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5,6, Nidal GhoshehID
7,

Jenny Emneus5, Lachmi Jenndahl1, David L. Kaplan3, Niklas Bergh2*, Alberto

Martinez Serrano4‡, Per Fogelstrand2‡

1 VERIGRAFT AB, Gothenburg, Sweden, 2 Department of Molecular and Clinical Medicine/Wallenberg

Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden,

3 Department of Biomedical Engineering, Tufts University, Medford, MA, United States of America,

4 Department of Molecular Biology, Center of Molecular Biology “Severo Ochoa” (UAM-CSIC), Universidad

Autonoma de Madrid, Madrid, Spain, 5 Department of Biotechnology and Biomedicine, Technical University

of Denmark, Kgs. Lyngby, Denmark, 6 FELIXROBOTICS BV, Utrecht, Netherlands, 7 School of Bioscience,

Systems Biology Research Center, University of Skövde, Skövde, Sweden
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Abstract

Human brain tissue models such as cerebral organoids are essential tools for developmen-

tal and biomedical research. Current methods to generate cerebral organoids often utilize

Matrigel as an external scaffold to provide structure and biologically relevant signals. Matri-

gel however is a nonspecific hydrogel of mouse tumor origin and does not represent the

complexity of the brain protein environment. In this study, we investigated the application of

a decellularized adult porcine brain extracellular matrix (B-ECM) which could be processed

into a hydrogel (B-ECM hydrogel) to be used as a scaffold for human embryonic stem cell

(hESC)-derived brain organoids. We decellularized pig brains with a novel detergent- and

enzyme-based method and analyzed the biomaterial properties, including protein composi-

tion and content, DNA content, mechanical characteristics, surface structure, and antigen

presence. Then, we compared the growth of human brain organoid models with the B-ECM

hydrogel or Matrigel controls in vitro. We found that the native brain source material was

successfully decellularized with little remaining DNA content, while Mass Spectrometry

(MS) showed the loss of several brain-specific proteins, while mainly different collagen

types remained in the B-ECM. Rheological results revealed stable hydrogel formation,

starting from B-ECM hydrogel concentrations of 5 mg/mL. hESCs cultured in B-ECM

hydrogels showed gene expression and differentiation outcomes similar to those grown

in Matrigel. These results indicate that B-ECM hydrogels can be used as an alternative

scaffold for human cerebral organoid formation, and may be further optimized for improved

organoid growth by further improving protein retention other than collagen after

decellularization.
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Introduction

The development of brain organoids for studies on neurodevelopment and disease has

emerged as a novel research field [1]. For example, brain organoids have been used for experi-

mental studies on microcephaly [2], schizophrenia [3], zika virus [4], and Alzheimer’s disease

[5]. Brain organoids are three-dimensional, neuronal tissues generated from human pluripo-

tent stem cells after embryoid body formation [2]. The differentiation and maturation of neu-

ronal tissue within brain organoids is induced by adding differentiation factors to the culture

medium. During this process, aggregated cells organize into a 3D spherical structure, with a

partly brain-like architecture with ventricular zones as well as deep- and upper-layer neurons

[2]. Besides these cortical structures, more specific brain regions can be developed in the orga-

noids, such as the midbrain and hypothalamus [4, 6, 7].

Most commonly, Matrigel is used as an outer hydrogel scaffold to give brain organoids

structural support and to supply the organoid tissue with differentiation factors [8]. However,

the composition of Matrigel differs from the composition of the extracellular matrix (ECM) of

the native brain and is therefore not specific [9]. Potential alternatives to Matrigel are ECM

hydrogels, which are obtained by decellularization of the native brain.

The ECM consists of structural and functional proteins that give cells structural support

and guide cell behavior. The composition of the ECM is specific for each tissue type and con-

tributes to the individual functions of every tissue [10]. The ECM of the brain is unique in its

composition, as it contains less fibrous structural proteins, such as collagen or elastin, and

more proteoglycans compared to other tissues [11, 12]. In addition to ECM, some proteogly-

cans are also anchored in cell membranes, where they regulate growth factor availability to

cells, e.g. by binding of nerve growth factor (NGF), vascular endothelial growth factor (VEGF),

or platelet-derived growth factor (PDGF) to proteoglycan carbohydrate side-chains, the gly-

cosaminoglycans (GAGs) [13]. Proteoglycans profoundly influence neuronal cell behavior by

regulating cell adhesion and neurite outgrowth [11]. Lecticans, which are a subfamily of pro-

teoglycans, are especially abundant in the brain ECM [11, 12]. Four members of the lectican

family have been identified in different splicing variants in the brain, namely brevican and

neurocan, which are unique for brain ECM, and aggrecan and versican, which exist in a variety

of tissues [11, 14]. The ECM composition is furthermore unique for specific brain regions, sug-

gesting that the brain ECM influences neuronal cell function. The brain ECM is continuously

regulated in vivo by cell-secreted enzymes, such as matrix metalloproteinases (MMPs), which

contribute to plasticity and dynamic remodeling of the brain. The total contribution of the

ECM in the brain in terms of mass or volume is low compared to other tissues, reported to be

~20% of the total weight of the brain [14, 15]. Due to the unique composition of brain ECM,

ECM hydrogels from decellularized brain tissue may be a more specific scaffold than those

derived from Matrigel for in vitro differentiation of embryonic stem cells and human neural

tissues.

Decellularization (DC) is the process of removing cells from the ECM by chemical, physical,

and enzymatical methods [16]. DC generates cell-free ECM scaffolds, with minimal interfer-

ence from cellular antigens and metabolites. However, the DC process exhibits a risk of dam-

aging ECM proteins, and thus requires a balance between sufficient cell removal and preserved

integrity of the ECM. DC has been applied on multiple tissue types, such as blood vessels [17,

18], heart [19], lung [20], kidney [21], and also brain [22–30]. Once decellularized, the ECM

can be processed into hydrogels with a variety of methods [31]. The basic principle of hydrogel

formation is the solubilization of ECM proteins with acids and enzymes. Commonly, pepsin is

used for that purpose, which cleaves the nonhelical protein regions outside of the triple helix

protein structure of collagen (= telopeptides) that form the intramolecular bonds between

PLOS ONE Brain organoid formation on ECM hydrogels

PLOS ONE | https://doi.org/10.1371/journal.pone.0245685 January 28, 2021 2 / 22

Innovation Program under the Marie Sklodowska-

Curie Grant (No. 722779) awarded to RS; AMS

group (CBMSO-UAM) grant (No. MINECO SAF-

2017-83241-R) awarded tp AMS, ISC-III RETICS

TerCel (RD16/0011/0032) and ASCTN597 Training

(No. 813851) awarded to AMS, and NIH grants

((P41EB027062 and R01NS092847) awarded to

DLK. VERIGRAFT AB provided funding in the form

of salary for RS. Felix Printers provided funding in

the form of salary for HG. The specific roles of

these authors are articulated in the ‘author

contributions’ section. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The author’s have read the

journal’s policy and the authors of this study have

the following competing interests: RS was a paid

employee of VERIGRAFT AB at the time of study

and HG was a paid employee of Felix Printers at the

time of study. This does not alter our adherence to

PLOS ONE policies on sharing data and materials.

