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Abstract: Herpesvirus capsids are assembled in the nucleus and undergo a two-step process to
cross the nuclear envelope. Capsids bud into the inner nuclear membrane (INM) aided by the
nuclear egress complex (NEC) proteins UL31/34. At that stage of egress, enveloped virions are
found for a short time in the perinuclear space. In the second step of nuclear egress, perinuclear
enveloped virions (PEVs) fuse with the outer nuclear membrane (ONM) delivering capsids into
the cytoplasm. Once in the cytoplasm, capsids undergo re-envelopment in the Golgi/trans-Golgi
apparatus producing mature virions. This second step of nuclear egress is known as de-envelopment
and is the focus of this review. Compared with herpesvirus envelopment at the INM, much less is
known about de-envelopment. We propose a model in which de-envelopment involves two phases:
(i) fusion of the PEV membrane with the ONM and (ii) expansion of the fusion pore leading to release
of the viral capsid into the cytoplasm. The first phase of de-envelopment, membrane fusion, involves
four herpes simplex virus (HSV) proteins: gB, gH/gL, gK and UL20. gB is the viral fusion protein and
appears to act to perturb membranes and promote fusion. gH/gL may also have similar properties
and appears to be able to act in de-envelopment without gB. gK and UL20 negatively regulate
these fusion proteins. In the second phase of de-envelopment (pore expansion and capsid release),
an alpha-herpesvirus protein kinase, US3, acts to phosphorylate NEC proteins, which normally
produce membrane curvature during envelopment. Phosphorylation of NEC proteins reverses tight
membrane curvature, causing expansion of the membrane fusion pore and promoting release of
capsids into the cytoplasm.

Keywords: de-envelopment; phosphorylation; nuclear envelopment complex; membrane fusion;
hemi-fusion

1. Introduction

Herpesviruses construct their nucleocapsids and fill them with DNA in the nucleus.
These large virus particles then face the difficult challenge of crossing the nuclear envelope
(NE), a structure that is not designed to allow large objects to pass. Decades ago, there
was controversy, with one camp suggesting that herpes simplex virus (HSV) acquires an
envelope by budding into the inner nuclear membrane (INM) and that these enveloped
particles then acquire a second membrane at the outer nuclear membrane (ONM) [1].
These vesicles were thought to then ferry the enveloped virions through the cytoplasm to
the plasma membrane. Others suggested that herpesvirus capsids can squeeze through
impaired nuclear pores despite the large size of these particles [2]. A third model, originally
proposed by Stackpole [3], suggested that herpesviruses cross the NE via a two-step
process involving capsid envelopment at the INM followed by de-envelopment at the
ONM (see Figure 1). The vast majority of the evidence now supports this third model,
often known as envelopment/de-envelopment (reviewed in [4]). In the first step of this
pathway, viral proteins disrupt the nuclear lamina then nucleocapsids interact with the
INM that is wrapped around the capsids as enveloped particles bud into the space between
the INM and ONM, also known as the perinuclear space. This envelopment step involves
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the well-characterized nuclear envelopment complex (NEC) proteins HSV UL31 and UL34,
which have been extensively reviewed [4–7]. Enveloped particles found in the perinuclear
space are known as perinuclear virions (PEVs). In the second step of nuclear egress, the
envelopes of PEVs fuse with the ONM so that capsids with tegument proteins bound to
their surfaces disengage from the ONM and move into the cytoplasm. Later these capsids
acquire another membrane by budding into the Golgi or trans-Golgi network followed by
delivery to the plasma membrane.
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Figure 1. Envelopment/de-envelopment model of herpesvirus egress from cells. Capsids in the nucleus acquire an envelope
from the INM by budding into the perinuclear space. The PEV envelope fuses with the ONM delivering capsids into
the cytoplasm. These capsids bud into cytoplasmic membranes. Vesicles containing mature virions fuse with the plasma
membrane delivering virions to the extracellular space.

