
	    
	  

ISSN 0973-2063 (online) 0973-8894 (print)	  

Bioinformation 17(3): 424-438 (2021) 

	  
©Biomedical Informatics (2021) 

	  

424	  

www.bioinformation.net 

 Volume 17(3) Research Article 

Structure analysis of deleterious nsSNPs in human 
PALB2 protein for functional inference  
 
Noshin Nawar, Anik Paul, Hamida Nooreen Mahmood, Ar Rafi Md. Faisal, Md. Ismail Hosen, 
Hossain Uddin Shekhar* 
 
Clinical Biochemistry and Translational Medicine Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, 
Bangladesh; Corresponding Author* Dr. Hossain Uddin Shekhar - E-mail: hossainshekhar@du.ac.bd 
 
Received February 28, 2021; Revised March 15, 2021; Accepted March 18, 2021, Published March 31, 2021 

DOI: 10.6026/97320630017424 
Declaration on official E-mail: 
The corresponding author declares that official e-mail from their institution is not available for all authors  
 
Declaration on Publication Ethics: 
The author’s state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. 
The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking 
with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information 
that is misleading to the publisher in regard to this article. 
 
Abstract: 
Partner and Localizer of BRCA2 or PALB2 is a typical tumor suppressor protein, that responds to DNA double stranded breaks through 
homologous recombination repair. Heterozygous mutations in PALB2 are known to contribute to the susceptibility of breast and ovarian 
cancer. However, there is no comprehensive study characterizing the structural and functional impacts of SNPs located in the PALB2 gene.  
Therefore, it is of interest to document a comprehensive analysis of coding and non-coding SNPs located at the PALB2 loci using in silico 
tools.  The data for 1455 non-synonymous SNPs (nsSNPs) located in the PALB2 loci were retrieved from the dbSNP database. 
Comprehensive characterization of the SNPs using a combination of in silico tools such as SIFT, PROVEAN, PolyPhen, PANTHER, PhD-
SNP, Pmut, MutPred 2.0 and SNAP-2, identified 28 functionally important SNPs. Among these, 16 nsSNPs were further selected for 
structural analysis using conservation profile and protein stability. The most deleterious nsSNPs were documented within the WD40 
domain of PALB2. A general outline of the structural consequences of each variant was developed using the HOPE project data. These 16 
mutant structures were further modelled using SWISS Model and three most damaging mutant models (rs78179744, rs180177123 and 
rs45525135) were identified. The non-coding SNPs in the 3’ UTR region of the PALB2 gene were analyzed for altered miRNA target sites. 
The comprehensive characterization of the coding and non-coding SNPs in the PALB2 locus has provided a list of damaging SNPs with 
potential disease association. Further validation through genetic association study will reveal their clinical significance. 
 
Keywords: PALB2, nsSNP, UTR, in silico characterization. 

 
Background: 
PALB2, a 1186 amino acid residue protein, (the gene for PALB2 is 
located on chromosome 16p 12.2) is mainly responsible for the co-
adjuvancy of BRCA1 and BRCA2 in the DNA damage response 
pathway [1]. PALB2 was first identified as a BRCA2 interacting 
protein for recruiting BRCA2 to DNA damage repair sites. Later its 
contribution to tumor suppression was also recognized [2]. PALB2 