There are no patents, products in development or

marketed products associated with this research to

declare.

https://doi.org/10.1371/journal.pone.0245685


collagen fibrils, therefore producing monomeric components [32]. After neutralization to

physiological pH, pepsin gets inactivated and the hydrogel formation then follows a collagen-

based self-assembly process at 37˚C or below [31]. B-ECM hydrogels have previously been

reported to enhance neuronal maturation compared to conventional substrates such as colla-

gen or laminin [22, 30] and have been used for site-specific differentiation effect on neuronal

stem cells and induced pluripotent stem cells [33]. However, B-ECM hydrogels have not yet

been used as a scaffold for cerebral organoid formation.

In the present study, we evaluated the use of decellularized whole pig brain ECM hydrogels

as a scaffold for cerebral organoid growth, in comparison to the commonly applied Matrigel.

Materials and methods

Decellularization of porcine brain

Frozen whole pig brains (FarmLand, USA) were obtained via Amazon.com and stored at

-20˚C. Brains were derived from adult animals (6 months at the time of slaughter), mixed gen-

der, of Smithfield breed, raised in the USA. Brains were delivered in a sealed plastic cup with-

out any additives or preservatives. For decellularization, the brain tissue was thawed, cut into

small pieces with a scalpel, and added to a 1L glass bottle. The total tissue volume for one batch

was about 400g per bottle. The tissue pieces were then washed with H2O for 4–5 h in an incu-

bator at 37˚C under agitation at 150 rpm (New Brunswick Scientific Model G25), which

resulted in a thick slurry. For changing of reagents, the liquid was removed by decanting over

a porcelain filter (Porcelain Bitumen Filter Crucible, Cole-Parmer, USA) to retain brain tissue,

with slight stirring with a metal spatula. The brain tissue was then incubated with 1% sodium

deoxycholate (SDC, Sigma, USA). The SDC solution was changed twice daily. After 2–3 days,

the liquid usually was transparent and the remaining brain tissue volume remained constant,

indicating washout of most blood and other soluble components. After 4 days of SDC treat-

ment, the tissue was washed for 4–5 h in H2O and added to 125 mL 40 U/mL deoxyribonucle-

ase I (DNase, Sigma, USA) for incubation o/n. Finally, the tissue was washed in H2O for 4-5h

with several liquid changes, and the remaining tissue was collected. The final tissue weight was

measured, biopsies for analysis were collected, and the remaining tissue (B-ECM) was frozen

in a 50 mL falcon at -80˚C and then lyophilized.

B-ECM solubilization and hydrogel formation

Lyophilized brain tissue was solubilized following the method of Freytes et al. [34]. Briefly,

B-ECM was powdered with a mill (Wiley Mini Mill, 3383-L10, Thomas Scientific, USA) over a

60 mesh (equal to 250 μm particle size). Then, a desired volume of 0.1 M HCl solution diluted

in H2O was prepared, and pepsin (Sigma, USA) and B-ECM powder added at a ratio of 1:10

(e.g. 1 mg/mL Pepsin together with 10 mg/mL B-ECM). After 72h incubation at room temper-

ature with a magnetic stirrer, the solution was centrifuged at 13,000 rpm for 10 min, and the

supernatant consisting of the solubilized B-ECM was collected. The solubilized B-ECM was

stored at 4˚C until the solution was cooled down. The B-ECM solution was then kept on ice

and cold 10x PBS was added to make up a volume of 1/10th of the total volume, resulting in a

concentration of 1x PBS. While still on ice, the pH of the solution was adjusted to 7.2–7.8 with

cold NaOH, and the solution was quickly frozen and later lyophilized. Then, the lyophilized

tissue was powdered once more over a 60 mesh and stored until use. Directly before use, the

neutralized B-ECM powder was dissolved in cold H2O at the desired concentration and

strongly vortexed, which led to hydrogel formation at 37˚C. In this study, analysis on decellu-

larized B-ECM are labeled as “B-ECM”, and analysis on fully formed B-ECM hydrogels are

labeled as “B-ECM hydrogel”.
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DNA quantification

DNA from 10–30 mg wet tissue was extracted using the DNeasy Blood and Tissue Kit (Qiagen,

Germany), following the manufacturer’s protocols. Briefly, native brain tissue or B-ECM sam-

ples (n = 9) were incubated at 55˚C with proteinase K solution until the tissue was completely

digested. DNA was extracted with spin columns and quantified with a Qubit 3.0 Fluorometer

(ThermoFisher, USA). The total amount of DNA was calculated from the supplied DNA

standard.

Histology and immunohistochemistry

Samples of native brain, B-ECM or B-ECM hydrogel were fixated in 4% paraformaldehyde for

1h for fixation, embedded in paraffin, and cut in 5 μm sections (n = 3). The sections were

deparaffinized at 60˚C for 1h and rehydrated following standard protocols before use.

Nuclei in the native brain and B-ECM samples (sections and whole surface) were stained

with 25 μg/mL DAPI for 5 min. Histological staining with hematoxylin-eosin (H&E) was per-

formed following standard procedures. Pictures for DAPI or H&E stained samples were taken

with a fluorescent microscope (Keyence, Japan). For immunohistochemical staining, antigen

retrieval was performed in a Tris-EDTA buffer in a water bath at 95˚C for 15 min. Samples

were then incubated for 30 min at room temperature with FBS for blocking. For IHC, the fol-

lowing antibodies were used: anti-fibronectin (1:400, #ab23750, Abcam, UK), anti-vitronectin

(1:200, #ab13413, Abcam, UK), anti-myelin basic protein (MBP, 1:100, #ab124493, Abcam,

UK), laminin (1:100, #ab11575, Abcam, UK), and anti-human leucocyte antigen (HLA-DR,

1:100, #sc53302, Santa Cruz, USA). All antibodies were diluted in PBS. Following overnight

incubation at 4˚C in a wet chamber, slides were washed in PBS and incubated with secondary

antibody conjugated to AlexaFluor488 (donkey-anti mouse, #A-21202, ThermoFisher) or con-

jugated to AlexaFluor594 (donkey-anti rabbit, #A-21203, ThermoFisher) at a concentration of

1:200. Finally, samples were mounted with Prolong antifade (Fisher Scientific) and imaged

with a fluorescence microscope (Apotome Axioplan 2, Zeiss).

Scanning electron microscopy

Scanning electron microscopy (SEM) was performed on samples of native brain, B-ECM or

B-ECM hydrogel. The samples were dehydrated in a series of 35%, 60%, 80%, 90%, 95%, and

100% ethanol in time intervals of 10 minutes each, followed by incubation with hexamethyldi-

silazane (Sigma, USA) for 10 min. The liquid was aspirated, and the samples were air-dried.

Prior to SEM imaging, samples were sputter-coated with gold for 120 sec and imaged under

vacuum with a scanning electron microscope (Zeiss EVO MA10, Germany).