Capsid de-envelopment at the ONM consists of at least two phases. The first phase
involves fusion of the PEV membrane with the ONM. This process may involve an initial
phase in which the lipids in outer leaflet of the two membranes mix to produce hemi-fusion,
followed by mixing of the lipids in the inner leaflets of the membranes to produce full
membrane fusion and a fusion pore between PEV and the cytoplasm. The second, easily
overlooked phase of this process involves expansion of the fusion pore and release of the
capsid into the cytoplasm. Small fusion pores between membranes can theoretically resolve
either by expansion or closure of the pore [8]. With herpesviruses, we have the example
of the NEC proteins that have the capacity to alter the curvature of membranes in order
to promote envelopment, the opposite of de-envelopment [4,6]. Reversing this process of
curving membranes, which involves removing or altering the NEC present in PEV, might
lead to expansion of the fusion pore and capsid release into the cytoplasm.

While there is extensive mechanistic information about the first step of nuclear egress,
envelopment, much less is known about the viral machinery that promotes the second
step, de-envelopment. In this review, we describe what is known about herpesvirus egress
across the ONM, with much of the information from studies of herpes simplex virus (HSV).
Given that this is such a fundamentally important and basic process, we assume that other
herpesvirus families may also utilize similar mechanisms for this egress. However, we
hasten to acknowledge that molecular mechanisms involved in de-envelopment remain
sketchy, and thus there is ample conjecture, as well as some theoretical models attempting
to explain puzzles represented by certain observations. Most of what is known about de-
envelopment comes from studies of HSV and the related alpha-herpesvirus pseudorabies
virus (PRV), and our review focuses on these two viruses. It would seem that such a basic
process of virus egress should involve similar proteins in beta- and gamma-herpesviruses,
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although there are major differences between HSV and PRV. Moreover, little to nothing is
known about de-envelopment with beta- and gamma-herpesviruses. The review is broken
down into two sections. The first focuses on four membrane proteins: gB, gH/gL, gK and
UL20, which apparently participate in the membrane fusion phase of de-envelopment.
The second section focuses on the second phase of de-envelopment involving the US3
protein, a threonine/serine kinase that phosphorylates NEC proteins so as to potentially
reverse effects of NEC proteins and promote fusion pore expansion and capsid entry into
the cytoplasm.

2. HSV Membrane Proteins That Promote De-Envelopment
2.1. HSV Glycoproteins gB and gH/gL in Fusion of PEVs with the ONM

A role for herpes simplex virus (HSV) glycoproteins in de-envelopment at the ONM
was suggested by the observations that a mutant lacking two glycoproteins, gB and gH,
exhibited defects in this step [9]. Enveloped virions accumulated in the perinuclear space or
in membrane vesicles containing enveloped virions known as herniations (Figure 2). Loss
of both gB and gH in HaCaT human keratinocytes produced large herniations, extensions of
the INM extending into the nucleoplasm containing enveloped virions (Figure 2A) [9]. Most
of the total enveloped particles in these cells were present as PEVs or in herniations, and
there were substantial reductions in cell surface and cytoplasmic particles. In monkey Vero
cells, there were fewer herniations and instead more extensive accumulation of enveloped
virions in the perinuclear space which was often ballooned (Figure 2B).
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Figure 2. Herniations and PEVs. (A) HaCaT keratinocytes infected with an HSV gB−/gH− double mutant display
herniations (arrow). These vesicle membranes are continuous with the INM. (B) Vero cells infected with the HSV gB−/gH−

mutant display perinuclear enveloped particles (PEVs) (arrow).

Both gH and gB are components of the mature virus particle and are essential for the
membrane fusion events that initiate virus infection (reviewed in [10,11]). It should be
noted that the gH glycoprotein is found in a complex with a second smaller glycoprotein
gL that is not membrane anchored [12,13]. Without gL, HSV gH is not folded normally,
does not leave the endoplasmic reticulum, and is not incorporated into the mature virion
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envelope. Observations with the gB−/gH− double mutant suggested that gB and gH/gL
act in a manner that bears similarities to their role in virus entry, where these proteins
mediate fusion of the virion envelope with host membranes. We describe data in the
section below suggesting that both gB and gH/gL can affect lipid mixing and, perhaps,
promote membrane fusion. Thus, in the absence of both gH/gL and gB, fusion between
the virion envelope and the ONM is blocked, and enveloped particles accumulate in
the perinuclear space or back up into the nucleoplasm in herniations. Consistent with
this model, both gB and gH/gL were detected in nuclear membranes and in PEVs by
immunofluorescence and immunoEM [9]. Others have also shown intense staining of the
NE and ER by gB-specific antibodies [14].

