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Abstract: The metabolites profile of a plant is greatly influenced by geographical factors and the
ecological environment. Various studies focused on artemisinin and its derivates for their antiparasitic
and antitumoral effects. However, after the isolation and purification stage, their pharmaceutical
potential is limited due to their low bioavailability, permeability and lifetime. The antibacterial
activity of essential oils has been another topic of interest for many studies on this plant. Nevertheless,
only a few studies investigate other metabolites in Artemisia annua. Considering that secondary
metabolites act synergistically in a plant, the existence of other metabolites with antitumor and high
immunomodulating activity is even more important. Novel nano-carrier systems obtained by loading
herbs into magnetic nanoparticles ensures the increase in the antitumor effect, but also, overcoming
the barriers related to permeability, localization. This study reported the first complete metabolic
profile from wild grown Romanian Artemisia annua. A total of 103 metabolites were identified under
mass spectra (MS) positive mode from 13 secondary metabolite categories: amino acids, terpenoids,
steroids, coumarins, flavonoids, organic acids, fatty acids, phenolic acids, carbohydrates, glycosides,
aldehydes, hydrocarbons, etc. In addition, the biological activity of each class of metabolites was
discussed. We further developed a simple and inexpensive nano-carrier system with the intention to
capitalize on the beneficial properties of both components. Evaluation of the nano-carrier system’s
morpho-structural and magnetic properties was performed.

Keywords: secondary metabolites; GC-MS; mass-spectra; bioactive compounds; nano-carrier system;
magnetic nanoparticles

1. Introduction

Romanian phytotherapy has an ancient and very rich tradition based on a very wide
diversity of medicinal plants. Thus, in the spontaneous flora of Romania there are about
800 species of medicinal plants. Additionally, plants of the genus Artemisia (Asteraceae)
form part of this phytopharmacological treasure.

Artemisia annua (common name: wormwood or năfurica in Romanian) is one of the
ancient healing plants recognized in traditional medicine from Europe and Asia. Romanian
traditional medicine has exploited its therapeutic properties: antihemorrhagic, antiseptic,
antioxidant, digestive, antipyretic, immunomodulatory, antibacterial and antitumoral [1–5].
Artemisia annua is used also in Romania to prepare a digestive wine [1–5]. In traditional
Asian pharmacopoeia, it was recommended, especially for the treatment of fevers and
colds.
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Chemical screening of bioactive compounds isolated from this plant has highlighted
the rich content in volatile compounds, terpenes, sesquiterpenes, alkaloids, flavonoids,
coumarins and phenolic compounds.

Studies on biological properties of secondary metabolites isolated from extracts of
Artemisia annua have confirmed its therapeutic properties (antioxidant, antidiabetic, an-
tiviral, antitumor, immunomodulatory, antiparasitic, antibacterial and antifungal activity)
described in traditional medicine [4–10].

Additionally, the latest studies in the field aim to evaluate its potential application in
the prevention and treatment of SARS-CoV 19 [6–23].

In recent years, numerous studies have been conducted on the main classes of phy-
toconstituents (phenolic compounds, alkaloids, terpenes and volatile compounds) in
sweet wormwood. Special attention was paid to the isolation and chemical synthesis
of artemisinin, considered the main bioactive compound of the plant, with antiparasitic
activity. This was an important step in modern research in medicinal plants and in the
fight against malaria, an infectious disease that affects the lives of millions of people [6–20].
According to World Health Organization estimates, malaria killed more than 400 million
people globally in 2019 alone [24].

Artemisinin is widely used for malaria treatment, and recent studies demonstrated
its antitumoral activity on several cancer cell lines. However, at present, the production
costs of artemisinin are high. Moreover, its low bioavailability, permeability and life-time
in biological media represent the main biomedical limitations [25].

It is known that the biological activity of a plant is due to the synergistic effect of
different types of phytoconstituents [26,27]. Therefore, the chemical screening and complete
identification of bioactive components from a plant is especially important.

Recent studies have shown that the antitumor activity of the plant is not only due to
artemisinin. This might be just one of the plant metabolites with high biological activity [6].

Although the plant has been studied for a long time, its chemical composition is
influenced by many understudied factors, among which we only mention geographical
position, climate, soil pH and so on [28].

For these reasons, studies on this plant are particularly important given its special
therapeutic potential.

Additionally, some small peptides in the composition of this plant could be another
key constituent to antitumor activity.

Currently, there are several therapeutic approaches to cancer, including drugs, genet-
ics and anticancer peptides. The results of studies regarding peptide anticancer therapy
showed that the sequence of these small anticancer peptides can include several amino
acids, such as: arginine, glycine, lysine and leucine, glutamic and aspartic, tyrosine, pheny-
lalanine, proline and protonated histidine. Moreover, recent research has showed that
arginine has a key role in the function of the immune system and antitumor activity [29–31].

Nevertheless, there are very few studies that have investigated the amino acid compo-
sition of Artemisia genus [32].

Studies regarding wild Romanian Artemisia genus are few and targeted, especially on
bioactive components of Artemisia absinthium [33,34]. Furthermore, regarding Romanian
Artemisia annua wild plant, the present research only investigates the content of artemisinin
and volatile oils [35–37].

Despite its high therapeutic potential, the chemical screening of the biologically active
compounds of this medicinal plant from the spontaneous flora of Romania has not been
performed yet.

On the other hand, it should be mentioned that several herbal supplements of Artemisia
annua are marketed globally, which are recommended, according to the manufacturers, for
malaria, arthritis and even cancer.

Recently, several cases of liver disease have been reported, especially following self-
medication with herbal supplements to manage cancer or prevent malaria [38,39].
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The development of highly efficient, selective, simple and inexpensive nano-carrier
systems could be an effective method to avoid these risks while ensuring the controlled
intake of phytoconstituents with biological activity [40,41].

