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Melanoma is the malignant transformation of melanocytes and represents the most lethal
form of skin cancer. While early-stage melanoma localized to the skin can be cured with
surgical excision, metastatic melanoma often requires a multi-pronged approach and
even then can exhibit treatment resistance. Understanding the molecular mechanisms
involved in the pathogenesis of melanoma could lead to novel diagnostic, prognostic, and
therapeutic strategies to ultimately decrease morbidity and mortality. One emerging
candidate that may have value as both a prognostic marker and in a therapeutic
context is the vitamin D receptor (VDR). VDR is a nuclear steroid hormone receptor
activated by 1,25 dihydroxy-vitamin D3 [calcitriol, 1,25(OH)2D3]. While 1,25 dihydroxy-
vitamin D3 is typically thought of in relation to calcium metabolism, it also plays an
important role in cell proliferation, differentiation, programmed-cell death as well as
photoprotection. This review discusses the role of VDR in the crosstalk between
keratinocytes and melanocytes during melanomagenesis and summarizes the clinical
data regarding VDR polymorphisms, VDR as a prognostic marker, and potential uses of
vitamin D and its analogs as an adjuvant treatment for melanoma.

Keywords: melanoma, vitamin D receptor (VDR), vitamin D3 metabolite, therapy, pathogenesis, tumor
microenvironment, polymorphisms, heterodimers
INTRODUCTION

The worldwide incidence of melanoma has steadily increased over the past several decades with the
annual incidence rising as rapidly as 4-6% in certain regions (1). In 2021, it is estimated that
approximately 106,110 new melanomas will be diagnosed in the United States alone (2). While the
incidence of melanoma is greatest in older adult populations, peaking at the sixth decade of life in the
United States, it is also one of the most common malignancies found in adolescent and young adult
populations (1, 3, 4). In addition to being a relatively ubiquitous cancer, melanoma is the most lethal
skin cancer resulting in 9,008 deaths per year in the United States between the years of 2012-2016 (1).
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Cutaneous melanoma results from the malignant
transformation of predominantly melanocytes (5). Since these
pigment producing cells are generally confined to the epidermis
of the skin the appearance of vertical growth or Breslow
thickness play key roles in determining the aggressiveness of
the tumor and its likelihood of metastasis (6). For instance, a
stage 0 melanoma is confined only to the epidermis and does not
involve nearby dermis or spread to lymph nodes and distant
organs. Whereas any melanoma that involves distant metastases
is classified as a stage IV tumor.

In early-stagemelanoma surgical excision is often curativewhen
the tumor is localized to the skin (1). However, following
progression to metastatic melanoma treatment becomes more
complex and may include inhibit ion of metastasis ,
immunotherapy, targeted inhibition of the mitogen-activated
protein kinase (MAPK) pathway, and/or radiation therapy (7, 8).
Despite initial improvements these treatments are not fully effective
and the cancer is terminal inmany cases (9). Reversing this trend is
the challenge ahead of melanoma investigators and clinicians,
where a more thorough understanding of the molecular
mechanisms involved in the pathogenesis of melanoma could
lead to novel diagnostic, prognostic, and therapeutic strategies,
ultimately resulting in a decreased mortality rate.

One emerging candidate for both targeted therapy and
prediction of prognosis is the vitamin-D-receptor (VDR) (10–
13). VDR is a nuclear steroid hormone receptor that is found in
several organs, including the skin (14). VDR is activated by 1,25
dihydroxy-vitamin D3 (calcitriol, 1,25(OH)2D3) which, in
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addition of regulating body calcium metabolism, is involved in
many pleiotropic activities including regulation of cell
proliferation, differentiation, and programmed cell death as
well as in photoprotection (12, 13, 15–21).
ACTIVATION OF VITAMIN D