Quantification of collagen and glycosaminoglycans

Collagen and glycosaminoglycans (GAGs) in the native brain and B-ECM samples were quan-

tified with commercial kits. For the quantification of collagen, which can be solubilized with

the hydrogel preparation technique (described above), the Sircol soluble collagen assay (Bioco-

lor, United Kingdom) was used. Briefly, 10–20 mg samples (n = 15) were dissolved in 1 mL 0.1

M HCl containing 1 mg pepsin o/n at room temperature. Then, samples were incubated in the

supplied collagen isolation and concentration reagent o/n at 4˚C, after which the supplied dye

reagent was added. The absorbance of 200 μL sample was measured spectroscopically at 555

nm. The concentration was determined from a standard of known concentration. For GAG

quantification, the glycosaminoglycan assay (Chondrex, USA) was used, which detects sulfated

GAGs. 15–30 mg samples (n = 8) were dissolved in a 0.2 M sodium phosphate buffer
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containing 5 mM cysteine HCL, 5 mM EDTA and 125 μg/mL Papain o/n at 65˚C. Then, sam-

ples were centrifuged at 13,000 rpm (Eppendorf Centrifuge 5417R) and the supplied dye

reagent added to the supernatant. Absorbance was measured spectroscopically at 525 nm. Fol-

lowing the individual supplier’s instructions, collagen was measured from dry sample weight

and GAGs from wet sample weight.

Mass spectrometry

Mass Spectrometry (MS) of native brain, B-ECM, B-ECM hydrogel and Matrigel was per-

formed by standard shotgun proteomics analysis. For brain samples, 6 individual batches were

combined to a pooled individual sample. Lysate preparation and digestion was done according

to previously published methods [35]. Briefly, samples were lysed using 20 μL of lysis buffer

(consisting of 6 M guanidinium hydrochloride, 10 mM Tris(2-carboxyethyl)phosphine

(TCEP), 40 mM carbamoylamino acids (CAA), 50 mM HEPES pH8.5). Samples were boiled at

95˚C for 5 minutes, after which they were sonicated for 3x 10 sec in a Bioruptor sonication

water bath (Diagenode) at 4˚C. After determining protein concentration with a Bradford assay

(Sigma), 50 μg was taken forward for digestion. Samples were diluted 1:3 with 10% acetonitrile,

50 mM HEPES pH 8.5, then LysC (MS grade, Wako) was added in a 1:50 (enzyme to protein)

ratio, and samples were incubated at 37˚C for 4 h. Samples were further diluted to 1:10 with

10% Acetonitrile, 50 mM HEPES pH 8.5. Trypsin (MS grade, Promega) was added in a 1:100

(enzyme to protein) ratio and samples were incubated overnight at 37˚C. Enzyme activity was

quenched by adding 2% trifluoroacetic acid (TFA) to a final concentration of 1%. Prior to

mass spectrometry analysis, the peptides were desalted on in-house packed C18 StageTips

[36]. For each sample, 2 discs of C18 material (3M Empore) were packed in a 200 μL tip, and

the C18 material activated with 40 μl of 100% Methanol (HPLC grade, Sigma), then 40 μl of

80% acetonitrile with 0.1% formic acid. The tips were subsequently equilibrated 2x with 40 μL

of 1% TFA, 3% Acetonitrile, after which the samples were loaded using centrifugation at

4.000x rpm. After washing the tips twice with 100 μL of 0.1% formic acid, the peptides were

eluted into clean 500 μL Eppendorf tubes using 40% acetonitrile with 0.1% formic acid. The

eluted peptides were concentrated in an Eppendorf Speedvac, and reconstituted in 1% trifluor-

oacetic acid, 2% acetonitrile for Mass Spectrometry (MS) analysis.

MS data acquisition was performed by loading peptides of each sample onto a 2 cm C18

trap column (ThermoFisher 164705), connected in-line to a 50cm C18 reverse-phase analytical

column (Thermo EasySpray ES803) using 100% Buffer A (0.1% Formic acid in water) at 750

bar, using the Thermo EasyLC 1000 HPLC system, and the column oven operating at 45˚C.

Peptides were eluted over a 260 minute gradient ranging from 6 to 60% of 80% acetonitrile,

0.1% formic acid at 250 nL/min, and the Q-Exactive instrument (Thermo Fisher Scientific)

was run in a DD-MS2 top10 method. Full MS spectra were collected at a resolution of 70,000,

with an AGC target of 3×106 or maximum injection time of 20 ms and a scan range of 300–

1750 m/z. The MS2 spectra were obtained at a resolution of 17,500, with an AGC target value

of 1×106 or maximum injection time of 60 ms, a normalised collision energy of 25 and an

intensity threshold of 1.74. Dynamic exclusion was set to 60 s, and ions with a charge state <2

or unknown were excluded. MS performance was verified for consistency by running complex

cell lysate quality control standards, and chromatography was monitored to check for

reproducibility.

The raw files were analysed using Proteome Discoverer 2.4. Label-free quantitation (LFQ)

was enabled in the processing and consensus steps, and spectra were matched against the

Human Matrisome and the Mouse Matrisome database obtained from the matrisome project

(matrisomeproject.mit.edu). Dynamic modifications were set as Oxidation (M), Deamidation
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(N,Q) and Acetyl on protein N-termini. Cysteine carbamidomethyl was set as a static modifi-

cation. All results were filtered to a 1% false discovery rate (FDR), and protein quantitation

done using the built-in Minora Feature Detector.

The results of detected proteins from the different samples (S1 File) were merged by the

uniprot accession ID for the samples of native, decellularized and hydrogel pig brain. The

gene names for the Uniprot accession IDs were retrieved applying the Retrieve/ID mapping
tool on the Uniprot homepage (www.uniprot.org). Thereafter, the data set was merged

with the results of detected proteins from the Matrigel sample, ordered by gene name. The

normalized abundances for each sample was log 2 transformed and the resulting data set was

quantile normalized applying the normalize.quantile() function in package preprocessCore in

R. The normalized protein abundances were then filtered to include only proteins that were

identified with at least 2 unique peptides (S2 File). To explore the ECM content of the data set,

the filtered data set was subsequently merged with the Human Matrisome (samples native,

decellularized and hydrogel) or the Mouse Matrisome (matrigel) of the Matrisome Project

(matrisomeproject.mit.edu). To identify the overlapping Matrisome proteins from the differ-

ent samples, Venn diagram was constructed applying the function venn.diagram() in package

VennDiagram in R (S2 Fig). To extract the proteins from the different areas of the Venn dia-

gram the function calculate.overlap() was applied (S3 File).

Rheology

To obtain stiffness characteristics of the B-ECM hydrogel, rheological measurements were per-

formed with an ARES-LS2 Shear Rheometer (TA Instruments, USA). For all experiments,

neutralized B-ECM solutions at different concentrations were stored on ice to prevent prema-

ture gelling before assaying. The 25 mm parallel plates were cooled to 4˚C with a Peltier unit,

then B-ECM solution was added. A 1 mL sample (n = 3) was added, and the gap distance

between the plates set to 1mm. Mineral oil was applied to the borders of the liquid to prevent

evaporation. Dynamic time sweep test was performed at 37˚C and settings of 1 rad/s and 5%

strain. Following the dynamic time sweep test, a dynamic frequency sweep test was performed

at a constant strain of 1% along a frequency range of 1 rad/s to 200 rad/s. After the dynamic

frequency sweep test, a dynamic strain sweep test was performed at a constant frequency of 1

rad/s along a strain range of 0.1% to 200%.