Modern drug delivery systems based on magnetic nanoparticles could easily ac-
complish these requirements. Moreover, the latest developments regarding magnetite
nanoparticles have demonstrated their benefits and recommend their use in drug de-
livery and other different biomedical applications (magnetic resonance imaging, tumor
therapeutic hyperthermia, etc.) [25,42].

Magnetic/superparamagnetic nanoparticles could represent a more than interesting
alternative due to their advantages: their capability for local delivery and the ability to
act selectively. However, the possibility of an immune response is the main drawback
of these nanoparticles. Therefore, the design of new drug delivery systems based on
magnetic/superparamagnetic nanoparticles for use as early detection methods and in the
diagnosis, prognosis and monitoring of the evolution of the cancer treatment is required
given the social impact of these diseases [25,43–49].

Recent studies have shown that nano-carriers based on magnetic nanoparticles lead
to a high drug tissue permeability and retention effect and thus enhance the beneficial
therapeutic effects [45–47].

To our best knowledge, this study investigates the metabolite profile of Artemisia
annua grown wild in Romania for the first time. Subsequently, a simple and inexpensive
nano-carrier system that capitalizes both the therapeutic properties of Artemisia annua
(whole plant) and magnetic Fe3O4 nanoparticles was developed.

2. Results and Discussion

Extensive research in the field of plants and especially on those with high therapeutic
potential has shown that they have a very complex composition of compounds with high
biological activity that act synergistically in the body [26,27].

Additionally, a full description of a general metabolic profile for a specific herb is all
the more difficult, as significant differences in secondary metabolites was reported among
the same plants harvested from various geographic regions of the world. Studies in this
area confirmed that the content of specific plant secondary metabolites is the result of
several environmental stress factors (climate, soil and biological conditions) which directly
influence plant growth, development and topography distribution [28,50–52].

The pharmacological properties of different plant secondary metabolites were ex-
tensively investigated. However, their therapeutic benefits have not been completely
understood [11,21,22]. Plant metabolites with peptide structures are just an example
of this [51].

Bioactive metabolite chemical screening of sweet wormwood (năfurica) was ten-
tatively carried out via gas-chromatography coupled with mass spectroscopy (GC-MS)
and electrospray ionization–quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS)
analysis.

In addition, the amino acid profile was investigated using GC-MS techniques (Figure 1).
The mass spectra of components identified were determined via comparison of their reten-
tion indices and mass spectra with those of NIST/EPA/NIH, the Mass Spectral Library
2.0 data base, as well as by reviewing the literature [32,53].
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Figure 1. TIC chromatograms of GC-MS for Artemisia annua.

The results are listed in Table 1, which presents tentative amino acid identification via
GC-MS corresponding to Artemisia annua sample [32,54,55].

Table 1. Main compounds identified by GC-MS analysis of plant extract.

Proposed Structure Abbreviation SIM (Selected Ion
Monitoring)

Alanine Ala 130, 70

Leucine Leu 172, 86

Glycine Gly 116, 74

Isoleucine Ile 172, 130

Methionine Met 203, 277

Phenylalanine Phe 206, 190

Lysine Lys 170, 128

Threonine Thr 160, 101

4-Hydroxyproline HYP 172, 86

2.1. Mass Spectrometry Analysis of Romanian Artemisia annua

The plant sample was diluted in methanol and analyzed using ESI-TOF mass spec-
troscopy (ESI-QTOF-MS). The plant extract sample analysis was carried out in the positive
mode. The mass spectra (Figure 2) showed the presence of complex metabolite composition.
A total of 103 compounds were detected and identified, which covered various chemical
categories, including amino acids, sterols, terpenoids, flavonoids, coumarins, alcohols,
aldehydes, glycosides, carbohydrates, fatty acids and so on, which confirmed the data
reported in the literature [6–24,28,31–39,46,53–60]. Additionally, the presence of amino
acids identified through GC-MS was confirmed via ESI-QTOF-MS analysis. However, only
a few studies reported the amino acid profile of Artemisia annua [32].
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Figure 2. Positive ion mode MS-TOF of Artemisia annua sample.

The identified metabolites are listed in Table 2 and classified according to their m/z
ratio (mass-to-charge-ratio) (theoretical and measured), chemical name and formula and
the related literature.

Table 2. Phytoconstituents identified in Artemisia annua sample through MS analysis.

Compound Name m/z Detected Theoretic m/z Formula Tentative
Identification References

1 76.09 76.07 C2H5NO2+ Glycine [32,61]

2 90.11 90.097 C3H7O2+ Alanine [32,61]

3 103.19 103.17 C6H14O+ Hexanol [7,8,10,18,23,28,33,36,37,62]

4 106.12 106.09 C3H7NO3+ Serine [32,61]

5 113.10 113.09 C4H4N2O2+ Uracil [7,8,10,18,24,30,35,38,39,61]

6 118.13 118.14 C5H11NO2+ Valine [32,61]

7 120.05 120.03 C4H9NO3+ Threonine [32,61]

8 129.23 129.21 C8H16O+ Caprylaldehyde [7,8,18,23,28,32,36,37,62]

9 132.14 132.13 C5H9NO3+ L-hydroxyproline [32,61]

10 132.17 132.18 C6H13NO2+ Leucine [32,61]

11 134.09 134.10 C4H7NO4+ Aspartic acid [32,61]

12 135.23 135.22 C10H14+ p-Cymene [63]

13 136.21 136.19 C7H5NS+ Benzothiazole [7,8]

14 137.25 137.23 C10H16+ Limonene [9–12,14,19,20,22,23,46,52,59,63–
65]

15 139.15 139.12 C7H6O3+ Salicylic acid [7–9,18,23,28,33,36,37,62]

16 147.16 147.14 C9H6O2+ Coumarin [9–12,14,19,20,22,23,46,52,59,60,
63,64]

17 147.20 147.19 C6H14N2O2+ Lysine [32,61]

18 148.12 148.13 C5H9NO4+ Glutamic acid [32,61]

19 149.21 149.205 C10H12O+ 4-Isopropylbenzaldehyde [7,8,18,23,28,33,36,37]
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Table 2. Cont.