In the canonical pathway of the activation of vitamin D to 1,25
(OH)2D3 involves sequential hydroxylations at C25 by CYP2R1
and CYP27A1 and at C1a by CYP27B1 occurring, respectively,
in the liver and kidney (22, 23) and in peripheral organs
including skin (24). In alternative pathway (non-canonical)
vitamin D is activated by CYP11A1 through sequential
hydroxylations of it side chain with additional metabolism by
other CYP enzymes (23, 25–28). In addition, CYP11A1 is
expressed in immune cells, raising a possibility that CYP11A1-
derived vitamin D metabolites can be produced in immune cells
to regulate their function in a cell autonomous manner (29).
While 1,25(OH)2D3 exerts its phenotypic activity through
activation of the VDR (30–35) and to some degree through
non-genomic action on 1,25D3-MARRS receptor (36, 37), the
CYP11A1-derived vitamin D metabolites, in addition on acting
on the VDR (13, 38–41), can also interact with alternative
nuclear receptors including retinoic acid receptors (RORs) (41,
42), aryl hydrocarbon receptor (AhR) (43) and liver X receptors
(LXR) (44). It should be noted that 1,25(OH)2D3 can also act as
an agonist on the AhR and LXRs (see Figures 1 and 2 for details).
FIGURE 1 | The intracellular action of vitamin D3 (D3)- and lumisterol (L3)-hydroxyderivatives in photoprotection against UVR. Signal transduction includes the
activation of nuclear receptors such as vitamin D receptor (VDR), retinoic acid orphan receptor (ROR)a/g, and aryl hydrocarbon receptor (AhR) and the direct action
of D3- and L3-hydroxyderivatives on mitochondrial processes. The nuclear receptors activities are linked with the transcriptional master regulators NRF2 (nuclear
factor erythroid-derived 2-like 2), p53 and NFkB (nuclear factor kappa-light-chain-enhancer of activated B cells) to coordinate anti-oxidative, DNA repair, anti-
inflammatory, and antiproliferative as well as anti-carcinogenesis mechanisms. The figure is reprinted from (45) with a permission from the publisher.
October 2021 | Volume 11 | Article 743667

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Becker et al. VDR Signaling in Melanoma
VDR IN THE CROSSTALK BETWEEN
KERATINOCYTES AND MELANOCYTES IN
MELANOMAGENESIS

Under normal physiological conditions, melanocyte homeostasis
is maintained by paracrine, autocrine, and direct cell-cell
communication between melanocytes and adjacent
keratinocytes that comprise epidermal melanin units (47, 48).
During melanomagenesis, melanocytes begin to downregulate
expression of adhesion molecules, such as E-cadherin, enabling
an epithelial-mesenchymal transition that severs transforming
melanoma cells from the regulatory activity of adjacent
keratinocytes. This process then enables the tumor to take
control of its epidermal microenvironment (49). It is known
that Wnt/b-catenin signaling is a key regulator of melanocyte-
keratinocyte adhesion and interactions; however, the exact role it
Frontiers in Oncology | www.frontiersin.org 3
plays is complicated. Some studies indicate activation of Wnt/b-
catenin signaling is associated with decreased melanoma cell
proliferation and that loss of this signaling pathway might induce
melanomegenesis (50). Indeed, Wnt/b-catenin signaling is
important for melanocyte differentiation via activation of
MITF expression and posttranslational processing (51). On the
other hand, others have shown that Wnt/b-catenin signaling is
essential for metastatic melanoma cell survival and its inhibition
leads to reduced proliferation, migration, and invasion (52).
These differing observations could result from differing
influences of canonical (b-catenin dependent) or non-
canonical Wnt signaling on melanomas during disease
progression (53). Of note, active forms of vitamin D inhibit
Wnt/b-catenin signaling in squamous cell carcinoma (54).
Recently, there is evidence that points towards an inverse
relationship with VDR expression and Wnt/b-catenin signaling
A

B

FIGURE 2 | (A) Mechanism of action of canonical and non-canonical vitamin D-hydroxyderivatives. Vitamin D signaling in mononuclear cells downregulates
inflammatory genes and suppresses oxidative stress. VDR, vitamin D receptor; RXR, retinoid X receptor; ROR, retinoic acid orphan receptor, ROR, ROR response
element; ARE, antioxidant response element; VDRE, vitamin D response element; NRF2, nuclear factor erythroid-derived 2-like 2. (B) Different routes of vitamin D
delivery will impact vitamin D activation pattern. The figure is reprinted from (46) with a permission from the publisher.
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in primary melanomas which yields reduced proliferation and
immune response evasion (11). It could be that differences in
VDR expression contribute to how Wnt/b-catenin signaling
influences melanomas. The complex changes in vitamin D
signaling and their roles in melanoma development,
progression, and therapy have been also discussed recently
(12, 55).