Turbidimetrics

Turbidimetric kinetic analysis was preformed similar to previously described methods [37, 38]

to determine gelation rates. Neutralized B-ECM solution was prepared at different concentra-

tions and kept on ice at 4˚C until the measurement was started. The spectrophotometer was

preheated at 37˚C and 100 μL of B-ECM solution at different concentration (n = 6 replicates)

was added to the wells. The absorbance at 405 nm was measured at 1 min intervals for 90 min

and normalized between 0 (A0; the initial absorbance) and 1 (Amax; the maximum absor-

bance).

Normalized Absorbance ðNAÞ ¼
A � A0

Amax � A0

Furthermore, the time when the absorbance reached 50% or 95% of respective maximum

absorbance (t1/2 or t95) was noted. The gelation rate (S) was determined as the slope of the lin-

ear region of the gelation curve, and the lag time (tlag) was defined as the intercept of the linear

region of the gelation curve with 0% absorbance.
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Cell culture

Cell studies conducted in the present work were approved by the UAM Research Ethics Com-

mittee (Refs. CEI-74-1338 and CEI-96-1768), and then authorized by the Madrid Local Gov-

ernment Health Council under references 47/312421.9/17 and 07/654525.9/19. Human

embryonic stem cell (hESC) line H9 (WA09, WiCell Research Institute Inc.) was cultured

under feeder- and xenogen-free conditions on human recombinant laminin LN521 (BioLa-

mina, #LN521-02) with Nutristem hPSC XF medium (Biological Industries, #05-100-1A).

Cells below passage 60 were used for this study and regularly tested for mycoplasma and kar-

yotype abnormalities and found negative. When reaching around 60% confluence, hESCs

were collected for generating brain organoids.

Methodology for brain organoid generation

For brain organoid formation, the STEMCELL Technologies “STEMdiff Cerebral Organoid

Kit” (#08570) was used to guarantee experimental standardization. On day 0, feeder and xeno-

gen-free cultured hESCs (H9) were detached when reaching 60–80% confluence and seeded

with the supplied EB-formation medium as single cells (10.000 cells per well) into 96 v-bottom

well plates (Falcon, #353263) to generate embryoid bodies. When the EBs reached day 5, the

medium was changed to the supplied neural induction medium. After neural induction, brain

organoids were divided into two groups. For including EBs in the hydrogel matrices, EBs were

placed in prepared parafilm wells [39] and 15μL of pre-hydrogel solution was added in one

drop on top of each EB. EBs of the first group were included in hESC-qualified Matrigel

(Corning Matrigel hESC-qualified matrix, #354277) and the second group in B-ECM hydrogel

(15 mg/mL). For both groups, polymerization was performed at 37˚C for 30 min. Brain orga-

noids were cultured in the supplied expansion medium for 3 days, then media was switched to

the supplied maturation medium and culture conditions were changed from static to agitated

on an orbital shaker (throw: 10mm, speed: 105 rpm) until they reached 40 days of culture.

qPCR

To test the effect of B-ECM hydrogel on brain organoids, brain organoids were cultured in the

presence of B-ECM hydrogel (n = 13) or Matrigel (n = 12) in technical triplicates. After 40

days of cultivation, RNA was extracted from organoids using RNeasy Mini Kit (Qiagen,

#74104). RNA contents were quantified by using NanoDrop One. Reverse transcription (RT)

reactions were performed using the iScript cDNA Synthesis kit (Biorad PN170-8891) following

manufacturer´s instructions. Briefly, 1000 ng of total RNA from each sample were combined

with 5 μl of master mix (includes all necessary reagents among which a mixture of random

primers and oligo dT for priming). The reaction volume was completed up to 20 μl with

DNAse/RNAse free distilled water (50 ng/μl) (Gibco PN 10977). Thermal conditions consisted

of the following steps: 5 min 25˚C, 20 min 46˚C and 1 min 95˚C. A melting curve from 60˚C

to 95˚C (0.5˚C/sec) was included additionally at the end of the program to verify the specificity

of the PCR. Fluorescence was acquired during both the 60˚C and melting steps. The genes of

interest (GOI) analyzed were NESTIN, TUBB3, DCX, MAP2 and GFAP, with specific primers

(See S1 Table). Results were normalized with selected reference genes (GAPDH, ACTB,

ATP1B1, 18S, TBP) and statistical analysis was by t-test.

Immunohistochemistry of brain organoids

Forty day old brain organoids were fixed with buffered 4% paraformaldehyde (20min, RT), fol-

lowed by 3 washing steps in PBS. As preparation for cryosectioning, organoids were
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equilibrated in 30% sucrose solution for 1h and subsequently embedded in Tissue Tek O.C.T

(Sakura, Netherlands). For immunohistochemistry brain organoids were cut into 20 μm sec-

tions with a cryostat. The obtained sections were incubated at 60˚C for 15 min and pre-treated

with 1% sodium dodecyl sulfate (SDS) solution for 5 min. Blocking was done for 1.5 h with

10% donkey serum in PBS buffer containing 0.5% Triton X-100. Primary antibodies were

diluted in 1% donkey serum in 0.5% Triton X-100 containing PBS buffer. Primary antibodies

for neuronal progenitors were anti- Nestin (1:100, #611658, BD Transduction, USA), PAX6

(1:100, #901301, Biolegend, USA), SOX2 (1:200, #AB5603, Millipore). For more mature neu-

rons β-Tubulin III (1:500, #T2200, Sigma, USA), MAP-2 (1:300, #M4403, Sigma, USA), and

DCX (1:300, #SC-8066, Santa Cruz, USA). Primary antibodies were incubated over night at

4˚C. Next day sections were washed two times with PBS buffer containing 0.5% Triton X-100.

Secondary antibodies were added and incubated for 2 h at room temperature: Anti-rabbit

Alexa 488 (1:500, Molecular probes, #A-11008, USA), anti-rabbit [Alexa 647] (1:500, Molecu-

lar probes, # A-31573, USA) anti-mouse Alexa 647 (1:500, Molecular Probes, # A-31571,

USA), anti-goat FITC (1:500, Molecular Probes, #A16000 USA]; DAPI (Santa Cruz Biotech-

nology, #28718-90-3) was used as nuclear counterstaining. Sections were mounted with

MOWIOL (inhouse) and imaged with confocal microscopy (LSM710, Zeiss).

Statistical analysis

Statistical analysis was performed with GraphPad Prism 8. For comparisons of 2 groups,

unpaired t-test was used. For comparison of multiple groups, one-way ANOVA and Tukey´s

multiple comparison tests were applied. Significance is indicated in bar graphs with asterisk

signs (�), indicating p-value of p� 0.05 (�), p� 0.01 (��) or p� 0.001 (���). No significance

(n.s.) is displayed for p > 0.05.

Results

Pig brain decellularization and hydrogel formation

Native pig brains were obtained from a commercial supplier, delivered frozen in plastic cups,

hence the cylindrical form (Fig 1A). The brains were cut into small pieces and decellularized

with a novel SDC-, and DNase based protocol. Following DC, hydrogel formation at different

concentrations was achieved by acid-pepsin digestion of ECM proteins and subsequent neu-

tralization. DC with this protocol led to an approximate decrease of 98.7% of the total native

brain mass, resulting in remaining ECM wet weight of 6.21 ± 1.59 g per 450 g starting material.

Histological staining with DAPI showed only a few or no nuclei in the DC samples (Fig 1B).

