semi-supervised
CycleGANcombinedwith a classifier trained to classify lung
opacities in another hospital. In detail, (1)We use CT images
taken at two hospitals (source and target domains). (2) A
ResNet-based classifier [6] is trained on the target domain.
(3) Class labels are given to a small number of source domain
images. (4) Both labeled and unlabeled images in the source
domain are transformed to the target domain. (5) A classifi-
cation loss of the transformed imageswith class labels is used
as an additional loss of CycleGAN. (4) and (5) are repeated
to make the domain transformation suitable for the opacity
classification.

There have been many studies on domain transforma-
tion. In [7], cycle-consistent domain adaptation is proposed,
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which adapts between domains using both generative image
space alignment and latent representation space alignment.
In [3], domain adaptation in person re-identification that
finds the relevant images to the query is proposed. Similarity
preserving GAN is used and two types of unsupervised dis-
similarities are incorporated. Bak et al. [1] solved the person
re-identification problemwhen drastic variations in illumina-
tion across surveillance cameras occur. A synthetic dataset
with various illumination conditions and a domain adapta-
tion technique are designed. Unsupervised speech domain
adaptation is proposed in [8], where multiple discrimina-
tors on the power spectrogram are designed to deal with
different frequency bands. Xie et al. discussed content dis-
tortion in image-to-image translation [21] and a GAN with
a self-supervised module is designed to enforce the image
content consistency without extra annotations. In [11], lever-
aging synthetic data with pixel-level labels for segmentation
is described. To reduce the gap between synthetic and real
domains, considering the difference between the domains as
a texture, a method to adapts to the target domain’s texture
is proposed. In [5], emotion recognition from audio data is
considered, where publicly available facial image datasets
are used for audio emotion recognition by transforming the
images to audio spectrograms by an adversarial network.

Modality adaptation such as between CT and MRI is
actively studied research.Yang et al. achieved cross-modality
domain adaptation [23], where semantic feature-level infor-
mation is preserved by finding a shared content space instead
of a direct pixel-wise transformation. In [10], an adversar-
ial domain adaptation from CT to MRI is studied for tumor
segmentation onMRI. In [18], a deformation invariant cycle-
consistency model that can filter out the domain-specific
deformation is proposed and evaluated on multi-sequence
brain MR data and multi-modality abdominal CT and MR
data. A domain adaptation for medical image segmentation
is proposed in [2], where the method simultaneously trans-
forms the appearance of images across domains and enhances
domain-invariance of the extracted features. In [20], Cycle-
GAN and unsupervised image-to-image translation network
[13] are evaluated in the transformation of T1- and T2-
weighted MR images, and two supervised models are also
compared.

CycleGAN has been also applied to improve the quality
of images. In [25], a supervised learning model of Cycle-
GAN is proposed to transform low-dose PET images to
full-dose images. In [14], a model combining parallel imag-
ingwithGANfor the reconstruction ofMRI is proposed. This
method effectively reconstructs multi-channel MR images at
a low noise level for undersampling patterns. In [15], several
GAN-based methods are compared to find the best methods
that reconstruct MRI for undersampling images. In [24], an
undersampled MRI reconstruction method based on GAN
with self-attention and the relative average discriminator is

proposed to improve the speed of MRI imaging and reduce
patient suffering. In [4],WassersteinGANand recurrent neu-
ral networks are combined to fully utilize the relationship
among sequentialMRI slices, and an additional attentive unit
enables the method to reconstruct more accurate anatomical
structures for MRI data. In [22], a conditional GAN-based
model to reconstruct compressed sensing MRI is proposed,
where a refinement learning method is designed to stabilize
the U-Net-based generator and reduce aliasing artifacts. In
addition, frequency-domain information is incorporated to
enforce similarity in both the image and frequency domains.