Also important in the crosstalk within the epidermal melanin
unit is that VDR heterodimerizes with other nuclear receptors
including retinoid X receptors (RXRs). We have previously shown
that in a VDR null (VDR-/-) mouse model topically treated with
the carcinogen 12-dimethyl-benz[a]anthracene (DMBA)-12-O-
tetradecanoylphorbol-13 acetate (TPA) resulted in numerous
melanocytic growths. In that same study, a separate mouse
model harboring a conditional tissue-specific keratin 14
promoter-driven cre-mediated epidermal RXRa knockout
(RXRaep-/- mice) also exhibited melanocytic growths (10). These
data indicated that both absence of VDR and keratinocytic RXRa
knockout stimulated melanocytic growth following tumor
promoting treatment. This observation was further explored in
additional mouse models in which keratinocytic RXRa knockout
was combined with two melanomagenic mutational backgrounds
(RXRaep-/-|CDk4R24C/R24C and RXRaep-/-|Tyr-NRASQ61K) and
exposed to acute neonatal UVB irradiation in combination with
adult chronic UVB doses. These mice exhibited increased
melanocytic growth as had been seen previously. They also had
elevated malignant melanocytic tumors and increased metastasis
to the draining lymph nodes concurrent with a loss in skin
expression of PTEN and P53 tumor suppressors (29). To
further explore the contribution of keratinocytic RXRa towards
melanomagenesis we generated a mouse model that combined the
previous background mutations to generate a highly conducive
mutational landscape (RXRaep-/-|Tyr-NRASQ61K|CDk4R24C/R24C).
With this mouse model we observed the formation of
spontaneous melanomas in the absence of UVB when
keratinocytic RXRa was ablated. Following acute neonatal UVB
irradiation, melanomas in adult keratinocytic RXRa ablated mice
had increased radial and vertical growth phases, increased
proliferation, increased angiogenesis, reduced apoptosis, and
increased metastasis to the draining lymph nodes. We also
noted in the tumor adjacent normal skin irradiated with UVB
that there was increased expression of activated AKT, p21, and
cyclin D1 with reduced expression of pro-apoptotic marker
BAX (30).

A significantly higher percent of cells from benign human nevi
samples exhibited nuclear localization and strong expression of
RXRa (P < 0.0001) compared to melanomas (with or without
metastasis) (31). In the same report, primary human melanoma
samples exhibited significantly higher cytoplasmic expression of
RXRa compared to the nevi (P = 0.018) or the melanomas with
metastasis and in metastasis samples (P = 0.004). The nuclear vs
cytoplasmic expression of transcription factor such as RXRa could
be critical for regulating their target gene expression by limiting its
interaction with their heterodimeric partners and cytoplasmic
localization could be essential to mediate the non-genomic
actions of RXRa. A previous study by Boehm et al. also showed
Frontiers in Oncology | www.frontiersin.org 4
decreased expression of RXRa in human melanocytic tumors (32).
Above results argue for its anticancerogenic role and suggest a cell-
autonomous role of melanocytic RXRa in melanoma suppression.

Interestingly, strong nuclear expression of RXRa is also
reported in epidermal keratinocytes of normal human skin and
we reported for the first time that its expression is reduced or lost
in skin keratinocytes adjacent to melanocytic tumors during
melanoma progression in humans (33) suggesting a non-cell
autonomous role of keratinocytic RXRa in suppressing
melanoma progression. In contrast, cytoplasmic intensity of
RXRb did not differ significantly between groups of nevi and
melanoma. Although, cytoplasmic expression of RXRb was
significantly reduced in human metastasis samples compared
to the human melanoma samples (31) indicating a role of RXRb
in mediating melanoma metastasis.

We have also shown that both VDR and keratinocytic RXRa
contribute towards photoprotection of melanocytes against UVB
radiation in vivo using preclinical studies in mice models. Using
the RXRaep-/- mouse model subjected to acute neonatal UVB
irradiation, we demonstrated that the absence of keratinocytic
RXRa resulted in increased DNA damage, proliferation, and
migration of melanocytes in vivo. We then confirmed these
results ex vivo using primary melanocytes which exhibited
increased growth in conditioned media generated from
culturing isolated RXRa knockout keratinocytes. This was
explained by increased expression of keratinocyte secreted
growth factors ET-1, FGF2, and SCF in the skin of RXRaep-/-

mice following UVB irradiation (34) underscoring a “non-cell
autonomous” role of keratinocytic RXRa in UV-induced
melanocyte homeostasis.