Compound Name m/z Detected Theoretic m/z Formula Tentative
Identification References

20 150.22 150.20 C6H11NO2S+ Methionine [32,61]

21 151.19 151.22 C10H14O+ Cuminol [7,8,18,23,28,33,36,37,62]

22 153.25 153.233 C10H16+ Artemisia ketone [5–7,9,11–14,16,19–23,35,46,58–
60,63,65]

23 155.23 155.21 C12H10+ Capillene [7,8,18,23,28,33,36,37,62]

24 155.27 155.25 C10H18O+ Geraniol [9–12,14,19,20,22,23,46,52,59,61,
63,64]

25 156.17 156.16 C6H9N3O2+ Histidine [32,61]

26 157.29 157.26 C10H20O+ Menthol [9–12,14,19,20,22,23,46,52,59,63,
64,66]

27 162.15 162.13 C9H5O3+ 4-Hydroxycoumarin [7,8,10,18,23,28,33,36,37,62]

28 165.19 165.16 C9H8O3+ 4-Hydroxycinnamic
acid [7,8,10,18,23,28,33,36,37,62]

29 165.18 165.20 C10H12O2+ Eugenol [9–12,14,19,20,22,23,46,52,59,63,
64,66]

30 166.22 166.19 C9H11NO2+ L-phenylalanine [32,61]

31 171.29 171.33 C12H26+ Dodecane [7,8,18,23,28,33,36,37,62]

32 175.19 175.20 C6H14N4O2+ L-arginine [32,61]

33 181.17 181.16 C9H8O4+ Caffeic acid [7,8,18,23,28,33,36,37,62]

34 183.19 183.17 C9H10O4+
2,4-Dihydroxy-6

methoxyacetophe-
none

[7,8,18,23,28,33,35,37]

35 193.15 193.17 C10H8O4+ Scopoletin [9–12,14,19,20,22,23,46,52,59,63,
64,66]

36 197.21 197.20 C10H12O4+ Xanthoxylin [7,8,18,23,28,33,36,37,62]

37 197.30 197.29 C12H20O2+ Artemisyl acetate [5–7,9,11–14,16,19–22,35,46,58–
60,63,65]

38 207.21 207.19 C11H10O4+ Scoparone [9–12,14,19,20,22,23,46,52,58,63,
64,66]

39 205.33 205.35 C15H24+ Germacrene D [9–12,14,19,20,22,23,46,52,58,63,
64,66]

40 207.39 207.37 C15H26+ Cadinene [9–12,14,19,20,22,23,46,52,58,63,
64,66]

41 220.23 220.24 C10H13N5O+ Zeatin [7,8,18,23,28,33,36,37,62]

42 221.36 221.35 C15H24O+ Spathulenol [9–12,14,19,20,22,23,46,52,58,63,
64,66]

43 223.38 223.37 C15H26O+ Farnesol [9–12,14,19,20,22,23,46,52,58,63,
64,66]

44 229.35 229.37 C14H28O2+ Myristic acid [7,8,18,23,28,33,36,37,62]

45 233.30 233.32 C15H20O2+ Alantolactone [64]

46 235.29 235.33 C15H22O2+ Artemisinic acid [5–7,9,11–14,16,19–22,35,46,58–
60,63,65]

47 237.37 237.35 C15H24O2+ Corymbolone [9–12,14,19,20,22,23,46,52,59,63,
64,66]

48 246.33 246.32 C15H19NO2+ Rupestine [9–12,14,19,20,22,23,46,52,59,63,
64,66]

49 265.31 265.32 C15H20O4+ Abscisic acid [5–7,9,11–14,16,19–22,35,46,58–
60,63,65]

50 241.48 241.5 C17H36+ Heptadecane [7,8,18,23,28,33,36,37,62]

51 247.29 247.30 C15H18O3+ α-Santonin [64]
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Table 2. Cont.

Compound Name m/z Detected Theoretic m/z Formula Tentative
Identification References

52 249.30 249.32 C15H20O3+ Arteannuin B [5–7,9,11–14,16,19–22,35,46,58–
60,63,65]

53 255.35 255.5 C18H38+ n-Octadecane [7,8,18,23,28,33,36,37,62]

54 257.43 257.42 C16H32O2+ Palmitic acid [7,8,18,23,28,33,36,37,62]

55 263.42 263.40 C17H26O2+ α-Bergamotol acetate [7,8,18,23,28,33,36,37,62]

56 267.30 267.33 C15H22O4+ Germacranolide [64]

57 271.39 271.40 C15H10O5+ Apigenin [56–60,67–71]

58 273.27 273.25 C15H12O5+ Naringenin [56–60,67–71]

59 281.34 281.32 C15H20O5+ Artemisitene [5–7,9,11–14,16,19–22,35,46,58–
60,63,65]

60 283.34 283.33 C15H22O5+ Artemisinine [5–7,9,11–14,16,19–22,35,46,58–
60,63,65]

61 285.27 285.26 C16H12O5+ Acacetin [56–60,67–71]

62 287.26 287.24 C15H10O6+ Luteolin [56–60,67–71]