The aim of this paper is to perform a domain transfor-
mation of chest CT images taken by different CT devices in
two hospitals, and we propose a semi-supervised CycleGAN
with a classification loss function to achieve domain transfor-
mation with high classification accuracy. For example, when
we compare our method with image generation using the
GAN-based method [4,14,15,22,24] that aim at generating
high-quality images from undersampled images, our method
aims to transform CT images taken at a certain hospital so
that they can be accurately classified by the classifier trained
in another hospital. The proposed method is trained with a
semi-supervised learning manner to reduce the cost of anno-
tation by combining CycleGAN and an additional loss based
on the classification accuracy.

Materials andmethods

Datasets

We used 503 chest CT images taken at Yamaguchi Uni-
versity Hospital, Japan (Domain A, SOMATOM Sensation
64, SIEMENS) and 636 images taken at Osaka University
Hospital, Japan (Domain B, Discovery CT750 HD, GE).
Generally, CycleGAN works in the entire image, identifies
nonlinear regions that are to be changed and others that
are kept intact. The proposed method is not the nonlinear
regional transformation, as in the case of putting lines to a
horse to let it appear as a zebra. Since the main difference
between the images of hospitals A and B are intensity range,
contrast, and the reconstruction function that generates tomo-
graphic images from X-ray projection data, the proposed
method aims to normalize them. For example, domain A
images are slightly darker and have smoother contours, while
domain B images are lighter and have sharper contours. Both
domains A and B contain six opacity classes: consolidation
(CON), diffuse nodular (DN), emphysema (EMP), ground-
glass opacity (GGO), honeycombing (HCM), and normal
(NOR). The numbers of images of each opacity are shown
in Table 1 and image examples (512 × 512 [pixels]) of the
two domains are shown in Fig. 1.
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Fig. 1 Examples of CT images
of domains A and B. There are
some differences in the image
properties such as intensity,
contrast and sharpness of the
opacities

Table 1 Numbers of images of domains A and B

Domain A Domain B

Consolidation (CON) 109 88

Diffuse nodular (DN) 53 93

Emphysema (EMP) 112 93

Ground-Glass Opacity (GGO) 75 192

Honeycombing (HCM) 99 90

Normal (NOR) 55 90

We implemented region of interest (ROI)-based classifica-
tion by dividing theCT images into 32×32 [pixels] ROIs.We
chose patch-wise classification instead of pixel/voxel-wise
segmentation because the number of patches for the training
canbe increasedby extractingmanypatches fromsliceswhen
the number of annotated CT slices is limited. The CT images
have the corresponding mask images (ground truth) created
by three radiologists showing the location of opacities. Fig-
ure 2 shows examples of CT images, their mask images and
the extracted regions for generating ROIs. 32 × 32 [pixels]
regions were scanned by striding from the upper left to the
lower right of each CT image and the class labels were given
to the regions if they contain more than 50% of the masked
areas. If the stride size is the same for all the kinds of opac-
ities, the numbers of ROIs become imbalanced. Therefore,
the stride size was adjusted to extract about 3000 ROIs for
each kind of opacity (Table 2).

Figure 3 shows how to split the extracted ROIs into train-
ing and testing data when ROIs of domain A are transformed
to domain B. Atrain and Btrain are used for training, Atest and
Btest are used for testing, and Atrain_anno ⊂ Atrain is a small
dataset with class labels. When the standard CycleGAN is
trained, Atrain and Btrain have no class labels; however, in

Table 2 Numbers of ROIs and stride sizes

Number of ROIs Stride size [pixels]
Domain A Domain B Domain A Domain B

CON 3071 3447 8 11

DN 3023 3311 16 14

EMP 3122 3021 24 27

GGO 3460 3273 12 18

HCM 3236 3434 13 13

NOR 3117 3035 29 32

this study, a small part of the training data were annotated
for semi-supervised learning. In detail, CT images of five
patients per opacity were annotated. In Fig. 3, the whole
domain A data are split into training set Atrain (including
annotated part of domain A) and testing set Atest. Therefore,
Atest is the test set for the domain A classification. Note that
the testing set has been also annotated for the evaluation pur-
pose. Actually, when the number of annotated training data
is increased, the performance becomes better as we can often
see in general DL. In this paper, five patients per opacitywere
selected by carefully considering the radiologists’ effort to
make annotations and if annotation of only five patients per
opacity gives positive effects on the performance, the bur-
den on the radiologists would be reduced. Note that the ROIs
extracted from the same CT image were only included in
either the training data or testing data.