Quantification of remaining DNA showed a significantly lower DNA content in the B-ECM

(13.07 ± 7.86 ng/mg wet tissue) compared to the native ECM (142.3 ± 67.01 ng/mg wet tissue),

which however indicates that some remnant DNA molecules are still present in the ECM (Fig

1C). The content of sulfated GAGs was significantly decreased in the DC sample

(0.70 ± 0.33 μg/mg wet tissue) compared to the native sample (1.71 ± 0.63 μg/mg wet tissue)

(Fig 1D). Due to cell removal, the soluble collagen content was significantly increased in the

decellularized sample (113.5 ± 24.65 μg/mg dry weight) compared to the native sample

(14.11 ± 1.15 μg/mg dry weight) (Fig 1E). Given these results, a hydrogel prepared at a concen-

tration of 15 mg/mL with lyophilized B-ECM would contain a total amount of 1.70 mg/mL

collagen. Taken together, these results show that the DC process removed more than 90% of

the nuclear material and structural proteins such as collagen were retained. However, func-

tional proteins such as GAGs were partly washed out during DC.
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ECM composition

ECM morphology was visualized with histology and immunohistochemistry (Fig 2). H&E

staining confirmed the presence of cells in the native tissue, but did not show cells in the

B-ECM or B-ECM hydrogel groups. We found that fibronectin was preserved in all groups,

while less staining of vitronectin was evident in the B-ECM and B-ECM hydrogel groups.

Laminin was preserved in the native and B-ECM samples but showed fragmentation in the

B-ECM hydrogel. Both immunogenic cell surface markers MBP and HLA-DR were present in

the native samples, but significantly decreased in the B-ECM and B-ECM hydrogel samples.

Mass spectrometry analysis showed that decellularization and hydrogel processing removed

most proteins except for collagen, which made up more than 90% of total protein abundance

in both the B-ECM and the B-ECM hydrogel group (Fig 3A and 3B, S1–S4 Files). In the native

ECM, 101 proteins included in the matrisome (ECM proteins and ECM-associated proteins)

Fig 1. DNA and ECM content of decellularization pig brain. (A) Native pig brains were decellularized with detergents, lyophilized, and solubilized in a pepsin-

HCl mix. After neutralizing the solution (15 mg/mL) to physiological salt and pH concentration, hydrogel formation at 37˚C was observed. (B) DAPI staining of

whole tissue samples en face (upper panel) and tissue sections (lower panel). (C) DNA content in native brain and B-ECM samples (n = 9) was measured after

extraction of DNA from wet tissue with a commercial kit. (D) GAGs from wet tissue (n = 8) and (E) collagen from dry tissue (n = 15) were quantified by extraction

of proteins with commercial kits.

https://doi.org/10.1371/journal.pone.0245685.g001
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were detected, of which 64 are ECM-associated proteins, and 37 are ECM proteins consisted

mostly of glycoproteins and proteoglycans (S2 File). In B-ECM, 91 matrisome-proteins were

detected, of which 60 are ECM proteins, including 16 collagens, 31 glycoproteins, and 13 pro-

teoglycans (S3 File). The collagens account for about 90% of the matrisome-proteins abun-

dance in B-ECM, while they account for less than 5% in the native ECM (Fig 3A and 3B). 50

matrisom- proteins overlapped between native ECM and B-ECM (S2 Fig Venn diagram). In

B-ECM hydrogel, 18 matrisome-proteins were detected, of which 15 were ECM proteins

including six collagens (COL1A1, COL1A2, COL2A1, COL3A1, COL5A2, COL6A1), that

accounted for greater than 95% of the abundance of the matrisome-proteins, eight glycopro-

teins (FBN1, FBN2, FGB, LAMB1, LAMB2, LAMC1, SRPX, and VWF), and one proteoglycan

Fig 2. Staining of native, B-ECM and B-ECM hydrogel samples. Histological and immunostaining was performed

on paraffin-embedded samples after rehydration and antigen retrieval (n = 3). For general morphology, the samples

were stained with hematoxylin-eosin (H&E). Fibronectin, vitronectin, laminin, myelin basic protein (MBP) and

human leucocyte antigen (HLA-DR) were detected with antibodies (immunofluorescence). Scale bar represents

100 μm.

https://doi.org/10.1371/journal.pone.0245685.g002
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(HSPG2) (Fig 3A and 3B). All ECM proteins except FBN2 and VWF overlapped between the

B-ECM hydrogel and the B-ECM group (Fig 3B, S2 Fig, S3 File). Other brain-specific proteo-

glycans such as aggrecan (ACAN), brevican (BCAN), and versican (VCAN), were detected in

the native samples, while only BCAN and VCAN were detected in B-ECM as well. None of

these mentioned brain-specific proteoglycans were detected in the Matrigel or the B-ECM

hydrogel. In the Matrigel, 75 matrisome -proteins were identified, of which 38 are ECM pro-

teins, including ten collagens, 20 glycoproteins, and two proteoglycans (S2 File). The glycopro-

teins account for about 90% of the abundance of the matrisome proteins. 39 matrisome-

proteins detected in Matrigel overlapped with the matrisome content of the different tissues

from the pig brain. In total, 105 matrisome-proteins detected in the different tissues from the

pig brain did not overlap with the matrisome content of the Matrigel (S2 Fig). In conclusion,

mass spectrometry showed that most structural ECM proteins such as collagens were pre-

served, while several functional proteins were affected by decellularization and hydrogel pro-

cessing. These results show a further need for optimization of decellularization and hydrogel

processing strategies, in order to avoid the loss of functional proteins which may have benefi-

cial effects on organoid development.

Surface structure analysis

Surface structure analysis of native brain tissue, B-ECM and B-ECM hydrogel were analyzed

with scanning electron microscopy (SEM) (Fig 4). While native brain tissue showed the pres-

ence of cells covering the surface, decellularized ECM was mostly free of cellular material and

collagen fibers were clearly visible. The hydrogel also showed reorganization of collagen fibers

in a more disordered, porous 3D structure. These results confirm the successful DC of brain tis-

sue and the reorganization of brain ECM proteins following solubilization and neutralization.

Rheological measurements and gelation kinetics

To obtain mechanical characteristics of the B-ECM hydrogels, rheological measurements were

performed at different concentrations, similar to previous protocols [40, 41] and summarized

Fig 3. Protein analysis performed by mass spectrometry on samples from native brain, B-ECM, B-ECM hydrogel,

and on Matrigel. (A) Stacked bar chart of the abundance of the matrisome-proteins that were detected in the analyzed

samples, categorized in different matrisome categories (Collagens, ECM-affiliated, Glycoproteins, Proteoglycans, ECM

Regulators or Secreted Factors) (B) The abundance of ECM proteins found in the B-ECM hydrogel sample compared

to Native, B-ECM, and Matrigel samples, sorted by ECM categories (collagens, glycoproteins, and proteoglycans) with

their gene identifier. Besides, the abundances of the brain-specific ECM proteins brevican (BCAN), aggrecan (ACAN),

and versican (VCAN) in the different samples are shown as well. Y-axis is in the logarithmic scale.

https://doi.org/10.1371/journal.pone.0245685.g003
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in Table 1. The hydrogels showed viscoelastic-solid behavior, as the storage modulus (G´, indi-

cating elasticity) was higher than the loss modulus (G´´, indicating viscosity). The final stiff-

ness of the B-ECM hydrogels was 0.7 Pa, 12.8 Pa, and 36.4 Pa for 5 mg/mL, 10 mg/mL and 15

mg/mL respectively (Table 1, S1 Fig). B-ECM showed an increased rate of gelation and higher

storage modulus (more stiffness) with higher concentration. Dynamic strain sweeps were per-

formed to determine the linear viscoelastic region of the hydrogels in relation to strain. The

results showed that all three B-ECM hydrogel concentrations showed linear viscoelastic behav-

ior up to 10% strain, as less than 5% change in elasticity (storage modulus) was detected within

this range (S1B Fig). This value is similar to Matrigel, which has a reported linear viscoelastic

behavior up to 13% strain [42].