63 289.27 289.25 C15H12O6+ Eriodyctiol [56–60,67–71]

64 297.51 297.50 C20H40O+ Phytol [9–12,14,19,20,22,23,46,52,59,63,
64,66]

65 301.28 301.26 C16H12O6+ Rhamnocitrin [56–60,67–71]

66 303.21 303.23 C15H10O7+ Quercetin [56–60,68,69]

67 305.22 305.25 C15H12O7+ Taxifolin [56–60,64,67–71]

68 315.31 315.29 C17H14O6+ Cirsimaritin [56–60,64,67–71]

69 317.24 317.26 C16H12O7+ Rhamnetin [56–60,67–71]

70 317.37 317.40 C19H24O4+ Capillartemisin B [56–60,64]

71 319.20 319.23 C15H10O8+ Quercetagetin [56–60,64,67–71]

72 324.57 324.60 C22H44O+ 2-Docosanone [7,8,18,23,28,33,36,37,62]

73 331.26 331.29 C17H14O7+ Rhamnazin [56–60,64,67–71]

74 333.24 333.26 C16H12O8+ Laricitrin [56–60,64,67–71]

75 339.67 339.70 C24H50+ n-Tetracosane [7,8,18,23,28,33,36,37,62]

76 345.32 345.30 C18H16O7+ Eupatorine [56–60,64,67–71]

77 347.27 347.30 C17H14O8+ Syringetin [56–60,64,67–71]

78 353.68 353.70 C25H52+ n-Pentacosane [7,8,18,23,28,33,36,37,62]

79 354.29 354.31 C16H18O9+ Scopoline [9–12,14,19,20,22,23,46,52,59,63,
64,66]

80 359.31 359.30 C19H18O7+ Retusin [56–60,64,67–71]

81 361.33 361.30 C18H16O8+ Chrysosplenol D [56–60,64,67–71]

82 367.71 367.7 C26H54+ n-Hexacosane [7,8,18,23,28,33,36,37,62]

83 375.28 375.30 C19H18O8+ Chrysosplenetin [56–60,64,67–71]

84 389.39 389.40 C20H20O8+ Artemitin [9,16,17,21,23,56–60,65]

85 375.28 375.30 C19H18O8+ Casticin [56–60,64,67–71]

86 377.41 377.40 C20H24O7+ Euparotin [56–60]

87 411.68 411.70 C30H50+ Squalene [9–12,14,19,20,22,23,46,52,59,63,
64,66]

88 413.72 413.70 C29H48O+ Stigmasterol [7,8,18,24,30,35,38,39]

89 415.67 415.70 C29H50O+ β-Sitosterol [7,8,18,23,28,33,36,37,62]

90 425.69 425.70 C30H48O+ Taraxasterone [9–12,14,19,20,22,23,46,52,59,63,
64,66]

91 427.71 427.70 C30H50O+ Beta-amyrin [9–12,14,19,20,22,23,46,52,59,63,
64,66]
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Table 2. Cont.

Compound Name m/z Detected Theoretic m/z Formula Tentative
Identification References

92 433.37 433.40 C21H20O10+ Apigenin
7-O-glucoside [64]

94 443.52 443.50 C25H30O7+ Tomentin A [9–12,14,19,20,22,23,46,52,59,63,
64,66]

95 447.38 447.40 C22H22O10+ Kaempferide
3-rhamnoside [57]

96 449.37 449.40 C21H20O11+ Cymaroside [56–60,64,67–71]

97 457.71 457.70 C30H48O3+ Oleanic acid [7,8,18,22,27,31,34,35,60]

98 465.38 465.40 C21H20O12+ Isoquercetin [56–60,64,67–71]

99 495.43 495.40 C22H22O13+ Patuletin 3-glucoside [64]

100 505.37 505.40 C18H32O16+ Sophorotriose [64]

101 517.42 517.40 C25H24O12+ Cynarine [7,8,18,22,27,31,34,35,60]

102 577.77 577.80 C35H60O6+ Daucosterol [7,8,18,22,27,31,34,35,60]

103 611.51 611.50 C27H30O16+ Rutin [56–60,64,67–72]

2.2. Screening and Classification of the Differential Metabolites

The 103 phytochemicals identified through mass spectroscopy were assigned to differ-
ent chemical classes: terpenoids and sesquiterpenoids (27.2%), flavonoids (24.2%), amino
acids (12.6%), hydrocarbons (6.8%), coumarins (4.85%), phenolic acids (2.9%), sterol and
steroids (2.9%), fatty acids (2.9%), glycosides (1.9%), hydrocarbons (6.8%), organic acids
and esters (3.8%), carbohydrates (0.97%) and miscellaneous (Table 3). Terpenoids and
sesquiterpenoids, flavonoids and amino acids constitute the largest group of bioactive
compounds from Artemisia annua. The distribution of identified metabolites in various
chemical categories is listed in Table 3.

Table 3. Classification of metabolites from Artemisia annua sample on various chemical categories.

Chemical Class Metabolite Name

Amino Acids

Glycine

Alanine

Serine

Valine

Threonine

L-hydroxyproline

Leucine

Aspartic acid

Lysine

Glutamic acid

Methionine

Hystidine

L-phenylalanine

L-arginine
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Table 3. Cont.

Chemical Class Metabolite Name

Terpenoids and Sesquiterpenoids

Artemisine

Artemisinine

Limonele

p-Cymene

Beta-amyrin

Artesimic acid

Eugenol

Menthol

Artemisia ketone

Spathulenol

Artemisyl acetate

Artemisinic acid

Phytol

Rupestine

α-Santonin

Arteannuin B

Farnesol

Corymbolone

Abscisic acid

Alantolactone

Artemisitene

Geraniol

Squalene

Taraxasterone

Beta-amyrin

Germacranolide

Germacrene D

Cadinene

Coumarins

Scopoletin

Tomentin A

Coumarin

Scopolin

Scoparone
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Table 3. Cont.