Methods

The semi-supervised CycleGAN (proposedmethod) consists
of a standard CycleGAN and an opacity classifier. The upper
part in Fig. 4 shows the classification flowwith domain trans-
formation and the lower part shows the flowwithout it. Here,
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Fig. 2 CT images, mask
(ground truth) images and
extracted regions. CT images
are the original slices, mask
images show the annotated areas
of opacities, and the extracted
regions show the CT images that
correspond to the masked areas

Fig. 3 Training and testing data
of domains A and B when
domain A data are transformed
to domain B. Domain A is split
into Atrain and Atest , and a part
of Atrain is the training data with
annotation Atrain_anno

we suppose that a classifier (ResNet) trained on domain B
is used to classify data of domain A. The proposed method
transforms ROIs from domain A to B and the trained ResNet
classifies the transformedROIs.Note that the true class labels
have been given to a small number of ROIs of domain A, and
the loss of the ResNet is calculated when the transformed
ROIs are classified. The loss is fed back to the generator that
executes the transformation. This method not only adjusts
the appearance of ROIs but also has the effect of clarifying
the important features for opacity classification. In this paper,
both “A toB” and “B toA” transformationswere investigated.

Hereafter, we explain the procedure when A to B trans-
formation is implemented. Figure 5 shows an overview of
the semi-supervised CycleGAN that contains two generators
G and F , two discriminators DA and DB , and a classifier
Dcf B . The training samples are a ∈ Atrain and b ∈ Btrain. In
the standard CycleGAN, the loss functions of Eqs. 1 through
4 are used to train G, F , DA, DB .

LAtoB (G, DB , A, B) = Eb∼pdata(b) [logDB (b)]

+Ea∼pdata(a) [log(1 − DB (G (a)))]

(1)
LBtoA (F, DA, B, A) = Ea∼pdata(a) [logDA (a)]

+Eb∼pdata(b) [log(1 − DA (F (b)))]

(2)
Lcyc(G, F) = Ea∼pdata(a)‖F(G(a)) − a‖

+Eb∼pdata(b)‖G(F(b)) − b‖ (3)
L identity(G, F) = Ea∼pdata(a)‖F(a) − a‖

+Eb∼pdata(b)‖G(b) − b‖ (4)

Data distributions are denoted as a ∼ pdata (a) and
b ∼ pdata (b). Generators G and F are learned by mini-
mizing the loss of Eqs. 1 and 2, but since these loss functions
alone will learn to map the same output pattern to any input
images, the loss functions of Eqs. 3 and 4 are introduced
[26]. Equation 3 is called cycle consistency loss, which con-
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Fig. 4 Classification flow with
and without domain
transformation. When the
domain transformation is
adopted, a domain A image is
inputted to the semi-supervised
CycleGAN and transformed to a
domain B-like image. Then, the
transformed image is classified
by the classifier. When the
domain transformation is not
adopted, a domain A image is
directly inputted to the classifier

Fig. 5 Overview of a semi-supervised CycleGAN. Domain A is trans-
formed by generator G, and domain B is transformed by generator F .
DA is a discriminator that classifies whether an inputted image is from
A (real) or B (fake), and DB classifies whether an inputted image is
from B (real) or A (fake). Dcf B is a classifier trained on domain B

strains the original data a and b to match the generated data
F (G (a)) and G (F (b)), respectively. Equation 4 is called
identity mapping loss, which constrains the generator not to
convert any data that have belonged to the target domain. The
structure of CycleGAN was referred to in the code provided
by git repository.1

In this paper, we designed an additional loss calculated by
the ResNet. First, fake domain B data G (a) are generated
from domain A. Second, ResNet DcfB trained on domain B
is used to classify data G (a) and the loss is fed back to G to
re-train. In the re-training, only the ROIs a(anno) ∈ Atrain_anno

are used and the additional loss is calculated by Eq. 5.