consists of several protein domains including N-terminal coiled- 
coil domain-that interacts with BRCA1, C terminal WD40 domain-
that interacts with BRCA2 and Chromatin Association Motif 
(ChAM)-that promotes chromatin association [3]. Impairment of N-
terminal coiled-coil domain-BRCA1interaction is associated with 
breast cancer risk [4]. Whereas, a single nucleotide change in 
PALB2 C-terminal domain can disrupt its interaction with BRCA2 
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[5]. As it directly interacts with BRCA2, it has significant role in 
participating in homologous recombination repair [6-7]. PALB2 is 
not only responsible for recruiting BRCA2 but also it physically 
interacts with RAD51 and stimulates D-loop formation [8]. It has a 
cooperative effect on RAD51AP1, an enhancer of RAD51. With 
RAD51AP1, PALB2 synergistically stimulates D-loop formation by 
RAD51 mediated strand exchange. Hence, mutation of these 
damage repair proteins would lead to impaired DNA repair 
mechanism and eventually might result in cancer development [9-
10]. Heterozygous mutation of BRCA1 and BRCA2 genes along 
with PALB2 contribute to high risk female breast cancer and 
ovarian cancer [11]. Several studies including breast cancer patients 
from Russia, Germany and northwest region of China have been 
identified with PALB2 mutations	   [12-13]. Single nucleotide 
polymorphisms (SNPs) are responsible for increased/decreased 
susceptibility to certain diseases and thus allowing researchers to 
evaluate a person’s genetic predisposition in developing a disease 
[14]. Recently a combination of SNP and GWAS study has been 
proved to be useful in determining biological markers for diagnosis 
of disease [15]. Non-synonymous SNPs consist of a group of SNPs 
that alters the amino acid sequence of a protein affecting the 
phenotype. Thus mutation in an non-synonymous SNP can have 
deleterious impact on the protein activity [16]. Bioinformatics tools 
are now developed to classify these damaging non-synonymous 
SNPs as well as to determine their level of pathogenicity	  [17]. It is 
of interest to document the analysis of non-synonymous SNPs of 
PALB2 due to the importance of PALB2 in DNA damage response 
and its contribution to developing breast cancer risk.  
 
Methods & Materials: 
The overall flowchart of the major steps followed in this study is 
demonstrated via a generalized workflow (Figure 1). 
 
Retrieval of nsSNPs:  
The nsSNPs of the human PALB2 were retrieved from NCBI 
(National center for Biotechnology Information) dbSNP database 
[18]. This was refined using non-synonymous in the function class 
category as a filter. The rsIDs of the nsSNPs were collected for 
further computational survey. 
 
Prediction of Deleterious nsSNPs:  
For distinguishing the deleterious nsSNPs from tolerated ones, total 
eight bioinformatics tools were implemented. These tools include: 
SIFT, PolyPhen 2.0, PROVEAN, PANTHER, SNAP2, PhD-SNP, 
SNPs &GO, and PMut.  The rsIDs of the nsSNPs were provided as 
input in the SIFT (Sorting Intolerant from Tolerant) tool [19]. 
NsSNPs that showed probability score less than 0.05 were 
considered as deleterious and score equal or above 0.05 were 

considered as tolerated. Further functional characterization was 
performed using the Polyphen 2.0 (Polymorphism Phenotyping 
v2), tool [20]. For this purpose, the FASTA format of protein 
sequence with specific substitutions were submitted to the 
Polyphen 2.0 tool and a position specific independent count (PSIC) 
rendering 0.0 as tolerated, 0.801-1.0 as probably damaging and 1.0 
as deleterious was generated [21]. For analyzing the effects of the 
nsSNPs, PROVEAN (Protein Variation Effect Analyzer) tool was 
used [22]. Similar to the Polyphen 2.0 tool, the PROVEAN uses the 
FASTA format of the protein sequence along with amino acid 
substitutions as input query. The output is provided as deleterious 
or neutral based on the predicted scores (A score below or equal -
2.5 were considered as “deleterious” and above -2.5 as neutral). The 
plain protein sequence and the amino acid variants were submitted 
to the PANTHER (Protein Analysis Through Evolutionary 
Relationships) tool. PANTHER provides output in the form of the 
approximate length of time (in millions of years) for a given amino 
acid to be preserved. The longer the preservation time the more 
likely it causes a deleterious effect. After that, analysis of the 
nsSNPs using the SNAP2.0 (Screening for Non-Acceptable 
Polymorphism v2), a classifier based on machine learning device 
called Neural Network was utilized to predict disease mutations 
[23]. Protein sequence in FASTA format was placed as the input 
query. SNAP2 score interpretation relied upon the following 
threshold: neutral: -100 ≤ SNAP2 score≤ 0 and effect: 0< SNAP2 
score≤ 100 [24]. Further analysis was carried out using the PhD-
SNP (Predictor of human Deleterious Single Nucleotide 
Polymorphisms), a multiple sequence based alignment tool to 
predict whether a new phenotype derived from a nsSNP can be 
related to genetic disease in humans [25]. SNPs & GO (Single 
Nucleotide Polymorphisms & Gene Ontology) was used to predict 
the amino acid variations associated with the emergence of diseases 
in humans [26]. The input query for this was the FASTA format of 
the protein sequence along with the amino acid variations. Finally, 
the PMut tool was implemented for the annotation of pathological 
mutations on protein by Neural Network-based classifier. The 
predicted scores between 0 and 0.5 were considered as neutral 
whereas, scores between 0.5 and 1.0 were seen as pathological [27]. 
 