Chemical Class Metabolite Name

Flavonoids

Apigenin

Chrysosplenetin

Rhamnazin

Luteolin

Naringenin

Capillartemisin B

Rutin

Quercetin

Quercetagetin

Acacetin

Rhamnetin

Eupatorin

Syringetin

Laricitrin

Eriodictiol

Casticin

Chrysosplenol D

Retusin

Cynaroside

Artemitin

Taxifolin

Isoquercetin

Rhamnocitrin

Kaempferide 3-rhamnoside

Cirsimaritin

Phenolic Acids

4-Hydroxycoumarin

4-Hydroxycinnamic acid

Caffeic acid

Sterol and Steroids

β-Sitosterol

Stigmasterol

Daucosterol

Fatty Acid

Oleanic acid

Palmitic acid

Myristic acid

Hydrocarbons

n-Octadecane

Heptadecane

n-Tetracosane

n-Hexacosane

Dodecane

n-Pentacosane

Capillene

Glycoside
Patuletin 3-glucoside

Apigenin 7-O-glucoside

Carbohydrates Sophorotriose

Aldehyde and Ketone

Caprylaldehyde

4-Isopropylbenzaldehyde

Hexanol

2-Docosanone

2,4-Dihydroxy-6-methoxyacetophenone

Organic Acids and Esters

Salicylic acid

α-Bergamotol acetate

Xanthoxylin

Cynarine
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Table 3. Cont.

Chemical Class Metabolite Name

Other

Uracil

Cuminol

Benzothiazole

Zeatin

On the basis of the data analysis reported in Table 3, the metabolites classification
chart was obtained, represented in Figure 3.
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Amino acids a total of 14 different amino acids were identified in the plant extract.
Additionally, the essential amino acids (valine, leucine, methionine, hystidine and L-
phenylalanine) represent 35% of them. The non-essential amino acids are present in a
much larger proportion (65%), being representatives of: glycine, alanine, serine, arginine,
threonine, acid aspartic, lysine and glutamic acid [31–33,73]. As was reported, amino acids
exhibit antitumoral, antiproliferative and immunomodulant activity [31–33,73].

Terpenoids found in the Artemisia annua sample are the one of the major constituents
of the total identified metabolites. Previous studies on the therapeutic effect of terpenoids
have demonstrated their antimicrobial, antibacterial, antifungal, analgesic and anti-insect
activity [74].

Sesquiterpenes, another important class of metabolites from Artemisia annua, were
shown to have antitumoral, antiplasmodial, anti-inflammatory and anti-allergic properties.
Sesquiterpenes lactones isolated from Artemisia annua are used in antimalaria drugs [75,76].

Coumarins are metabolites highly relevant to human health. Recent studies on
coumarins isolated from plants have shown antioxidant, antimicrobial, antiviral, antifungal,
and antiparasitic, anti-diabetic, analgesic, anti-neurodegenerative, and anti-inflammatory
activity. Moreover, coumarins have been demonstrated to stimulate the immunologic
response and are used in the therapy of different tumors: leukemia, renal and prostate
tumors, melanoma and breast cancer [77,78].

Flavonoids were another major category of metabolites identified in the plant sample.
A total of 25 different flavonoids were found in the Artemisia annua sample. These com-
pounds exhibit antioxidant, antitumoral, anti-inflammatory, antimicrobial, anti-cholinesterase,
neurodegenerative disease (Alzheimer) and atherosclerosis prevention effects [9–81].
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Phenolic acids have shown anti-inflammatory, antioxidant, antimicrobial, neuropro-
tective, antidiabetic and anticancer effects [82,83].

Sterol and steroids from herbs act as antitumoral, anti-inflammatory, antioxidant
antiatherosclerotic agents [84].

Fatty acids are involved in neuroprotection and cardiovascular protection mecha-
nisms. Recent studies reported their beneficial role in autoimmune and neurodegenerative
diseases, including Alzheimer disease (AD) [85].

Carbohydrates have shown anti-inflammatory, antioxidant, antiviral, antibacterial,
antidiabetic, antitumoral, immunomodulatory and cardioprotective activity [86–88].

Glycosides from herbs showed antitumoral activity, mainly on leukemia and gastric
cancer [89].

2.3. Nano-Carrier System Based on Magnetic Nanoparticles of Fe3O4

The development of an efficient and selective drug nano-carrier system required
an optimal ratio between the herb and magnetic nanoparticles in order to provide the
highest biological activity and functionality (selectivity and vectorization). Recent studies
regarding types of nano-drug systems have reported the specific bioactive phytochemicals
that were loaded into the magnetic nanoparticles [90,91].

2.4. FT-IR Spectroscopy

The incorporation of herb phytochemicals into the pores of Fe3O4 nanoparticles was
successfully achieved and was confirmed through FT-IR spectroscopy. Figure 4 presents
the spectra of the herb, Fe3O4 nanoparticles and the nano-carrier system.
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The FT-IR spectra of the herb display the characteristic absorption peaks of Artemisia
annua (Figure 4). The characteristic group frequencies of different organic molecules
detected in Artemisia annua can be attributed to flavonoids (1703, 1580, 1460, 630 and
575 cm−1), amino acids (1651, 1580, 1555 and 1545 cm−1), terpenoids (1740, 1651 and
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810 cm−1), carbohydrates (3381, 1462, 1126 and 840 cm−1) and fatty acids (2925, 2852, 1250
and 720 cm−1) [47,92–101].