L resnet(G, DcfB )

= Ea(anno)∼pdata(a(anno))[−
∑

k∈C
dk log D

(k)
c fB

(G(a(anno)))],

(5)

where C is a set of class numbers, dk is a one-hot vector
showing the correct class number, and D(k)

c fB
is an output of

the ResNet for class k. Then, our full loss function is

L(G, F, DA, DB, DcfB) = L AtoB(G, DB, A, B)

1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

+LBtoA(F, DA, B, A)

+λ1Lcyc(G, F)

+λ2L identity(G, F)

+λ3L resnet(G, DcfB ), (6)

where λ1, λ2, and λ3 are bias terms. λ1 and λ2 were set at 40,
5 and λ3 was set at 0 from first to 100th epoch and 0.2 from
101th to 200th epoch. The proposed method uses L resnet,
which sometimes makes the CycleGAN destroy the original
texture patterns of ROIs, thus, λ1 and λ2 were set at larger
values than λ3, and λ3 was set at a positive value after 100
epochs. In fact, we visually examined the generated ROIs in
the experiments and found that the texture patterns were not
destroyed. Finally, G, F , DA, and DB are optimized by the
following objective function.

G∗, F∗, D∗
A, D∗

B

= argmin
G,F

max
DA,DB

L(G, F, DA, DB, DcfB ), (7)

where the weights of DcfB are fixed.
The structure of DcfB is based on ResNet34 [6] as shown

in Table 3. The residual block shown in Fig. 6 is used in
Conv2, Conv3, Conv4, and Conv5. For example, Conv2 uses
three residual blocks with two convolution layers with kernel
size 3×3 and channel size 64. After Conv5, a fully connected
layer is used to output six values that correspond to the prob-
abilities of belonging to six kinds of opacities, respectively.

Results

Experimental setup

The numbers of ROIs are shown in Table 4, where the num-
bers in parentheses show the numbers of ROIs with class
labels, i.e., Atrain_anno and Btrain_anno. Figure 7 shows four
methods for comparison when A to B transformation is exe-
cuted. Method 1 is the proposed method, and Method 2
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Table 3 Structure of 34-layered
ResNet

Layer name Output size Residual block type

Conv1 32 × 32 3 × 3, stride 1

Conv2 32 × 32

[
3 × 3, 64
3 × 3, 64

]
× 3

Conv3 16 × 16

[
3 × 3, 128
3 × 3, 128

]
× 4

Conv4 8 × 8

[
3 × 3, 256
3 × 3, 256

]
× 6

Conv5 4 × 4

[
3 × 3, 512
3 × 3, 512

]
× 3

Fully connected 1 × 1 Average pooling 6-d fully connected

Fig. 6 Structure of a residual block. Input x is transformed by convo-
lution, batch normalization, and ReLU. Then, the output is the sum of
the transformed x and the original input x

is based on the standard CycleGAN. Method 3 does not
use domain transformation and directly inputs the ROIs of
domain A to the ResNet trained on domain B. In Method 4,
domain transformation is not used and the ResNet is trained
on Atrain_anno. The aimof this paper is to add the classification
loss to CycleGAN and evaluate the effects on the classifica-
tion performance when a small number of annotated data are
given. Thus, if Method 1 is better than Method 2, the main
objective, i.e., the effect of the additional loss is verified. In
addition, to show more results for the comparison, Method 3
without domain transformation is evaluated. Also, if Method
4 is better thanMethod 1, the domain transformation is funda-
mentally meaningless, i.e., the training in the single domain
is enough; thus, we conducted the comparison.