Interestingly, mice with melanocyte-specific ablation of
RXRa and RXRb (RXRamel-/- | RXRbmel-/-) attract a reduced
number of IFN-g secreting immune cells than in wild-type mice
following acute UVR, via altered expression of chemoattractive
and chemorepulsive chemokines/cytokines. Reduced IFN-g in
the microenvironment modifies UVR-induced apoptosis, and
due to this, the survival of dermal fibroblasts is significantly
decreased in mice lacking RXRa/b (35). Results demonstrate that
melanocytic-RXRs in a “non-cell autonomous” manner
modulate post-UVR survival of dermal fibroblasts highlighting
a role in immune surveillance, while independently in a “cell
autonomous” manner regulate post-UVR melanocyte
survival (35).

We have also demonstrated that melanocytic VDR also
affords photoprotective properties in a different mouse model
in which melanocytic VDR was ablated (VDRmel-/-). When
knockout mice were subjected to acute neonatal UVB
irradiation they exhibited fewer differentiated melanocytes with
reduced proliferation, reduced apoptosis, and increased DNA
damage (36).

Interes t ing ly act ive forms of v i tamin D3 show
photoprotective activit ies in both melanocytes and
keratinocytes (37–43) through various mechanisms also
including the VDR (40, 44, 56, 57).

Altogether, above data highlight the importance of nuclear
receptor signaling in melanocytes driven by VDR and its
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principal heterodimer partners RXRa and RXRb in the
regulation of melanocyte homeostasis and melanomagenesis in
the skin and tumor microenvironment. Our data further
underscores a non-cell autonomous role of RXRa both in
keratinocytes and melanocytes of the skin in controlling
melanocyte homeostasis and melanomagenesis.
VITAMIN D RECEPTOR POLYMORPHISMS
IN MELANOMA

The VDR gene is located on chromosome 12q13.11 and has 11
exons (58). Over 600 single nucleotide polymorphisms have been
identified in the VDR gene including FokI (C/T-rs2228570,
previously named rs10735810), TaqI (rs731236), BsmI
(rs1544410), and ApaI (rs7975232) which are the most
commonly analyzed in relation to melanoma (5). Cdx2
(rs11568820), EcoRV (rs4516035), BglI (rs739837) have also
been studied in this context, but to a lesser extent.

The FokI polymorphism (C/T-rs2228570, previously named
rs10735810) is located on exon 2 of the VDR gene (5). This
polymorphism creates a new start codon 10 base pairs upstream
from the usual start codon, leading to a longer VDR protein that is
less active compared to the shorter protein variant. The shorter
protein variant is 424 amino acids and corresponds to the C
nucleotide allele or F allele, and the longer 427 amino acid variant
corresponds to the F allele (59, 60). The TaqI polymorphism
(rs731236) is located at codon 352 of exon 9 of the VDR gene,
and functions as a restriction fragment length polymorphism (5). It
creates a silent codon change of ATT to ATC, which both code for
isoleucine (5, 61).

The BsmI polymorphism (rs1544410) also acts as a restriction
fragment length polymorphism that results in a silent mutation (5,
61). It is located in intron 8 at the 3rd end of the VDR gene, thus it
mayaffectVDRgeneexpressionandmRNAstability (60).TheApaI
polymorphism is located near the BsmI polymorphism, and thus,
may have similar effects (5, 61). The Cdx2 (rs11568820)
polymorphism is located in the promoter region of the VDR
gene, and results in an adenine replacing a guanine (5, 61). The
EcoRV polymorphism (rs4516035) is also located in the promoter
region of the VDR gene, and is thought to play a role in the
anticancer immune response (5, 62). Lastly, the BglI polymorphism
(rs739837) is located near the stop codon in exon 9 (5).

A 2020 meta-analysis calculated the odds ratios and 95%
confidence intervals for the dominant and recessive models for 7
VDR gene polymorphisms (63). The dominant model (Bb + BB
vs. bb) of Bsml (rs1544410) showed a statistically significant 15%
risk reduction in malignant melanoma incidence for carriers of
the rarer allele B. Carriers of the rarer allele f (Ff + ff vs. FF) of
FokI (rs2228570) were shown to be 22% more likely to develop
malignant melanoma. Additionally, for ApaI (rs7975232), there
is a 20% higher risk of melanoma for carriers of the rarer a allele
(Aa + aa vs. AA). No significant association between melanoma
risk and the other investigated VDR polymorphisms, which
included TaqI (rs731236), A-1012G (rs4516035), Cdx2
(rs11568820), and BglI (rs739837), was found.
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VDR EXPRESSION AS A PROGNOSTIC
BIOMARKER