Withal, the band at 1737 cm−1 is the characteristic absorption peak of Artemisia annua
assigned to δ-lactone group [47].

Two main broad metal–oxygen bands are seen in the IR spectra of Fe3O4 nanoparticles
(Figure 4) in the range 400–600 cm−1. The highest vibration band at 576 cm−1 is assigned
to the stretching vibrations of MtetraO bond in the tetrahedral voids, and the lowest band
at 410 cm−1 (partially visible) corresponds to the stretching vibrations of the MoctaO bond
in the octahedral void peak [102–104].

The spectra of the nano-carrier system (Figure 4) display the characteristic peaks of
the herb as well as the metal–oxygen vibration bands at 576 cm−1 and at 410 cm−1, which
confirm the incorporation of the herb into the pores of Fe3O4 nanoparticles [47].

2.5. X-ray Diffraction Spectroscopy

Figures 5–8 present the XRD patterns of Fe3O4 nanoparticles, the herb and the nano-
carrier system.

Plants 2021, 10, x FOR PEER REVIEW 12 of 22 
 

 

The FT-IR spectra of the herb display the characteristic absorption peaks of Artemisia 
annua (Figure 4). The characteristic group frequencies of different organic molecules 
detected in Artemisia annua can be attributed to flavonoids (1703, 1580, 1460, 630 and 575 
cm−1), amino acids (1651, 1580, 1555 and 1545 cm−1), terpenoids (1740, 1651 and 810 cm−1), 
carbohydrates (3381, 1462, 1126 and 840 cm−1) and fatty acids (2925, 2852,1250 and 720 
cm−1) [47,92–101]. 

Withal, the band at 1737 cm−1 is the characteristic absorption peak of Artemisia annua 
assigned to δ-lactone group [47]. 

Two main broad metal–oxygen bands are seen in the IR spectra of Fe3O4 
nanoparticles (Figure 4) in the range 400–600 cm−1. The highest vibration band at 576 cm−1 
is assigned to the stretching vibrations of MtetraO bond in the tetrahedral voids, and the 
lowest band at 410 cm−1 (partially visible) corresponds to the stretching vibrations of the 
MoctaO bond in the octahedral void peak [102–104]. 

The spectra of the nano-carrier system (Figure 4) display the characteristic peaks of 
the herb as well as the metal–oxygen vibration bands at 576 cm−1 and at 410 cm−1, which 
confirm the incorporation of the herb into the pores of Fe3O4 nanoparticles [47]. 

2.5. X-ray Diffraction Spectroscopy 
Figures 5–8 present the XRD patterns of Fe3O4 nanoparticles, the herb and the nano-

carrier system. 

 
Figure 5. Powder XRD patterns of Artemisia annua. 

 

Figure 5. Powder XRD patterns of Artemisia annua.

Plants 2021, 10, x FOR PEER REVIEW 12 of 22 
 

 

The FT-IR spectra of the herb display the characteristic absorption peaks of Artemisia 
annua (Figure 4). The characteristic group frequencies of different organic molecules 
detected in Artemisia annua can be attributed to flavonoids (1703, 1580, 1460, 630 and 575 
cm−1), amino acids (1651, 1580, 1555 and 1545 cm−1), terpenoids (1740, 1651 and 810 cm−1), 
carbohydrates (3381, 1462, 1126 and 840 cm−1) and fatty acids (2925, 2852,1250 and 720 
cm−1) [47,92–101]. 

Withal, the band at 1737 cm−1 is the characteristic absorption peak of Artemisia annua 
assigned to δ-lactone group [47]. 

Two main broad metal–oxygen bands are seen in the IR spectra of Fe3O4 
nanoparticles (Figure 4) in the range 400–600 cm−1. The highest vibration band at 576 cm−1 
is assigned to the stretching vibrations of MtetraO bond in the tetrahedral voids, and the 
lowest band at 410 cm−1 (partially visible) corresponds to the stretching vibrations of the 
MoctaO bond in the octahedral void peak [102–104]. 

The spectra of the nano-carrier system (Figure 4) display the characteristic peaks of 
the herb as well as the metal–oxygen vibration bands at 576 cm−1 and at 410 cm−1, which 
confirm the incorporation of the herb into the pores of Fe3O4 nanoparticles [47]. 

2.5. X-ray Diffraction Spectroscopy 
Figures 5–8 present the XRD patterns of Fe3O4 nanoparticles, the herb and the nano-

carrier system. 

 
Figure 5. Powder XRD patterns of Artemisia annua. 

 
Figure 6. Powder XRD patterns of Fe3O4 nanoparticles.



Plants 2021, 10, 2245 14 of 23

Plants 2021, 10, x FOR PEER REVIEW 13 of 22 
 

 

Figure 6. Powder XRD patterns of Fe3O4 nanoparticles. 

Regarding the diffraction pattern of the herb (Figure 5), in the range of 13–26°, a wide 
band that is characteristic of some amorphous phases can be observed. This wide band is 
also found attenuated in the diffraction pattern of the nano-carrier system (Figure 7 and 
Figure 8). Additionally, in the diffraction pattern of the Fe3O4 nanoparticles (Figure 6), 
only the peaks of the single crystalline spinel phase Fe3O4 (average crystallite size 10.9 nm) 
are present. 

 
Figure 7. Powder XRD patterns of nano-carrier system. 

 
Figure 8. Overlap of the XRD patterns of herb, magnetite and nano-carrier system. 

In the diffraction pattern of the mixture (Figures 7 and 8), crystalline spinel phase 
Fe3O4 nanoparticles with an average crystallite size of 12.9 nm were identified. A peak at 
~26.5° and a band between 13–26° were also present but much attenuated in the spectrum 
of Artemisia annua. 