Mutations in the gB fusion loops abolished the capacity of gB to function in de-
envelopment when expressed in an HSV recombinant unable to express gH [15]. gB fusion
loops are thought to play a direct role in membrane fusion by inserting hydrophobic
peptide sequences into cellular membranes [16]. HSV recombinants expressing gB with
any one of four fusion loop mutations (W174R, W174Y, Y179K and A261D) were unable
to enter cells. In addition, all four fusion loop mutants expressed in viruses lacking gH
accumulated PEVs, and there were fewer enveloped virions on cell surfaces [15]. These
results support the hypothesis that gB functions directly in membrane fusion to promote
nuclear egress, rather than in other processes such as binding receptors or other viral
proteins. The observations also decreased the likelihood that the original HSV gB−/gH−

null mutant possessed gross defects in the virion envelope making it unable to cross the NE.
The herniations observed with the HSV gB−/gH− mutant appeared similar to those

previously observed in cells infected with HSV US3-null mutants [17,18]. HSV US3 is a viral
serine/threonine kinase and is reviewed in the second section of this paper. US3 directly
phosphorylated the gB cytoplasmic (CT) domain in in vitro assays, as well as in extracts of
cells [19,20]. Deletion of gB in the context of a US3-null virus did not add substantially to
defects in nuclear egress. The majority of the US3-dependent phosphorylation involved
amino acid T887 in the cytoplasmic domain of gB, which is present in a motif similar to that
recognized by US3 in other proteins. HSV recombinants expressing a gB substitution T887A
or a gB truncated at residue 886 and lacking gH accumulated in the perinuclear space and
in herniations [19]. These observations supported the conclusion that phosphorylation of
the gB CT domain is important for gB-mediated fusion with the ONM. US3 is incorporated
into the tegument layer (between the capsid and envelope) of HSV virions, and this close
proximity to the gB CT tail might lead to phosphorylation and triggering of gB- mediated
fusion. Alternatively, US3 phosphorylation of gB might control the incorporation of gB
into the PEV membrane. Related to this possibility, PEV particles that accumulate with
an HSV US3-null mutant were characterized by cryo-electron microscopy and found to
contain few glycoprotein spikes [21].

2.2. Caveats and Puzzles Associated with Observations That gB and gH/gL Promote
De-Envelopment

The observations that gB and gH/gL participate in de-envelopment bear similarities
to the process of virus entry into cells. However, there is a big difference. Models for entry
of HSV and essentially all herpesviruses suggest that various forms of gH/gL interact
with gB to cause gB-mediated cell fusion (reviewed in [10,22,23]. However, evidence for
direct interactions between these two glycoproteins is rather thin for most herpesviruses
(see discussion in [24]). HSV virus entry begins with glycoprotein gD binding to cellular
receptors, then gD apparently interacts with and alters gH/gL [25]. Following this, gH/gL
is said to interact with gB, which is clearly a membrane fusion protein based on its structure.
Pre- and post-fusion structures of gB are similar to the pre- and post-fusion forms of
the vesicular stomatitis virus G protein, a type III fusion protein that promotes VSV
entry [26–28]. HSV mutants lacking any one of gD, gH/gL or gB are unable to enter
cells [13,29–31]. In contrast, it was necessary to mutate both gB and gH to substantially
reduce nuclear egress. However, it should be noted that the numbers of PEVs observed
with a gB- mutant (expressing gH/gL) were about triple those observed with w.t. HSV
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in HaCaT cells, though much more major defects (30X more PEVs) were observed with
gB−/gH− double mutant [9]. These results suggest that gH/gL, without gB, can mediate
some level of de-envelopment.