The evaluation metrics are precision, recall, and F-
measure calculated by averaging the results of 20 indepen-

Table 4 Numbers of ROIs used for the training and testing. (·) shows
the numbers of ROIs with annotation used to calculate the loss of the
ResNet

Domain A Domain B
Class Training Testing Training Testing

CON 1022 (95) 2049 1027 (104) 2420

DN 1018 (107) 2005 1020 (98) 2291

EMP 1020 (105) 2102 962 (105) 2059

GGO 989 (108) 2471 996 (108) 2277

HCM 1003 (96) 2233 1021 (96) 2413

NOR 1003 (105) 2114 1024 (101) 2011

Total 6055 (616) 12974 6050 (612) 13471

dent trials. In fact, we aimed to generate new gray-scale
images that can be correctly classified by the classifiers
in the target domain. In this sense, the aim of this paper
is to increase the classification performance on the gener-
ated images. Therefore, precision, recall and F-measure were
used, which are directly related to evaluating the classifica-
tion performance.

Domain transformation from A to B

First, the ResNet was trained using all the ROIs of domain B
(Table 2). The pixel values were normalized to [−1, 1], the
number of epochs was set at 20, the batch size was set at 16,
and Adam [12] was used for training. After the training, the
accuracy for the training data was 98.1%.

Next, the domain transformation was learned for 200
epochs with batch size 16. Figure 8 shows examples of the
domain transformation from A to B and the reconstruction
from B to A, where the ROIs of domain A are transformed
to domain B-like images, and the reconstructed images still
keep the textures of the original images.
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Fig. 7 Methods for comparison. Method 1 is the proposed method.
Method 2 uses the standard CycleGAN. Method 3 does not use domain
transformation, but directly input images of domain A to the classifier

trained on domain B. Method 4 does not use domain transformation,
but trains the classifier using the annotated images of domain A

Precision, recall and F-measure obtained by the fourmeth-
ods are shown in Tables 5, 6 and 7, respectively,2 where
Method 1 shows the best results. T-test on the mean F-
measures between Method 1 and other methods shows the
significant differences. The p-value between Method 1 and 2
is 4.73×10−7 that between Method 1 and 3 is 1.83×10−17,
and that between Method 1 and 4 is 3.34 × 10−6. Since
Method 1 is better than Method 2, the additional loss (Eq. 5)
is effective to transform ROIs while retaining useful opac-
ity features for classification. According to the results of
Method 3, just diverting the trained ResNet does not show
good performance and the image transformation is impor-
tant to adapt to another domain. When comparing Method 1
and 4, although the given data with annotation are the same,
Method 1 is better than Method 4. Method 4 performs worse
than Method 1 because the number of training data is too
small to sufficiently train the ResNet. On the other hand,
Method 1 effectively makes use of the limited number of
annotated data to learn the domain transformation; thus, the
performance becomes better. If enough training data of the
source domain can be available, Method 4 achieves better
performance by sufficiently tuning the parameters.

To show the baseline of the classification performance
in case where enough training data in the same domain is

2 In Tables 5 through 10, “Mean” values are different from those simply
calculated based on the values of the six opacities in each table. “Mean”
represents the mean of 20 trials, where, in each trial, a weighted average
of six opacities is calculated. Also, F-measures in Tables 7 and 10 are
different from those calculated based on the values in Tables 5, 6, 8,
and 9, i.e., they are the average F-measures over 20 trials.

Table 5 Precision obtained by Method 1, 2, 3 and 4 in the domain
transformation from A to B

Method
1 2 3 4

CON 0.986 0.980 0.867 0.977

DN 0.720 0.702 0.268 0.391

EMP 0.555 0.439 0.131 0.584

GGO 0.772 0.660 0.486 0.884

HCM 0.775 0.703 0.408 0.790

NOR 0.627 0.599 0.014 0.538

Mean 0.740 0.679 0.365 0.701

available, a ResNet was trained on domain A, i.e., Atrain

and evaluated on domain A, i.e., Atest. As a result, the mean
precision is 0.837, the mean recall is 0.819 and the mean F-
measure is 0.819. Therefore, preparing enough training data
in the same domain is important as a first step to build a clas-
sification model; however, when it is difficult, the domain
transformation is effective.