One cohort-study assessed the relationship between VDR
expression and prognostic factors in Central European cohort of
melanoma patients (64, 65). VDR expression was quantified
immunohistochemically in 69 cutaneous melanomas and
compared to the tumors’ pTNM (pathological tumor, node,
metastasis) stage, ulceration, and tumor-infiltrating lymphocytes.
pTNM staging is based on the tumor (i.e., Breslow thickness,
ulceration), spread to nearby lymph nodes, and distant
metastases. The higher the tumor’s stage, the worse the prognosis.

Strongest and highest VDR expression was detected in the
nuclei of epidermal keratinocytes for normal uninvolved skin
compared to melanocytic lesions. For “nuclear localization”,
VDR expression decreased in the following order: normal skin
> melanocytic nevi > primary melanomas = metastases (64). For
“cytoplasmic localization”, VDR expression decreased in the
order: normal skin = melanocytic nevi > primary melanomas =
metastases. Reduction in VDR expression with the development
of the pigmented lesions was more evident in the nuclei than in
the cell-cytoplasm suggesting a cell-autonomous role of
canonical VDR signaling in the melanocytes during melanoma
progression and metastasis (64).

Interestingly, VDR expression in the basal and supra-basal
keratinocytes of the skin epidermis surrounding the melanocytic
tumors was markedly lower in comparison to normal skin without
any skin lesions, which also suggests a non-cell autonomous role of
keratinocytic VDR in melanomagenesis (64). Further, high VDR
expression both in primary andmetastatic melanomas was a factor
that favorably influenced the OS in melanoma cohort.

In melanoma, ulceration contributes to the tumor of pTNM
staging, and is a hallmark of more aggressive tumors. Whereas, the
presence of tumor-infiltrating lymphocytes in melanoma is
associated with a favorable prognosis. Less advanced melanomas,
like those with fewer than three lymph node metastases and those
without distant metastases, had the strongest VDR expression (64,
65). Whereas tumors with indicators of poor prognosis like
ulceration or non-brisk or absence of tumor-infiltrating
lymphocytes, showed significantly lower VDR expression. Most
importantlypatientswithmetastatic diseaseandVDR-/-melanomas
had the poorest probability of survival (64, 65). Interestingly, the
expression of activating vitamin D enzyme CYP27B1 was inversely
correlated withmelanoma progression and overall and disease-free
survival times and such correlationwas amplified by a concomitant
decrease in theVDR expression (55, 65, 66).While CYP24A1 levels
were high in nevi and early-stage melanomas in comparison to
normal epidermis, its level decreasedduringmelanomaprogression
similarly to CYP27B1 and VDR (67). These findings indicate that
vitamin D signaling system including VDR expression plays an
important role in melanoma prognosis and may also be used as an
additional prognostic biomarker. Similar trend was reported for
ocular melanoma (68). Importantly, recent experimental studies
have shown that knocking out of the VDR in melanoma cells
increase their malignant behavior and decreases responsiveness to
active form of vitamin D indicating that the VDR can serve as the
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melanoma tumor suppressor gene (69),which is consistentwith the
role of the VDR as the tumor suppressor gene in the skin as
originally proposed by Bikle (44). Of note, defects in VDR lead to
increased malignant behavior in other tumors including bladder,
ovarian, lung and breast cancers, lymphomas (70–75).

There was a reverse correlation between melanin content and
expression of the VDR and CYP27B1 as well as of RORa and g in
human melanoma samples (64, 66, 76). RORa and g, alternative
receptors for vitamin D-hydroxyderivatives, are expressed at lower
levels in melanomas than in nevi and their expression decreases
during melanoma progression, with lowest expression found in
stage III and IV melanomas and in metastases (76). Interestingly,
the expression of VDR as wells as of RORs was related to the
HIF1a activity, which also affected FoxP3 expression in metastatic
melanoma (77). Of note, melanogenesis can stimulate HIF1a
expression and anaerobic glycolysis in melanoma cells (78)
explaining in part the correlation between defects in VDR
expression and signaling and defective responses to vitamin D
in pigmented melanoma cells (64, 79, 80).