To explain these differences, there is some evidence that gH/gL might interact directly
with membranes. There were reports that an alpha-helical peptide domain of gH (in the
region of a.a. 626–644) can interact with membranes and peptides can inhibit cell–cell
fusion and virus entry [32–34]. Other studies involving the entire gH/gL protein supported
the hypothesis that gH/gL can induce membrane hemi-fusion, which was first described
as the first step in influenza virus HA-mediated entry fusion [35]. Hemi-fusion involves
mixing of the outer leaflets of two different membranes, but not the mixing of the inner
leaflets of these membranes (see Figure 3). Subramanian et al. used assays involving the
transfer of the lipid ganglioside GM1, which was present in the outer leaflet of the plasma
membrane of Vero cells, into the surface membranes of CHO cells, which do not express
GM1 [36]. Expression of gD (to bring membranes close) and gH/gL in Vero cells produced
hemi-fusion. However, complete fusion of cells, detected by transfer of soluble GFP from
the cytoplasm of Vero cells into CHO cells, was produced by expression of gD, gH/gL
and gB. These data produce strong support for the conclusion that gH/gL can interact
directly with membranes, perturbing the lipids sufficiently so that the outer leaflets of two
opposing membranes mix with one another. This membrane mixing activity of gH/gL
may be sufficient to promote de-envelopment at the ONM.

It is tempting to think of de-envelopment fusion as analogous to virus entry and
therefore likely to be mediated by fusion proteins embedded in the PEV envelope that
are activated in response to interactions with some component of the ONM. This seems
most likely given how gB and gH/gL function in virus entry, and these proteins might
also promote de-envelopment in this manner. However, it is also possible that the fusion
machinery (gB and gH/gL or other proteins) might reside in the ONM and be activated
by interaction with some component of the PEV envelope. Current evidence does not
distinguish between these two possibilities. Moreover, there is no information on which
cellular or viral proteins might trigger the viral fusion machinery.

A second puzzle relates to observations that another herpesvirus does not appear
to rely on gB and gH/gL for de-envelopment. All herpesviruses express gB and gH/gL
proteins, and thus it might seem likely that all might use these glycoproteins in this
fundamental process. Nevertheless, porcine pseudorabies virus (PRV) mutants lacking gB
and gH, gB and gD, gD and gH or gH and gL all showed no defects in virus egress [37].
In addition, immunoEM studies involving both monoclonal and polyclonal antibodies
failed to detect PRV glycoproteins in the INM or in PEV. These PRV immunoEM studies
differ from the immunoEM results from several laboratories that demonstrated HSV
glycoproteins gB, gD, gH/gL and gM present in the INM and perinuclear virions [9,38,39],
and gD was observed in PEVs purified from infected cells and subjected to Western
blotting [40]. Moreover, HSV gB and gH/gL display intense immunofluorescence in nuclear
and ER membranes, more intense than that observed in the plasma membrane [9,14]. These
differences between HSV and PRV must be considered in light of other major differences
in egress pathways of egress for these viruses. For example, PRV mutant lacking gM
and gE/gI showed major defects in secondary envelopment, i.e., unenveloped virions
accumulated in the cytoplasm [41]. In contrast, an HSV mutant lacking both gM and gE
was only marginally compromised in virus replication [42]. Moreover, an HSV mutant
lacking both gB and gD was found to be defective in secondary envelopment [43], but that
was not the case with a PRV gB−/gD− double mutant [37]. There are also major differences
in how PRV and HSV egress into neuronal axons (reviewed in [44]).
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Figure 3. Model of virion envelope fusion with cellular membranes. (1) The virion envelope is
brought close to a cellular membrane by the action of viral fusion proteins (illustrated to represent
any viral fusion protein). Fusion loops in the fusion protein insert into the cellular membrane. (2)
The viral fusion protein, acting like a hinge, pulls the two membranes close together, promoting
hemi-fusion, i.e., mixing of the lipids in the outer leaflets. (3) Continued folding back of the fusion
proteins produces mixing of lipids in the inner leaflets of the two membranes creating a fusion pore.

2.3. gK and UL20, Other Membrane Proteins That May Regulate De-Envelopment Fusion

HSV-1 gK is a ~40 kDa glycosylated multi-pass membrane protein that is the en-
coded by the UL53 gene [45]. gK is essential for virus replication, and gK null mutants
exhibited defects in secondary envelopment, shown by accumulation of unenveloped or
partially enveloped capsids in the cytoplasm and far fewer cell surface virions [46,47].
Point mutations in gK represent, by far, the most frequent genetic mutations that produce
the syncytial phenotype in which infected cells fuse extensively in early stages of infec-
tion [48–53]. This cell–cell fusion is apparently mediated by gB, the viral fusion protein [54].
It had long been hypothesized that gK might negatively regulate the capacity of gB to fuse
membranes [55–58].