Domain transformation from B to A

Next, ROIs of domainBwere classified by theResNet trained
domain A. The ResNet was trained using all the ROIs of
domain A (Table 2), and the accuracy for the training data
was 98.8%. Then, the domain transformation was learned
for 200 epochs with batch size 16. Figure 9 shows examples
of the transformation from B to A, and the reconstructed
images.
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Fig. 8 Examples of the ROIs generated by the domain transformation
(A to B). The row of “Domain A” shows the original ROI used as inputs.
The row of “Generated domain B” shows the result of domain transfor-

mation A→B. The row of “Reconstructed domain A” shows the result
of domain transformation A→B→A

Table 6 Recall obtained by Method 1, 2, 3 and 4 in the domain trans-
formation from A to B

Method
1 2 3 4

CON 0.911 0.899 0.284 0.873

DN 0.563 0.497 0.063 0.408

EMP 0.623 0.526 0.549 0.517

GGO 0.716 0.730 0.352 0.587

HCM 0.869 0.807 0.400 0.840

NOR 0.670 0.469 0.042 0.719

Mean 0.727 0.658 0.286 0.658

Table 7 F-measure obtained by Method 1, 2, 3 and 4 in the domain
transformation from A to B

Method
1 2 3 4

CON 0.947 0.937 0.372 0.901

DN 0.626 0.571 0.051 0.376

EMP 0.582 0.473 0.208 0.513

GGO 0.742 0.687 0.374 0.700

HCM 0.818 0.739 0.308 0.805

NOR 0.643 0.517 0.021 0.593

Mean 0.727 0.655 0.228 0.652

The classification performance are shown in Tables 8, 9
and 10, where Method 1 shows the best results. T test on
the mean F-measures shows significant differences between
Method 1 and other methods, where the p-value between
Method 1 and 2 is 6.00 × 10−3, that between Method 1
and 3 is 5.80 × 10−42, and that between Method 1 and 4

Table 8 Precision obtained by Method 1, 2, 3 and 4 in the domain
transformation from B to A

Method
1 2 3 4

CON 0.993 0.994 0.880 0.927

DN 0.697 0.668 0.213 0.577

EMP 0.639 0.629 0.053 0.786

GGO 0.834 0.827 0.177 0.816

HCM 0.800 0.788 0.627 0.729

NOR 0.566 0.556 0.037 0.538

Mean 0.764 0.752 0.350 0.734

is 2.25 × 10−13. Method 1 shows better F-measure (0.745)
in B to A transformation than A to B (0.727). However, the
difference between Method 1 and 2 in A to B transformation
(0.072) is larger than B to A (0.015), which shows that A to B
transformation is more difficult for the standard CycleGAN
because it cannot emphasize the opacity features without
class label information. In B to A transformation, original
ROIs of domain B may have clear features for classification,
thus it is relatively easy for the standard CycleGAN to trans-
form the domains. To clarify under what kinds of conditions
the opacity features should be emphasized is a remaining
problem.

The classification performance in case where we have
enough training data in the same domain is also shown.When
a ResNet is trained on domain B, i.e., Btrain, and evaluated on
domain B, i.e., Btest, the mean precision is 0.850, the mean
recall is 0.822 and the mean F-measure is 0.818.
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Fig. 9 Examples of the ROIs generated by the domain transformation
(B to A). The row of “Domain B” shows the original ROI used as inputs.
The row of “Generated domain A” shows the result of domain transfor-

mation B→A. The row of “Reconstructed domain B” shows the result
of domain transformation B → A → B

Table 9 Recall obtained by Method 1, 2, 3 and 4 in the domain trans-
formation from B to A

Method
1 2 3 4

CON 0.909 0.905 0.996 0.848

DN 0.761 0.773 0.022 0.396

EMP 0.482 0.445 0.000 0.741

GGO 0.659 0.633 0.568 0.659

HCM 0.884 0.877 0.489 0.762

NOR 0.741 0.722 0.024 0.796

Mean 0.747 0.734 0.370 0.699

Table 10 F-measure obtained by Method 1, 2, 3 and 4 in the domain
transformation from B to A