2.6. Scanning Electron Microscopy (SEM) 
The SEM micrographs of the herb, magnetic nanoparticles and the nano-carrier 

system are shown in Figures 9–11. 

Figure 7. Powder XRD patterns of nano-carrier system.

Plants 2021, 10, x FOR PEER REVIEW 13 of 22 
 

 

Figure 6. Powder XRD patterns of Fe3O4 nanoparticles. 

Regarding the diffraction pattern of the herb (Figure 5), in the range of 13–26°, a wide 
band that is characteristic of some amorphous phases can be observed. This wide band is 
also found attenuated in the diffraction pattern of the nano-carrier system (Figure 7 and 
Figure 8). Additionally, in the diffraction pattern of the Fe3O4 nanoparticles (Figure 6), 
only the peaks of the single crystalline spinel phase Fe3O4 (average crystallite size 10.9 nm) 
are present. 

 
Figure 7. Powder XRD patterns of nano-carrier system. 

 
Figure 8. Overlap of the XRD patterns of herb, magnetite and nano-carrier system. 

In the diffraction pattern of the mixture (Figures 7 and 8), crystalline spinel phase 
Fe3O4 nanoparticles with an average crystallite size of 12.9 nm were identified. A peak at 
~26.5° and a band between 13–26° were also present but much attenuated in the spectrum 
of Artemisia annua. 

2.6. Scanning Electron Microscopy (SEM) 
The SEM micrographs of the herb, magnetic nanoparticles and the nano-carrier 

system are shown in Figures 9–11. 

Figure 8. Overlap of the XRD patterns of herb, magnetite and nano-carrier system.

Regarding the diffraction pattern of the herb (Figure 5), in the range of 13–26◦, a wide
band that is characteristic of some amorphous phases can be observed. This wide band is
also found attenuated in the diffraction pattern of the nano-carrier system (Figure 7 and
Figure 8). Additionally, in the diffraction pattern of the Fe3O4 nanoparticles (Figure 6),
only the peaks of the single crystalline spinel phase Fe3O4 (average crystallite size 10.9 nm)
are present.

In the diffraction pattern of the mixture (Figures 7 and 8), crystalline spinel phase
Fe3O4 nanoparticles with an average crystallite size of 12.9 nm were identified. A peak at
~26.5◦ and a band between 13–26◦ were also present but much attenuated in the spectrum
of Artemisia annua.

2.6. Scanning Electron Microscopy (SEM)

The SEM micrographs of the herb, magnetic nanoparticles and the nano-carrier system
are shown in Figures 9–11.
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Figure 10. High-resolution SEM images of Fe3O4 nanoparticles.

As can be seen in the SEM image (Figure 9), the particles of Artemisia anuua shown are
in the form of micron-sized fibers and irregular shape particles. The incorporation of herb
phytochemicals into the pores of Fe3O4 nanoparticles was also confirmed via the scanning
electron microscopy (SEM) images of Fe3O4 nanoparticles (Figure 10) and Fe3O4 loaded
with the herb (Figure 11). The SEM image of Fe3O4 nanoparticles loaded with the herb
(Figure 11b) shows a powder that consists of agglomerations of round nanoparticles with
dimensions between 5 and 30 nm, as well as irregular shapes with dimensions greater than
60 nm. In the SEM image at high magnification (Figure 11a), irregular shape particles in
Fe3O4 nanoparticles’ surface modification with herbs can be seen.
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2.7. Magnetic Properties

The magnetic properties of the Fe3O4 nanoparticles and the nano-carrier system were
investigated at a low-frequency driving field (50 Hz) by means of an induction hysteresis
graph [105]. It was found that both samples exhibit ferromagnetic behavior with narrow
hysteresis loops (see Figures 12 and 13).
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From the measured hysteresis loops, the saturation magnetization (σS), the coercive
field (Hc) and the remanent magnetization (σR) were determined. The results are presented
in Table 4.

Table 4. Magnetic properties of Fe3O4 nanoparticles and nano-carrier system.

Sample σS (emu/g) HC (Oe) σR (emu/g)

Fe3O4 nanoparticles 67.22 61.18 6.83

Nano-carrier system 27.17 82.10 2.77

As expected, the saturation magnetization of the sample Fe3O4 nanoparticles is larger
than that of nano-carrier system. Both samples have small values regarding the remnant
ratio σR/σS (in order of 0.1), which is an indication of the ease with which the magneti-
zation reorients to the nearest easy axis magnetization direction after the removal of the
magnetic field. The frequency dependence on the complex magnetic permeability of the
samples (Equation (1)) over the frequency range of 1 kHz to 2 MHz was measured at room
temperature, and the obtained results are presented in Figure 14 [106].

µ( f ) = µ′( f )− iµ′′ ( f ) (1)

where µ′( f ) is the real part;µ′′ ( f ) is the imaginary part.
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In the investigated frequency range, there are no magnetic relaxation peaks that
provide clues about the characteristic magnetization processes. However, given the small
sizes of the particles and also the low value of the imaginary component of complex
magnetic permeability, it can be assumed that the dominant magnetization mechanism is
the Neel process, correlated with the rotation of the magnetic moment inside the particles
by overcoming the magneto-crystalline anisotropy barrier [107,108].

The obtained results indicate that the nano-carrier system, wherein the selected ratio
of plant:magnetic nanoparticles is 3:1, exhibits magnetic properties.