The involvement of gK in nuclear egress was indicated by the surprising observations
that overexpression of gK in stably transfected cells followed by infection of wild-type HSV
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resulted in extensive accumulation of enveloped virus particles in the perinuclear space [46].
There were also very few virus particles in the cytoplasm or on cell surfaces in these cells.
Consistent with an involvement in nuclear egress, gK displayed subcellular localization
consistent with a function in nuclear egress. gK peptide-specific antibodies showed that gK
was not on cell surfaces, but accumulated extensively in the ER and NE [56]. Moreover, gK
N-linked oligosaccharides remained in the high mannose form, consistent with an inability
to be transported to the Golgi apparatus and suggesting that most gK is retained in the
ER and NE [56]. Subsequent studies of gK with insertions of a 14 a.a. epitope produced
evidence that some gK reached cell surfaces [59]. Unfortunately, these studies did not
compare to the anti-gK antibodies used in the earlier studies, and thus it is possible that
the insertion of 14 a.a. into gK altered its traffic in cells. In contrast to the overexpression
of gK, the loss of gK by deletion caused defects in secondary envelopment [46,47]. Given
the hypothesis that HSV gK negatively regulates the capacity of gB to fuse membranes,
the observations of marked accumulation of PEVs with overexpression of gK supports
a model in which gK reduces gB-mediated membrane fusion between the virus and the
ONM. However, it is not clear whether overexpression of gK also impairs gH/gL in the
de-envelopment process.

HSV UL20 may be another player in the de-envelopment process. UL20 is a ~24 kDa
multi-pass transmembrane protein, but, unlike gK, UL20 is not glycosylated [60,61]. UL20
also extensively accumulated in the NE and ER, with little of the protein present on cell
surface membranes [61]. UL20 interacted with gK, and the two proteins affect the traffic
of one another in transfected cells [62,63]. Early studies involving an HSV UL20 deletion
mutant described marked accumulation of enveloped virions in the perinuclear space [64].
However, this UL20 mutant did not just contain a simple deletion of the entire UL20
open reading frame, but instead the virus expressed a C-terminal fragment of the UL20
protein fused in frame to the UL20.5 protein [65]. The UL20.5 protein also accumulates
within nuclear membranes [66]. Subsequently, an HSV deletion mutant lacking all UL20
sequences and without effects on the UL20.5 gene did not exhibit these defects in nuclear
egress [65]. Instead, this UL20 mutant showed defects in secondary envelopment, so
that cytoplasmic capsids accumulated in the cytoplasm, similar to the defects seen with
the HSV gK- null mutant [46]. A PRV UL20 mutant also showed defects in cytoplasmic
assembly, accumulating vesicles containing numerous enveloped virions [67]. Therefore,
the retention of HSV enveloped virions in the perinuclear space observed with the first HSV
UL20 mutant [64] was apparently due to expression of the UL20–UL20.5 fusion protein,
not loss of UL20. Nevertheless, the phenotype of this UL20/UL20.5 fusion protein appears
similar to that of gK overexpression, causing reduced de-envelopment.

There are also important relationships between gK and UL20 and gB. Syn mutations
most frequently affect the UL53 (gK) gene, but mutations altering the gB cytoplasmic
domain or the UL20 protein also produce the syncytial phenotype [13,48–53]. Moreover,
there was a report that gK and UL20 interact with gB [58]. In addition, coexpression of
UL20 and gK blocks cell–cell fusion mediated by transfecting cells with gD, gH/gL and
gB [68]. These results, when coupled with observations of gK overexpression and the
UL20–UL20.5 fusion protein, support the hypothesis that gK and UL20 negatively regulate
gB in de-envelopment fusion.