Impact of nsSNPs on protein stability:  
Protein stability alterations due to SNPs were measured via two 
web-based tools. They were support vector machine-based tools 
named I-Mutant 2.0 and MUpro.  Here, the protein sequence 
collected from NCBI database was provided as input to predict the 
direction towards which the mutation causes the protein stability 
change, expressed in DDG value. Positive DDG value indicates 
increased protein stability, and negative DDG value, protein 
destabilization [28]. MUpro based protein stability alteration 
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measurement was similar to I-Mutant 2.0, inferring output by the 
sign of DDG value. Plain protein sequence, mutation position and 
variant were submitted as query. 
 
Prediction of conserved residue:  
Consurf was used to predict the conservancy of the residues at the 
SNP positions. The FASTA format of the protein sequence was 
provided as input in the Consurf tool and the output was provided 
in a score scheme starting from 1 to 9 with colour differences 
following Bayesian calculation method. Score 9 with deep purple 
colour represented highly conserved residue, whereas score 1 with 
deep blue colour represented a highly variable residue. 
 
Prediction of surface and solvent accessibility:  
Prediction of the secondary structure, solvent and surface 
accessibility of a protein was performed using the NetsurfP2.0 [29]. 
The FASTA format of the protein sequence was provided as input 
for the prediction. 
 
Prediction of Post Translational Modification sites:  
Posttranslational modification sites were predicted using ModPred.  
The input was FASTA format of PALB2 and result showed overall 
PTM sites available in the residue of this protein [30]. Different 
PTM site predictors such as GPS-SUMO, GPS-Palm, GPS-MSP and 
iGPS were also explored for the prediction of sumoylation, 
palmitoylation, methylation and phosphorylation respectively [31]. 
  
MutPred2.0: 
It is used to combine genetic and molecular data for interpreting g-
score (general score) ranging from 0 to 1, reasoning the probability 
of structural and functional alteration due to nsSNP MutPred2.0 
also yielded the p-value of every alteration depicting clinically 
significant variants [32]. The score ranged from 0 to 1. Scores that is 
closer to 1 indicated greater propensity to be pathogenic. Protein 
sequence in FASTA format and amino acid variations were 
provided as query. 
 
Identification of SNPs in non-coding regions:  
The amino acid variants located on the UTR regions and microRNA 
target sites were identified by utilizing Ensembl [18], RegulomeDB 
and PolymiRTS database.  
 
Identification of 3’ and 5’UTR regions:  
Ensembl is a single point of access to an noted genomes for mainly 
vertebrate species [33]. The amino acid variants (rsIDs) on the UTR 
regions of PALB2 (transcript id, ENST00000261584.9) were 
retrieved from Ensembl for further analysis by RegulomeDB. 
RegulomeDB demonstrates whether the variant has any potential 

functional consequences on the gene regulation [34]  The SNPs in 
the UTR collected from Ensembl were submitted and each variant 
was categorized according to its functional confidence. 
 
Identification of DNA variants in miRNA target sites:  
PolymiRTS (Polymorphism in micro RNA Target Site) database 
was utilized for identification of DNA polymorphisms in miRNA 
target sites as well as seed regions [35].  DNA variants, responsible 
for any target site creation or disruption in miRNA seed regions are 
predicted by this database.  
 
Structural Analysis:  
The WD40 domain of PALB2 protein that has been reported in 
breast cancer patients was emphasized for structural analysis. 
 
Project HOPE:  
HOPE (Have (y) Our Protein Explained), a web application tool, 
was utilized for analysis of the difference between wild type and 
mutant structures. It shows structural and functional consequences 
upon point mutations such as alterations in amino acid bindings, 
hydrophobicity changes, charge differences etc. [36]. The FASTA 
format of the protein sequence was submitted as the input query. 
The mutated residue of the coding regions was selected each time 
to illustrate its effects at molecular level. 
 