Method
1 2 3 4

CON 0.949 0.947 0.934 0.854

DN 0.723 0.715 0.037 0.448

EMP 0.541 0.503 0.000 0.709

GGO 0.733 0.713 0.269 0.717

HCM 0.839 0.827 0.541 0.740

NOR 0.637 0.622 0.028 0.629

Mean 0.745 0.730 0.319 0.687

Discussion

In this section, discussion and some remaining problems are
described. First, many methods can be applied to image nor-
malization. In this paper, we adopted one of the methods,
i.e., CycleGAN, and aimed to enhance the normalization

ability of CycleGAN for the classification. Since our main
proposal is the additional classification loss to CycleGAN in
a semi-supervised learning manner, the effect of the method
with a small number of annotated data is mainly compared
to the base method, i.e., the original CycleGAN without
the additional loss. Also, as our initial motivation, we sup-
posed that it is difficult for us to judge the important global
and local features to be transformed to improve the clas-
sification performance; thus, the end-to-end transformation
method was considered instead of applying some image pro-
cessing techniques. In addition, we would like to find the
important features by directly using the classification loss
because the final objective is to maximize the classification
performance. In the proposed method, global features (e.g.,
intensity, contrast, etc.) and local features (e.g., textures) for
better classification are transformed by combining Cycle-
GANand the additional classification loss.However, in terms
of explainability,wemay need to analyze the filters generated
in the convolution layers in CycleGAN in the future research.

We should consider the difference in the feature distribu-
tion of labeled and unlabeled data. In the proposed method,
when giving opacity labels to a small number of data, a
sampling bias would occur, causing discrepancies in the
empirical distribution between labeled and unlabeled data
[19]. We randomly selected the annotated data, but the prob-
lem of the sampling bias has not been solved yet. If the
distribution of the labeled data deviates from the actual data
distribution, itmay be difficult to learn an appropriate domain
transformation. To reduce the bias, it is necessary to consider
training data augmentation that gives class labels to the unla-
beled data, where the class labels are assigned to the data for
which ResNet in the semi-supervised CycleGAN shows high
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classification confidence. This problem should be studied in
the future.

The explainability of the classification is also discussed.
Hu et al. [9] aims at not only identifying the diseases of
COVID-19 but also identifying the locations using CNN,
where the influences of each pixel on the neuron activation
in the target maps are calculated. In our method, patch-based
classification can identify disease locations to some extent,
but for pixel-based segmentation or bounding box detection,
it is necessary to use the activation status of neurons, as used
in [9].

To further evaluate the classification ability, ideally, the
test on an external dataset should be done. Currently, the
experiments are executed using the CT datasets obtained by
two hospitals; however, we are planning to apply the pro-
posed method to other datasets, e.g., CT images obtained by
another hospital and not only CT images but also pathologi-
cal images, to confirm the performance.

We used the identity mapping loss (Eq. 4) to implement
the experiments in the same conditions as the original Cycle-
GAN that has been widely used in the world. In this paper,
however, the single-to-single domain transformation is exe-
cuted; thus, Eq. 4 does not have effects on the transformation.
Nevertheless, when we consider the domain transformation
frommultiple source domains to target domains in the future,
Eq. 4 would be still effective.

There aremany techniques to overcome the problemof the
small amount of data and one of the techniques is pre-training
and fine-tuning. However, in this paper, we focused on the
different approach where the normalization is applied to the
source domain and the well-trained classifier on the target
domain is reused to reduce the annotation cost. To realize this
approach, we designed the additional loss and evaluated the
effects of the designed loss comparing with the method with-
out the additional loss. In the future, it may be worthwhile to
combine pre-training, fine-tuning, and domain transforma-
tion to further improve the classification performance.

Conclusions

We investigated the domain transformation of chest CT
images using a semi-supervised CycleGAN so that a clas-
sifier trained at a certain hospital can be used at another
hospital. The proposed method not only transforms the
appearance of the images but also preserves features being
important to classify lung opacities. We used the chest CT
images of domainA andB and simulated the two caseswhere
domain A is transformed to domain B, and vice versa. As a
result, the effectiveness of the proposed method was con-
firmed. In the future, we will solve the remaining problems
described in the previous sections, then apply the proposed

method to build a large-scale medical image datasets with
annotation.
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