2.4. Summary of the Roles of HSV Membrane Proteins gB, gH/gL, gK and UL20 in Nuclear Egress

Mutants lacking both gB and gH accumulated enveloped particles in the perinuclear
space or herniations. gB proteins with mutations in the fusion loops or in cytoplasmic
residues phosphorylated by US3 when combined with a gH-null mutant also displayed
these defects. To explain the observations that both gB and gH must be deleted in order
to substantially reduce de-envelopment, it appears that both gB and gH/gL may have
the capacity to cause lipid mixing. Related to the role of gB in de-envelopment, there
are two other membrane proteins gK and UL20 that are thought to interact with gB and
might negatively regulate gB in membrane fusion in cells. All three of UL20, gK and
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gB are mutated in HSV syn mutants. It seems more than coincidence that all three of
these proteins are involved in cell–cell fusion and mutant forms of these proteins can alter
de-envelopment. It also makes ample sense that herpesviruses construct fusion machinery
including gB and gH/gL in order to enter cells and could also use this machinery for the
similar process of fusing the virion envelope with the ONM. That said, there is also good
evidence that there are other mechanisms by which HSV and other herpesviruses cross the
ONM (see Section 3 below).

3. US3-Mediated Phosphorylation of NEC Proteins in De-Envelopment
The Role of US3 in De-Envelopment

The first indication that alpha-herpesvirus proteins promote de-envelopment involved
a PRV mutant lacking that US3 gene that accumulated PEVs [69]. These enveloped virions
were not distributed throughout the perinuclear space but were found in herniations of the
inner nuclear membrane [17,69,70], similar to the herniations observed later with gB–/gH–

double mutants [9] (see examples in Figure 2). US3 mutations in other, distantly related
alpha-herpesviruses also produced similar defects in de-envelopment [71–74]. Therefore,
pUS3 is important for efficient de-envelopment of alpha-herpesvirus capsids at the ONM.

US3 is a serine/threonine protein kinase and is conserved among the alpha-herpesviruses,
but not in beta- and gamma-herpesviruses. It has been reported to phosphorylate numerous
viral and cellular substrates in the infected cell and to regulate infected cell properties as
diverse as protection from apoptosis, promotion of translation and inhibition of antigen
presentation (reviewed in [72]). The de-envelopment function of HSV pUS3 requires
its kinase activity, since point mutations that ablate kinase activity have the same de-
envelopment phenotype as a US3 deletion [17]. This suggests that pUS3 functions in de-
envelopment by phosphorylation of other protein substrates. US3 is a structural component
of the PEVs, but whether its de-envelopment function requires incorporation into the virion
is not known [75].

The critical question about US3 function in de-envelopment is the identity of the
relevant protein substrate(s). The available data are consistent with two non-exclusive
hypotheses. The first hypothesis involves US3 phosphorylation of gB, and perhaps gH/gL,
so that this machinery, which causes fusion of the PEV and ONM membranes, is given
increased fusogenic activity by virtue of phosphorylation. Evidence of this hypothesis is
summarized above.