Modelling of mutant 3D structures:  
Homology modelling and structural validation of the WD40 
domain of PALB2 protein regarding the mutant residues were 
performed by Swiss Model [37]. Upon submitting the mutated 
sequence of PALB2 WD40 domain, proper template selection was 
carried out based on several factors such as, coverage, GMQE 
(Global Model Quality Estimation), sequence identity and 
resolution. According to QMEAN score, the best quality model was 
selected. The less the QMEAN score was deviated from 1, the better 
the model quality [38]. 
 
Quality Assessment of the mutant models:  
PROCHECK was used for the overall structural “quality” 
assessment of the mutant structures modelled by SWISS. 
PROCHECK generates Ramachandran plot which determines the 
backbone confirmation using phi/psi dihedral angles [39]. It 
revealed the distribution of residues in favored, allowed, and 
disallowed regions. 
 
RMSD value prediction:  
The PyMOL (PyMOL Molecular Graphics System, Version 
1.2r3pre, Schrödinger, LLC.) molecular Graphics System, version 
2.0 Schrödinger, LLC was implemented for RMSD (Root Mean 
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Square Deviation) score prediction. Superimposition followed by 
alignment between the wild type and mutant structures were 
executed. Since RMSD calculates the distance between residue pairs 
equally, the higher the RMSD value the greater the deviation of the 
mutant structure from the native one. 
 
TM score prediction:  
TM-Align (Template Modeling –Align) optimizes residue to residue 
alignment in a sequence independent manner between two 
different structure of proteins for TM-score (Template Modelling 
Score) prediction [40]. Tm-align produced result between 0 and 1. 
TM- score 1 referred to no difference between wild type and the 
given mutant structure. The more TM score is closer to 0, the higher 
the deviation. The PDB files of wild type and mutant type 
structures were submitted as input query. 
 
Mutation 3D cluster prediction:  
Mutation 3D helps to visualize any cluster formation due to the 
provided amino acid substitutions causing somatic cancer 
mutations [41]. Gene symbol and the amino acid variants were 
submitted for prediction. Significance of each cluster was verified 
by its p-value. 
 
Discovery studio visualization: Discovery studio visualize:  
(Dassault Systems BIOVIA, Discovery Studio Modeling 
Environment, Release 2017, San Diego: Dassault Systems, 2016) was 
utilized in case of selected mutant models for deeper insight into 
their properties. Alterations in hydrogen bond formation, hydrogen 
bond number was observed after superimposing the wild type and 
mutant structures. Also, changes in the interaction of the wild type 
residue and mutated residues with other amino acids were 
visualized with the help of this program. 
 
Results: 
Retrieval of nsSNPs:  
Total 11725 SNPs were found in Human PALB2 gene from dbSNP 
database of NCBI. Out of 11725 SNP, 1455 were non-synonymous, 
592 were synonymous. The non-synonymous SNPs accounted for 
13% of the total SNPs reported in human PALB2 gene. 
 
Deleterious nsSNPs prediction:  
Eight different web-based tools SIFT, PolyPhen2.0, PROVEAN, 
SNAP2, PhD-SNP, PANTHER, SNPs & GO and PMut were utilized 
for the prediction of damaging and disease associated nsSNP 
(Supplementary Table 1). 
 
SIFT:  

SIFT predicts the effects of nsSNPs. Among 1454 nsSNPs, 192 
variants were found on SIFT server. Protein coding transcript, 
Protein ID (ENSP00000261584) was selected for analysis as this 
transcript ID had the highest SIFT score. Out of 171 variants of this 
particular transcript, 59 variants were predicted to be deleterious 
and the remaining 112 as tolerant. The rest of the nsSNPs predictor 
programs further examined these 171 variants. 
 
PolyPhen 2.0:  
Out of 171 variants, 60 amino acid variants were predicted to be 
probably damaging, 13 variants were predicted to be possibly 
damaging and the remaining were predicted as benign. 43% of the 
total nsSNPs were identified for encouraging possible damaging 
impact with 57% having no significant effect on PALB2 protein. 
 