The turbidimetric gelation kinetics of B-ECM hydrogels at concentrations of 10, 7.5 and 5

mg/mL were characterized spectrophotometrically and the gelation parameters at the

Fig 4. SEM of native, B-ECM and B-ECM hydrogel samples. Images taken with 4000x (upper panel) and 1000x (lower panel) magnification.

https://doi.org/10.1371/journal.pone.0245685.g004

Table 1. Analysis of mechanical properties and gelation kinetics of B-ECM hydrogels at different concentrations.

Rheology

5 mg/mL 10 mg/mL 15 mg/mL

Storage Modulus (G’; Pa) 0.7 ± 0.05 12.8 ± 1.6 36.4 ± 6.5

Loss Modulus (G”; Pa) 0.09 ± 0.0008 2.1 ± 0.3 8.4 ± 0.6

Turbidimetric analysis

5 mg/mL 7.5 mg/mL 10 mg/mL

Lag phase (tlag; min) 13.7 ± 3.7� 8.5 ± 0.9� 11.3 ± 1.2

50% gelation (t1/2; min) 23.5 ± 9.7 16.8 ± 1.1 15.2 ± 1.5

95% gelation (t95; min) 67.5 ± 11.6� 59.2 ± 4.3 47.7 ± 2.8�

Speed (S; min) 0.041 ± 0.017 0.044 ± 0.004 0.046 ± 0.002

Statistical differences in turbidimetric analysis between different rows are indicated with an asterix (�).

https://doi.org/10.1371/journal.pone.0245685.t001
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exponential phase of gelation were calculated (S1C Fig). The start of gelation phase, or lag

phase (tlag), was slower for the B-ECM hydrogels at 5 mg/mL (tlag, 13.71 ± 3.69 min) than the

hydrogels at 7.5 mg/mL (tlag, 8.53 ± 0.95 min) and 10 mg/mL (tlag, 11.27 ± 1.23 min). There

was no statistically significant change in the time required to reach half the final turbidity (t1/2)

and the speed of the turbidimetric gelation kinetics (S), however a trend towards shorter times

to reach gelation was observed. The maximum gelation time (t95) took longer for lower

B-ECM concentrations. These results determined the hydrogel assembly kinetics and con-

firmed the concentration-dependent behavior of the B-ECM hydrogels.

Rheological measurements were performed on B-ECM at concentrations of 5, 10 and 15

mg/mL with an ARES-LS2 Shear Rheometer (n = 3). Dynamic time sweep analysis, strain

sweep analysis and turbidimetric analysis were performed (S1 Fig). Summary of rheological

and turbidimetric measurements shown. Storage modulus is indicated by G’, and loss modulus

is indicated by G”. Lag time of B-ECM hydrogels is defined as the intercept point of the slope

at log t1/2 and turbidimetry baseline with 0% absorbance. t1/2 and t95 are defined as the time

point when 50% or 95% of maximum absorbance is measured. The gelation rate S is defined as

the slope at the linear region of the gelation curve.

Growth of cerebral organoids on porcine B-ECM and Matrigel

Embryoid body formation and neural induction were performed following the standardized

protocol of the “STEMdiff Cerebral Organoid Kit”, based on previously published protocols

[39]. During the expansion step, EBs were either included in Matrigel or in 15 mg/mL B-ECM

hydrogel, a concentration range that showed the best mechanical support. During the follow-

ing three days, differences in development were observed between these two groups (Fig 5).

While Matrigel-surrounded brain organoids show neural budding [1], which gave them a

cloud-like shape during early development, the B-ECM hydrogel brain organoids showed a

more even growth without budding, but seemed to be slightly more transparent. Although

neuronal budding was not observed, ventricular like zones, which usually emerge during neu-

ronal budding, were numerously forming, which indicates correct neuroectodermal develop-

ment in the B-ECM hydrogel brain organoids (Fig 5B) [2]. At a later stage during maturation

(around day 20), when the buds of the Matrigel-grown organoids developed into a smoother

morphology, the difference between the groups was less apparent. On day 40, when organoids

were fixed and prepared for analysis, no significant morphological difference was visible. RT-

qPCR was performed to observe the effect of B-ECM hydrogel or Matrigel on gene expression

during brain organoid development. We chose NESTIN, TUBB3, DCX, MAP2 and GFAP as

relevant neural markers. No significant differences in gene expression were found, indicating

equal effect of Matrigel or B-ECM on gene expression (Fig 5B). To visualize the inner structure

and to validate our morphological observations, we analyzed both groups with immunohis-

tochemistry. In line with previous studies [1], radial glia cells (stained with SOX2+, Nestin+,

PAX6+) were located in the ventricular like zone of the organoids, from where they have been

found to start migrating towards the outside while maturing into neurons (stained with β-

tubulin III+, DCX+, MAP2+) (Fig 5C). Taken together, these results indicate that both Matri-

gel and B-ECM hydrogel supported the maturation process of hESCs into brain organoids.

Discussion

Current methods to generate cerebral organoids often utilize Matrigel as an external scaffold.

Matrigel, however, is a nonspecific hydrogel of mouse tumor origin and does not represent the

complexity of the brain protein environment. In the present study, we investigated the applica-

tion of a hydrogel derived from porcine brain ECM to be used as a scaffold for culturing
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cerebral organoids. We found that the native porcine brain could successfully be decellularized

with little or no remaining DNA content, and the prepared hydrogel formed a stable gel start-

ing from concentrations of 5 mg ECM/mL. Functional ECM proteins such as GAGs were

partly removed during the DC and hydrogel processing, and the remaining proteins consisted

of a high percentage of different collagen types. When B-ECM hydrogels were used as scaffolds

for cerebral organoid growth, cerebral organoids were obtained that were similar to the control

Fig 5. Growth and gene expression of brain organoids embedded in B-ECM hydrogel or Matrigel. (A) Timeline of

experimental steps of human brain organoid maturation embedded in Matrigel or B-ECM hydrogel. (B) Brain

organoids (n = 4) on day 10 in Matrigel (top pictures) or B-ECM hydrogel (bottom pictures). On day 40, no significant

difference is apparent. White arrows at day 10 point to ventricular-like zones located in the formed neuronal buds

White arrowhead at day 40 indicates residual B-ECM hydrogel. Scale bar: 500 μm. (C) Expression of the genes NEST,

TUBB3, DCX, MAP2 and GFAP was measured by extraction of RNA from organoids grown in the presence of B-ECM

hydrogel (n = 13) or Matrigel (n = 12) in technical triplicates with RT-qPCR. Statistical analysis performed with

unpaired t-test. (D) Tissue sections of brain organoids cultured in Matrigel (left panels) or B-ECM hydrogel (right

panels) for 40 days were immunostained for neuronal progenitor markers (SOX2, Nestin, PAX6) and mature neuronal

markers (DCX, β-Tubulin III, MAP2). Images were taken with a 10x objective (10x, scale bar: 300 μm) and 40x

objective (40x, scale bar: 100 μm). DAPI was used as nuclear counterstaining. White arrowheads indicate ventricular-

like zones that were chosen for magnification.

https://doi.org/10.1371/journal.pone.0245685.g005
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group cultured in Matrigel, but with morphologically divergent neuroepithelial development.