A separate study conducted by Muralidhar et al. analyzed 703
primary melanoma transcriptomes to better understand the role
of vitamin D-VDR signaling (11). They found that VDR
expression was independently protective against melanoma-
related death in both primary and metastatic disease. VDR
expression was shown to be inversely related to Wnt/b-catenin
signaling, suggesting a mechanism for the anti-proliferative effects
of vitamin D-VDR signaling. Additionally, increased VDR
expression was associated with the upregulation of pathways
involving the antitumor immune response as demonstrated by a
greater abundance of tumor-infiltrating lymphocytes. This study
further supports VDR’s utility as a prognostic biomarker,
especially in those patients considering immunotherapy. It also
establishes a causal relationship between vitamin D-VDR
signaling and melanoma survival, suggesting that this
mechanism could serve as a target for pharmacologic agents.

In addition to its generalized expression, the subcellular
localization of VDR to the nucleus also could be beneficial as a
biomarker for melanoma progression. Hutchinson et al. studied 34
benignnevi, 149metastaticmelanomas, and44matchedmetastases
via immunohistology for the subcellular localization of VDR and
phosphorylated ERK (p-ERK) as an indicator of MAPK activation
(81). They found that as melanomas progressed, they exhibited
reduced nuclear localization of VDR and increased cytoplasmic
localization. Overall, expression of VDR decreased from benign
nevi tometastaticmelanomaand furtherdecreased inmetastasizing
primary tumors. When they observed VDR localization in
malignant melanomas known to have metastasized and
compared them to those known to not have metastasized within
five years, they saw nuclear VDR was reduced while there was no
difference in cytoplasmic localization. They also found increased p-
ERK consistent with cytoplasmic localization of VDR likely a result
of the known mechanism of MAPK inhibition of VDR signaling
when it is heterodimerized to RXRa via phosphorylation of serine
260 (82). These observations highlight the need for more research
on the usefulness of VDR nuclear localization as a prognosticator
for metastasizing melanomas.
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SERUM VITAMIN D LEVELS AND
PROGNOSIS

As part of the Leeds Melanoma Cohort, Newton-Bishop et al.
reported an association between higher 25-hydroxyvitamin D3
serum levels at time of melanoma diagnosis and lower Breslow
thickness (p value= .002) (83). Higher 25-hydroxyvitamin D3
levels were also found to be associated with increased survival
independent of Breslow thickness. Several other studies have
confirmed an association between higher serum vitamin D levels
at diagnosis and better prognosis in melanoma (84–86).
However, a more recent study asserts that rather than high
levels of vitamin D being protective a deficiency in vitamin D
(<25 nmol/L) actually shortens patient survival time from
melanoma in a VDR-dependent manner (11).

Additionally, an observational single center study with
estimated study completion date of January 2021, not yet
published, is investigating the response to treatment with anti-
programmed death 1 (PD-1) therapy in relation to serum
vitamin D levels in 40 advanced melanoma patients
(ClinicalTrials.gov Identifier: NCT03197636) (87). Serum levels
of vitamin D will be measured at baseline, 3, and 6 weeks after
initiation of treatment with anti-PD1 therapy followed by three
years of observational follow-up. Response to treatment will be
assessed at each visit within the study period and at follow-up.
VITAMIN D, VDR AND IMMUNOTHERAPY

The issue of interference of active forms of vitamin D on
immunotherapy deserves special attention, especially that
immunotherapy represents the promising therapeutic approach
against melanoma (88–95). In this context, inhibitory role of
vitamin D in the adaptive immune responses (96, 97) requires
explanation. Although it inhibits T cell responses in autoimmune
responses (98), the evidence that it acts as an immunosuppressor is
missing. On the opposite, it is inhibiting proinflammatory responses
through VDRmediated inhibition of NFkb and inverse agonism on
RORg and inhibition of oxidative stress through activation of NRF2-
dependent pathways (45, 46, 57, 99). However, it is unclear to which
degree, how, and whether it will inhibit anti-tumor T-cell responses.
On the other hand, vitamin D activates the innate immune system
(96, 97), which plays an important role in anti-tumor activity (100–
106). Therefore, the actions of active forms of vitamin D can be
defined as immunoregulatory, with their full definitions requiring
future careful studies.
VITAMIN D AND ITS ANALOGS IN THE
TREATMENT OF MELANOMA