3. Materials and Methods

All used reagents were GC grade. Methanol and chloroform were purchased from
VWR (Wien, Austria). The Fe3O4 nanoparticles (nanoparticle size: 23 nm) were provided
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by the National Research and Development Institute for Non-Ferrous and Rare Metals,
Pantelimon, Romania. The plant samples (whole plant) were collected in August 2020 from
the area of Timis, Romania and were taxonomically authenticated at Victor Babes University
of Medicine and Pharmacy, Timisoara, Romania. The plant samples were rapidly frozen in
liquid nitrogen (−194 ◦C), ground and sieved to obtain a particle size lower than 0.5 mm,
and they were kept at −80 ◦C to avoid enzymatic conversion or metabolite degradation.
For each analysis, 1.8 g of dried sample was subject to sonication extraction in 25 mL of
solvent (methanol/chloroform = 1:1) for 25 min at 40 ◦C with a frequency of 50 kHz. The
solution was concentrated using a rotavapor and the residue was dissolved in MeOH. The
extract was centrifuged, and the supernatant was filtered through a 0.2 µm syringe filter
and stored at –18 ◦C until analysis.

3.1. Nano-Carrier System Preparation

For each analysis, 1.5 g of sample was prepared from dried herb (whole plant, ground
and sieved to obtain a particle size lower than 0.5 mm), and Fe3O4 nanoparticles were added
(herb/Fe3O4 nanoparticles = 3:1). The obtained mixture was subjected to micronization at
room temperature for 5 min.

3.2. GC-MS Analysis

Gas chromatography was carried out using ClarusSQ8 GC/MS (Perkin Elmer) appa-
ratus with a ZB-AAA GC column (10 m × 0.25 mm) (Phenomenex, Torrance, CA, USA);
carrier gas, He; flow rate, 1 mL/min, following 3.3. GC-MS Separation Conditions (the
standard conditions provided with the EZ: faast GC-MS free amino acids kit).

The oven temperature was 80 ◦C (held for 9 min) to 220 ◦C (held for 5 min) at
320 ◦C/min (held for 10 min); the equilibration time was 1 min. The injection parameters
were: split 1:5; 250 ◦C; 2.5 µL. The carrier gas was helium; 1.1 mL/min; 110 ◦C. The
inlet pressure was 5.9 kPa/min; the detector used was: MS; mode: Scan Transfer Line;
temperature: 250 ◦C; analyzer type: MS; electron energy: 70 eV.

3.3. Mass Spectrometry

MS experiments were conducted using EIS-QTOF-MS from Bruker Daltonics, Bremen,
Germany. All mass spectra were acquired in the positive ion mode within a mass range of
(100–3000) m/z, with a scan speed of 2.1 scans/s. The source block temperature was kept
at 80 ◦C. The reference provided a spectrum in positive ion mode with fair ionic coverage
of the m/z range scanned in full-scan MS. The resulting spectrum was a sum of scans over
the total ion current (TIC) acquired at 25–85 eV collision energy to provide the full set of
diagnostic fragment ions.

3.4. Identification of Metabolites

The total ion current (TIC) and selected ion monitoring (SIM) values were compared
with those from Phenomenex-EZ: faast amino acid analysis user guide and the results
are presented in Table 1. The metabolites were identified via comparison of their mass
spectra with those of the standard library NIST/NBS-3 (National Institute of Standards
and Technology/National Bureau of Standards) spectral database, and the identified
phytoconstituents are presented in Table 2.

3.5. FT-IR Spectroscopy

The FT-IR spectrum of the sample was recorded via KBr pellet using a Shimadzu
Prestige-21 spectrometer in the range 400–4000 cm−1, with a resolution of 4 cm−1.

3.6. XRD Spectroscopy

The phase composition of the sample was determined via powder X-ray diffractom-
etry (XRD) using monochromatic CuKα radiation (λ = 1.5406Å) on a Rigaku Ultima IV
diffractometer equipped with a D/teX Ultra detector and operating at 40 kV and 40 mA.
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The analysis was performed in the 2θ range of 10–80◦, with a scan speed of 5 ◦/min and a
step size of 0.01◦ 2θ. The average crystallite size was calculated using the whole pattern
profile fitting method (WPPF). The XRD patterns were compared with those from the ICDD
Powder Diffraction Database (ICDD file 04-015-9120).

3.7. Scanning Electronic Microscopy (SEM)

The SEM analyses were performed using an SEM-EDS system (QUANTA INSPECT
F50) equipped with a field emission gun (FEG), 1.2 nm resolution and an energy dispersive
X-ray spectrometer (EDS) with an MnK resolution of 133 eV.

3.8. Magnetization Experiments

The frequency dependence of the Fe3O4 nanoparticles and nano-carrier system was
measured using an Agilent LCR-meter (E-4980A type) at room temperature over the
frequency range (1 kHz to 2 MHz) and various values of polarizing field. The duration of
the measurement into a constant magnetic field over the entire frequency range was about
40 s.

Complex magnetic susceptibility measurements were made using the short-circuited
coaxial transmission line technique at different values of the polarizing field, H, over the
range 0–170 kA/m and at the frequency range (100 MHz–6 GHz). The static magnetiza-
tion measurements for the Fe3O4 nanoparticle sample and the nano-carrier system were
performed using a ballistic galvanometer.

4. Conclusions

In the current study, the complete metabolite profiling of A. annua growing wild in
Romania was accomplished. A total of 14 amino acids were identified for the for the first
time in plant samples. The biological activities were discussed for each metabolite category.
Furthermore, a simple and economical nano-carrier system was developed. A ratio of
herb:magnetic Fe3O4 nanoparticles was used, which allowed for the synergic effect of A.
annua bioactive compounds and its inorganic component properties to be taken advantage
of. The morpho-structural characterization of the nano-carrier system was performed.
In addition, the magnetic properties of the nano-carrier were evaluated. Further studies
are necessary to investigate the biological properties and the bioavailability of the new
nano-carrier system.
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