Taken together, our results show that B-ECM hydrogels are a suitable scaffold for the genera-

tion of cerebral organoids and may be further optimized to obtain more specific cerebral orga-

noid development.

Brain decellularization has previously been performed for various applications such as

direct injection into the brain [23, 29], in combination with other hydrogel scaffolds [26], dis-

ease modeling [28], or as a scaffold for neuronal growth [22]. In the present study, we used

brains from pigs for preparation of B-ECM. We chose the pig brain as it is commonly used as

a model for human brain in biomedical research, due to morphological, structural and compo-

sitional similarities as well as availability [43]. Initially, we tested different DC protocols based

on combinations of SDS, TritonX or SDC as well as DNA removing enzymes. From these ini-

tial experiments, we developed a new protocol based on the ionic detergent SDC and DNase.

SDC proved to be a suitable DC detergent for the large brain volume, with little or no cellular

remnants or antigens detectable after DC. The use of SDC-based protocols has previously

shown to be beneficial over SDS-based protocols, as increased damage to ECM proteins in dif-

ferent tissue DC applications has been reported with SDS [44–46]. Another advantage of this

protocol is that it only applies a single detergent and a single enzyme, which simplifies the eval-

uation and optimization of the protocol compared to protocols using multiple different deter-

gents for DC [22, 23, 25]. Furthermore, we observed a beneficial effect of cutting the brain into

smaller pieces, as larger pieces did not allow for full penetration of the tissue by detergents and

required longer incubation times. DC of smaller tissue pieces has previously been shown as

beneficial for the removal of lipids in human pancreas [47], which otherwise might interfere

with the gelation of the hydrogel. The smaller tissue pieces may be a reason for the observed

weight loss of the total brain tissue of 98.7% after DC, due to loss of small tissue particles dur-

ing filtration. Alternative methods to increase the yield of B-ECM may include smaller filter

pores or alternative methods to separate tissue from liquid, such as ultra-centrifugation or

lyophilization between liquid changes.

After DC and subsequent acid-pepsin degradation, B-ECM hydrogel formation was initi-

ated after the neutralization of pH and salt concentration, as described previously [31]. While

previous publications reported that neutralized pre-hydrogel solution did not gel at 4˚C [37],

we observed gelation at this temperature when stored overnight. Gelation was affected by tem-

perature, pH and salt concentration, and already minor adoptions of these parameters can

have a strong effect on the hydrogel mechanical properties and gelation kinetics [48]. In some

cases, we observed heterogenous or immediate gelation directly after adding NaOH for pH

neutralization. To better standardize the hydrogel process, we added a step in which the neu-

tralized hydrogel was frozen down, lyophilized and milled it into a powder. The powder could

then be dissolved in water to then form a hydrogel. This method removes time dependence for

starting an experiment and allows the formation of a stock of B-ECM material, which can

readily be turned into a hydrogel within 30 minutes. Nevertheless, the inconsistency of ECM-

based hydrogels is a commonly observed obstacle, which could be optimized with improved

hydrogel formation processes [47].

The protein composition of the B-ECM is responsible for its specific function, and the

B-ECM contains proteins not found in other tissues of the body. Given the functional implica-

tions of the ECM as a stem cell niche, the loss of proteins during the DC process must be mon-

itored. Mass spectrometry results showed that several functional proteins were lost during the

hydrogel preparation process, which may affect the growth of organoids in the brain hydrogel.

The B-ECM and B-ECM hydrogel group had a high abundance (greater than 90%) of colla-

gens. Collagen is less abundant in brain tissue compared to other tissue types [11], however

different collagen types are present in parts of the brain such as the microvasculature [49].
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This may explain the remaining collagen content, which has also been reported in other stud-

ies performing brain DC [22]. As whole pig brains were used in this study, also collagen from

the dura mater and pia mater may be responsible for the observed collagen content [50].

The high abundance of collagens is an issue of common concern in proteomics of decellu-

larized tissues, as it interferes with the detection of low abundant proteins. Therefore depletion

of collagens may be considered to facilitate the identification of matrisome-proteins that are

masked by the collagens [51]. Nevertheless, the B-ECM retained about 50% of the matrisome-

proteins that were observed in the native tissue. Noteworthy, label-free mass spectrometry pro-

teomics has an intractable problem of missing values, which may exceed 50% of the dataset

and is a limitation of this method [52]. The sources for the missing data include low abun-

dance, weak ionization, and random sampling, resulting in that peptides that were identified

in some samples are not detected in others [53]. Hence, the difference between the native tis-

sue, B-ECM, and B-ECM hydrogel regarding the composition of the matrisome-proteins may

be due to a low abundance of proteins and or other technical errors. The remaining ECM pro-

teins observed with IHC were mainly structural proteins such as different types of collagen,

laminin, fibronectin, vitronectin. These structural proteins have been shown to mediate and

engage in neuronal proliferation and outgrowth [54–56]. Laminin was fragmented in the

hydrogel, a result also previously reported [47]. Quantification of collagen showed a remaining

content of 113.5 μg/mg dry weight. Pure collagen hydrogels are most commonly applied at a

concentration of approximately 2 mg collagen/mL [57], however, gelation can already occur at

a concentration of 1 mg/mL or below [58]. This explains the gelation observed in this study,

where hydrogels of 15 mg/mL B-ECM contain 1.70 mg/mL of pure collagen. Loss of GAGs in

the DC process may in part be explained by the removal of cells, which contain membrane–

bound GAGs. Removal of GAGs is seen as unbeneficial, as GAGs can guide cell behavior [59].

However, GAG removal is a common result of detergent/enzyme based DC, and has been

observed in multiple different studies [16, 60–62]. Improvement of the DC protocol may lead

to a better retention of GAGs in the decellularized tissue [63].

Mechanical properties (e.g. stiffness) are a cellular cue and can guide cell behavior, therefore

it is important to analyze the mechanical properties of the hydrogel, which also depend on the

decellularization method [64, 65]. Gelation times observed in this study ranged from 20–25

min until gelation was completed. Brain tissue storage moduli, indicating the stiffness of the

gel, have been reported between 200 and 1,000 Pa as a target moduli range [41, 66, 67], and

neurons have been shown to grow better on hydrogels with a similar stiffness to the native

brain [67, 68]. Reported values for storage modulus of decellularized brain ECM typically

range between 20 and 60 Pa and loss modulus between 2 and 10 Pa [37]. Similar storage and

loss moduli were observed in this study as 15 mg/mL B-ECM hydrogels had a storage modulus

of 36 Pa and a loss modulus of 8 Pa. The lower stiffness of the B-ECM hydrogel compared to

the native brain tissue may be adjusted by changes in B-ECM concentration or addition of

another crosslinking material. However, an increase in concentration, needed to obtain a

desired rheological property, may affect the ability of cells to penetrate the hydrogel as well as

diffusion of oxygen, nutrients, and waste products across the gel, which may negatively affect

the outcome in non-vascularized organoids [69, 70]. We therefore chose a concentration of 15

mg/mL, which showed lower stiffness than the native brain, but provided a suitable environ-

ment for organoid growth.