Several studies are investigating the use of vitamin D or its
analogs as adjuvant treatment in melanoma patients with an
understanding that different delivery routes will influence vit D
activation (Figures 2B and see below).
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One report thatutilizeddata fromtheWomen’sHealth initiative
(WHI) calcium/vitamin D randomized controlled trial, studied the
effects of calcium and low-dose vitamin D on the risk of non-
melanomaandmelanoma skincancers in post-menopausalwomen
(107). Women ages 50-79 years (N=36,282) were randomly
assigned to receive 1,000 mg of elemental calcium plus 400 IU of
vitamin D3 daily or placebo for a mean follow-up period of seven
years. Non-melanoma and melanoma skin cancer diagnoses were
self-reported annually. The study concluded that the treatment
group and control group showed no significant difference in the
incidence of melanoma or non-melanoma skin cancers. However,
women on the calcium/vitamin D regiment with a history of non-
melanoma skin cancer had a reduced risk of melanoma as opposed
to those receiving placebo (hazard ratio 0.43; 95% confidence
interval: 0.21 to 0.90: P(interaction) =.038). It was also noted that
this difference was not seen in women that did not have a history of
non-melanoma skin cancer.

In 2010, the Australia and New Zealand Melanoma Trials
Group conducted a pilot randomized placebo-controlled phase II
trial, Mel-D, to investigate the safety and efficacy of adjuvant high-
dose vitamin D administration in patients with cutaneous
melanoma that had initially been treated with wide excision
(Austra l ian New Zealand Cl inica l Tr ia l s Reg is try
#ACTRN12609000351213) (108, 109). The adjuvant treatment
included an oral loading dose of 500,000 IU Vitamin D followed
by a once monthly oral dose of 50,000 IUVitamin D for two years.
Patients in this study reportedly experienced an improvement in
progression-free survival and overall survival.

The ongoing study, VidMe, is a multicenter randomized
placebo-controlled phase III trial intended to examine the efficacy
and long-term safety of high-dose vitamin D supplementation in
500 patients with melanoma (ClinicalTrials.gov Identifier:
NCT01748448) (110, 111). Once a month, participants will either
receive 100,000 IU of vitamin D or placebo (Arachidis oleum
raffinatum). This study’s primary endpoint is relapse-free
survival. They also plan to assess the expression of VDR in the
primary tumor and its possible correlation with relapse.
Secondarily, vitamin D levels at diagnosis will be correlated with
melanomasite, subtype, andstageatdiagnosis.VitaminD levelswill
continue to be monitored after supplementation to determine if
serum levels depend on the genetic variability of the vitamin D
pathway. Additionally, they plan to investigate whether VDR
immunoreactivity correlates with stage at diagnosis.

Vitamin D analogs have also exhibited promising
photoprotective and anticancer properties (13, 57, 112)
indicating their possible application to counteracting skin
cancer, including melanomas. The anti-melanoma activity of
Frontiers in Oncology | www.frontiersin.org 7
the non-calcemic analog, 20(OH)D3, was shown in a preclinical
in vivo model (113). 20(OH)D3 is non-calcemic but possesses
similar antiproliferative activity in vitro when compared to 1,25
(OH)2D3. Skobowiat et al. demonstrated decreased colony
formation both in the monolayer and soft agar conditions
when cells were treated with 20(OH)D3. 20(OH)D3 was also
shown to inhibit melanoma cells in transwell migration and
spheroid toxicity. Additionally, 20(OH)D3 decreased melanoma
tumor growth in immunocompromised mice without obvious
signs of toxicity. These results suggest that 20(OH)D3 is likely
effective and safe, and thus, should undergo further preclinical
testing as an antimelanoma therapy.

Therefore, cellular expression of RXRs and VDR in addition to
their sub-cellular localization could be used as a prognostic
biomarker for melanoma progression in humans. While vitamin
D3 and its analogs are currently being explored in pre-clinical and
clinical settings as a possible adjuvant therapy in the treatment of
melanoma (107, 108, 110, 111, 113), in those individuals with
decreased or dysfunctional VDR and RXR expression, vitamin D
supplementation isunlikely tobebeneficial.Thus, there is a need for
a novel therapy that increases and/or restores functional VDR and
RXRexpression inconjunctionwith the supplementationofvitDor
its analogs. Similarly, the in vivo anti-melanoma effects of the novel
vitDanalogsneed tobeestablished and theunderlyingmechanisms
of action need to be deciphered.
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