The second hypothesis is that pUS3 phosphorylation regulates the reversal of the
tight membrane curvature brought about by the presence of the NEC (UL31/UL34 pro-
teins), so that there is an expanded fusion pore and release of unenveloped capsids into
the cytoplasm (see Figure 4). Evidence in favor of this second hypothesis comes from
the observation that mutation of pUS3 phosphorylation sites on one of the NEC proteins
produces a de-envelopment defect that is similar to that seen with US3 mutants [18]. HSV-1
US3 phosphorylates both UL34 and UL31 [17,18,76], but phosphorylation of UL34 is not
conserved in PRV [70]. HSV-1 UL34 is phosphorylated in its flexible C-terminal stalk and
UL31 in its N-terminal domain [17,18,76]. The function of UL34 phosphorylation in HSV-1
is unclear, since mutation of the phosphorylation site has no effect on virus replication
or nuclear egress [17]. In contrast, phosphorylation of UL31 at US3-specific phosphory-
lation sites is required for efficient virus replication and nuclear egress. Replacement of
UL31 phosphorylated residues with alanines resulted in a de-envelopment defect and
diminished single-step replication similar to that seen for US3 mutant viruses [18]. Re-
placement of the phosphorylated residues with the phosphomimetic glutamic acid resulted
in a replication defect, and a nuclear egress defect that precedes de-envelopment, i.e.,
capsids accumulated in the nucleus and accumulation of PEVs, was not observed. These
observations suggest that UL31 is a critical substrate for the de-envelopment function
of US3. UL31 might participate directly in de-envelopment in a manner regulated by
pUS3 or, alternatively, phosphorylated UL31 might recruit some other de-envelopment
factor. All alpha-herpesviruses encode UL31 homologs with serine or threonine residues
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in the context of basic residues, motifs that are similar or identical to HSV and PRV US3
phosphorylation motifs.
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Figure 4. Model for fusion pore expansion by phosphorylation of the NEC. (A) Membrane curvature
in the PEV is induced and maintained by interactions between NEC heterodimers embedded in the
lipid bilayer. (B) Upon opening of a fusion pore, pore expansion can be driven by US3-mediated
phosphorylation of UL31 N-terminal domain near the membrane proximal region of the heterodimer.
(C) UL31/UL34 continues to be altered in conformation and moves into the cellular membrane
further relaxing membrane curvature and allowing expansion of the fusion pore.
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One mechanism by which US3-mediated phosphorylation of UL31 might promote de-
envelopment involves altering the capacity of the NEC to induce and maintain membrane
curvature. By releasing the UL31/34 imposed curvature of the virion envelope that is
imposed at the INM, the fusion pore may expand during de-envelopment and allow release
of the capsid into the cytoplasm. To understand this better it is worth reviewing how UL31
and UL34 mediate membrane curvature during envelope at the INM. UL31 and UL34
expressed in transfected cells (without other viral proteins) promote vesicle formation in the
perinuclear space [77]. The crystal structures of UL31/UL34 heterodimers suggest assembly
into hexameric arrays similar to those observed in vesicles formed by UL31 and UL34
in vitro [78–82]. Mutations in UL31 and UL34 that disrupt hexamer formation depress
membrane budding in vitro and produce a budding defect in infected cells [78]. This
suggests that association of UL31/UL34 heterodimers into hexameric arrays is important
for membrane budding, perhaps by inducing lipid ordering that favors curvature [83].
Evidence that pUS3 regulates the association state of UL31/UL34 heterodimers comes from
observations that US3 mutants form NEC aggregates in the absence of capsid budding
and that these aggregates correspond to deformations of the nuclear membrane and areas
of tight membrane curvature [84]. Thus, the NEC can produce tight curvature of the
INM, and this is regulated by pUS3. Our model illustrated in Figure 4 would suggest that
reversal of the NEC-imposed curvature at the ONM during de-envelopment is necessary
to permit expansion of the fusion pore so that the capsid can be released into the cytoplasm.
Without reversal of NEC-imposed curvature, the fusion pore may close, regenerating a
fully enveloped PEV. US3 would function in this model by phosphorylating UL31 to alter
the structure of UL31/34, thereby reversing membrane curvature.

The HSV UL21 protein also plays a significant role in de-envelopment as shown by
the accumulation of PEVs in cells infected with a UL21 deletion virus [85]. Indeed, the PEV
accumulations appear quite similar to those seen in US3 mutant-infected cells, and mutation
of UL21 also causes formation of punctate NEC aggregates in the nuclear envelope similar
to those seen with US3 mutants [85,86]. These observations suggest that UL21 and US3
are on the same pathway for promoting de-envelopment or have overlapping functions.
The situation, however, is complex. UL21 functions as a phosphatase adapter, recruiting
protein phosphatase 1 (PP1) by way of a sequence motif that is conserved across the alpha-
herpesviruses [86]. Deletion of UL21 or mutation of its phosphatase adapter motif results
in increased phosphorylation of some US3 substrates, including UL31 [86]. Furthermore,
mutation of the UL21 PP1 adapter motif results in a virus replication defect that can be
partially suppressed by mutations in US3 that may affect its catalytic activity [86]. These
results suggest that, in some circumstances, US3 and UL21 activities are opposed to one
another. How these results might be reconciled is not clear at this point, but it is possible
that UL21 may function differently in the envelopment and de-envelopment steps of
nuclear egress. UL21 associates with intranuclear capsids [87,88], and Benedyk et al. have
suggested that capsid-associated UL21 might locally promote dephosphorylation of UL31
and thereby promote NEC assembly and virion budding into the perinuclear space [86].
US3 phosphorylation of UL31 in areas where capsids are not docked might prevent NEC
self-association and inhibit capsid-less budding events. At the de-envelopment step, UL21
and US3 might cooperate in a way that may not involve the phosphatase adapter activity
of UL21. However, these results again highlight the important role of phosphorylation and,
perhaps, de-phosphorylation in regulating de-envelopment.