No significant differences in the expression of neurogenic genes between organoids grown

in the presence of Matrigel and B-ECM were observed. However, a distinct difference in the

morphological development in the early organoid (day 10) was noted. Instead of the character-

istic neural-budding of neuroepithelial tissue, B-ECM brain organoids developed more uni-

formly. The transparent external border is highly enhanced for B-ECM organoids compared
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to the Matrigel group. The development of transparent tissue after neural induction is a sign of

tissue differentiation into neuroectodermal lineage. Neuroectodermal tissue gives rise to all

neuronal cell types and thus beneficial for brain organoid development [1]. Furthermore, the

identification of neural progenitor and immature neuronal markers by IHC confirmed a regu-

lar maturation process for 40 days old brain organoids in both groups. In our overall assess-

ment, the B-ECM group showed a tendency to have slightly more distinctive ventricular like

zones. From these observations, we conclude that the B-ECM produced by this protocol sup-

ports the development of neuroepithelial tissue as well as Matrigel and can thus be considered

as a suitable alternative hydrogel for developmental studies of the human brain. Further opti-

mization of DC protocols to improve the retention of functional proteins could lead to more

enhanced effects of applying B-ECM.

While decellularization is an attractive method to recreate the native cell environment,

batch-to-batch variations, variabilities and operator dependency in the process are disadvan-

tages for standardization efforts [71]. Already small alterations in the DC protocol might lead

to a different outcome and reduce reproducibility. Also, donor starting material can be vari-

able in terms of animal species, origin and age. Especially the age of the animal could affect

neuronal network formation, as the ECM is dynamically remodeled and shows a different pro-

tein composition at different life stages [72], as previously shown in a comparison of fetal and

adult pig brain ECM [22]. Also in this study, adult pig brains were used, due to good availabil-

ity, cheap costs and the practical and economical difficulties of utilizing embryonic pig brains.

Indeed, embryonic pig brains may be a more suitable model for brain organoid development

[22], however the high costs of obtaining embryonic pig brains and ethical concerns may be a

practical hurdle for large scale adoption as a model for brain organoid development compared

to Matrigel. Nevertheless, this study shows the potential application for decellularized brain

hydrogels, and further efforts to reduce variability and optimize DC protocols and hydrogel

formation could lead to improved native hydrogels for biomedical applications.

Conclusions

In this study, we showed that porcine B-ECM hydrogels could be produced from native adult

porcine brain, with few host cells remaining. During DC and hydrogel processing, several

functional proteins were lost, however, this did not negatively impact organoid utility. After

DC, the B-ECM consisted mainly of different collagen types, which is beneficial in terms of

hydrogel stability, but may not have the same beneficial functional effect as if more functional,

brain-specific proteins were retained. Hence, the process described here can be further opti-

mized to reduce extraction losses and increase the content of functional proteins in the hydro-

gel. The B-ECM hydrogels were successfully applied as native scaffolds for cerebral organoid

formation and were as efficient as Matrigel. Thus, the B-ECM could provide a more native

environment, and a more consistent matrix source, for studies that aim to investigate the

development of the human brain with organoids.

Supporting information

S1 Fig. Rheological characterization of B-ECM hydrogels at different concentrations. Rhe-

ological measurements were performed on B-ECM at concentrations of 5, 10 and 15 mg/mL

with an ARES-LS2 Shear Rheometer (n = 3) (A) Dynamic time sweep analysis of hydrogel at

different concentrations, showing storage modulus (G’) and loss modulus (G”) after initiation

of gelation. (B) Strain sweep shows the physical failure of the gel at increased strain values

between 0.1% to 200%. Gelation kinetics were furthermore observed by turbidimetric analysis.

(C) Result of turbidimetric analysis for B-ECM hydrogels at concentrations of 5, 7.5 and 10
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mg/mL (n = 6) at 37˚C, measured at 405 nm in a photo spectrometer.

(TIF)

S2 Fig. Venn-diagramm of overlapping ECM proteins, detected by mass spectrometry. A

Vonn-diagramm, showing the overlapping proteins per group which were detected with mass

spectrometry.

(TIF)

S1 File. Raw data of ECM proteins, analyzed by mass spectrometry. Excel file of ECM pro-

teins analyzed with mass spectrometry for Matrigel, Native, B-ECM and B-ECM hydrogel

groups.

(XLSX)

S2 File. The normalized and filtered proteomics data, obtained by mass spectrometry.

Excel file of ECM proteins analyzed with mass spectrometry for Matrigel, Native, B-ECM and

B-ECM hydrogel groups.

(XLSX)

S3 File. The normalized and filtered proteomics data, showing the overlapping protein

identification. Excel file of ECM proteins analyzed with mass spectrometry for Matrigel,

Native, B-ECM and B-ECM hydrogel groups, corresponding to the Venn-Diagram (S2 Fig).

(XLSX)

S4 File. The normalized and filtered proteomics data, filtered for matrisome proteins.

Excel file of ECM proteins analyzed with mass spectrometry for Matrigel, Native, B-ECM and

B-ECM hydrogel groups.

(XLSX)

S1 Table. Primers used for the RT-qPCR experiment. Fw = forward, Rv = reverse.

(DOCX)
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1. Rothenbücher TSP, Martı́nez-Serrano A. Human cerebral organoids and neural 3D tissues in basic

research, and their application to study neurological diseases. Future Neurol. Future Medicine Ltd Lon-

don, UK; 2019; 14: FNL3. https://doi.org/10.2217/fnl-2018-0043

2. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids

model human brain development and microcephaly. Nature. 2013; 501: 373–379. https://doi.org/10.

1038/nature12517 PMID: 23995685

3. Stachowiak EK, Benson CA, Narla ST, Dimitri A, Chuye LEB, Dhiman S, et al. Cerebral organoids

reveal early cortical maldevelopment in schizophrenia—computational anatomy and genomics, role of

FGFR1. Transl Psychiatry. Nature Publishing Group; 2017; 7: 6. https://doi.org/10.1038/s41398-017-

0054-x PMID: 30446636

4. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-Region-Specific Orga-

noids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell. 2016; 165: 1238–1254. https://doi.org/

10.1016/j.cell.2016.04.032 PMID: 27118425

5. Raja WK, Mungenast AE, Lin Y-T, Ko T, Abdurrob F, Seo J, et al. Self-Organizing 3D Human Neural

Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes.

Padmanabhan J, editor. PLoS One. 2016; 11: e0161969. https://doi.org/10.1371/journal.pone.0161969

PMID: 27622770

6. Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, et al. Derivation of Human Mid-

brain-Specific Organoids from Neuroepithelial Stem Cells. Stem Cell Reports. Cell Press; 2017; 8:

1144–1154. https://doi.org/10.1016/j.stemcr.2017.03.010 PMID: 28416282
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