4. Models for HSV De-Envelopment

The observations reviewed here suggest a consensus model for HSV de-envelopment
in which gB and gH/gL can each independently promote the membrane fusion phase of
de-envelopment and pUS3 both regulates the de-envelopment activity of gB and promotes
the fusion pore expansion/capsid release phase. The two multi-span proteins gK and UL20
may also contribute to regulating gB, and perhaps gH/gL, in this process. It is important
to note, however, that neither loss of both gB and gH nor loss of US3 completely blocks
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HSV nuclear egress; there were still significant quantities of cell surfaces virions [17,19].
With respect to gB and gH/gL, in Vero cells, wild-type HSV produced 85% cell surface and
5% PEVs, while the gB−/gH− mutant produced 20% cell surface and 59% PEVs. Thus,
there were approximately 4–5 fold reductions in cell surface particles and 10 fold increases
in PEVs. With loss of US3 there were defects in growth that are far more modest than those
associated with loss of either UL31 or UL34. This suggests that nuclear egress proceeds
relatively efficiently even without US3 function [17,70,89–93]. Indeed, the fraction of the
US3 deletion growth defect that is due to its function in nuclear egress is small, since
adding a US3 inactivating mutation onto an NEC deletion gives a further growth defect
similar in magnitude to the US3 mutation on a wild-type background [84]. Therefore,
there appear to be viral or cellular proteins, in addition to US3 and gB and gH/gL, that
promote de-envelopment. These other viral or cellular proteins might also account for the
de-envelopment observed with the PRV gB−/gH− double mutant [37].

EM images of cells infected with wild-type HSV show relatively few PEVs; instead,
the majority of enveloped particles accumulate on cell surfaces. Thus, the de-envelopment
process is rapid. However, in US3- or gB−/gH− mutant virus-infected cells, there is
substantial accumulation of PEVs over time, even though some virus reaches the cytoplasm
and cell surfaces. This delay continues until long after infection so that more and more
PEVs accumulate and herniations appear to represent a major log jam, as PEVs back up into
the nucleoplasm. Our model to explain these observations suggests that the other putative
viral or cellular de-envelopment factors can function at earlier stages of virus replication,
but these factors are overwhelmed by the large numbers of HSV particles produced in the
nucleus at late stages of infection. By this model HSV gB, gH/gL and US3 expedite the
de-envelopment process, for which other viral and cellular factors are insufficient.

As far as we are aware, there have not been descriptions of cellular machinery that
act to fuse NE membranes. Fusion of the inner and outer nuclear membranes appears not
to be required for dissolution of the NE during mitosis. Rather, nuclear membranes are
subsumed into the ER, which then vesiculates (reviewed in [94]). The formation of the
de-envelopment fusion pore is topologically analogous to the formation of fenestrations
in sheets of endoplasmic reticulum and to the creation of nuclear pores in the interphase
nucleus, but the mechanism by which these fenestrations and pores are formed is currently
unknown [94,95]. Intracellular transport vesicles fuse with acceptor molecules such as the
plasma membrane, but the machinery involved, including Rab and SNARE proteins, are
on the wrong face of the membrane to apply to virus particles or the ONM [96]. For fusion
pore expansion and capsid release, it should be noted that the consensus sequence motif
for pUS3 phosphorylation, RRRXS/T, overlaps that of cellular kinases including protein
kinase A, Akt and protein kinase C [89,97–99]. Thus, it is possible that the US3-mediated
phosphorylation can be assumed by cellular kinases, which are lacking in quantities or
are less efficient. A similar picture may be proposed for gB and gH/gL, and other viral or
cellular proteins may promote de-envelopment fusion.
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