Provean:  
PROVEAN is used to identify functionally important nsSNPs. 
PROVEAN characterized 70 nsSNPs out of 171 as deleterious with 
a threshold value below -2.5. 41% nsSNPs were identified to have 
deleterious effect on PALB2 protein. 
 
Panther:  
PANTHER calculates the functional effect caused by a potentially 
pathogenic or deleterious nsSNP on the protein. It showed the 
preservation time of 8 nsSNPs to be higher than 450 my (millions of 
years), 40 nsSNPs to be in between 200my to 400 my and the rest to 
be below 200my. Thus estimated 28% nsSNPs are probably 
deleterious and 72% are probably benign. 
 
SNAP2:  
SNAP2 speculates disease-inducing mutations caused by the amino 
acid variants. It predicted 71 amino acid variants to be damaging.  
So, 42% nsSNPs were responsible for possible damaging impact on 
PALB2. 
 
PhD-SNP:  
PhD-SNP predicted 45 nsSNPs responsible to cause disease in 
humans. PhD-SNP provided an output with a score between 0 and 
1, where, any nsSNP having score greater than 0.5 was considered 
as pathogenic. 
 
SNPs & GO:  
SNPs & GO predicts whether a variant is disease inducing or not. It 
provided results estimating 21nsSNPs out of 171nsSNPs to be 
associated with insurgence of disease in humans. Thus, 12% 
nsSNPs were predicted to be deleterious with the rest having no 
noteworthy effect. 
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PMut:  
PMut characterized 22nsSNPs to be pathological out of the given 
171 mutations. Thus, 13% of the total nsSNPs were prone to giving 
rise to diseased state in humans. A Venn diagram is prepared 
distributing the nsSNPs having most damaging effect structurally-
functionally according to the various in silico tools employed in this 
study (Figure 2). The most deleterious nsSNPs from these findings 
are selected for further analysis.  
 
Protein stability change and Prediction of conserved nsSNPs:  
Shortlisted 29 nsSNPs were analyzed to investigate the change in 
protein stability. They were submitted to I-mutant 2.0 and MUpro. 
In both cases majority of 29 nsSNP showed destabilized effect on 
protein, with few increasing its stability. Among them, 22 nsSNPs 
belonged to C terminal domain of PALB2 protein, WD40. 
Conserved sequences are important in finding homology between 
different species and can also be used to identify the cause of 
genetic diseases. The evolutionary conservation pattern of amino 
acids or nucleotides in a protein was measured by Consurf to 
discover the structurally and functionally important regions [42]. 
From Consurf, out of 28 deleterious nsSNPs, 27 nsSNPs were found 
to be located on highly conserved regions with a score between 7 to 
9 (Figure 3). The nsSNP in 1104 position which was moderately 
conserved with conservation score 6, was excluded from further 
analysis. 
 

Prediction of solvent accessibility:  
NetSurf P 2.0 analyzed the secondary structure of the above-
mentioned residues, categorizing them as helix, strand or coiled. 
50% of these residues were exposed and 50% were buried. NetSurf 
P2.0 further showed that among these residues, R34, L35, R37 and 
P735 were moderately disordered and S417 was highly disordered 
(Supplementary Table 2). 
 
Post Translational Modification Sites Analysis:  
Post translational Modification (PTM) sites were predicted via 
Modpred, GPS-SUMO, GPS- Palm, GPS-MSP, iGPS. PTMs with 
high or medium confidence were taken into analysis. Modpred 
predicted position R34, R37 and Q921 as proteolytic cleavage sites 
in wild protein. No phosphorylation and methylation sites had 
been predicted by iGPS and GPS-MSP. GPS-SUMO and GPS-Palm 
identified position N1096 as a site of sumo interaction and C1060 as 
a site of palmitoylation. 
 
Predicting structural and functional alteration:  
The results obtained from MutPred2.0 revealed that 19 nsSNPs out 
of 27 nsSNPs had g-score greater than 0.5 with a significant p-value. 
These substitutions contributed to a greater risk of structural and 
functional alterations with significant P-value. The amino acid 
variations which had g-score less than 0.5, alteration probability 
less than 20% and p -value greater or equal than 0.05 had been 
excluded from the list (Table 1). 

 
Table 1: Effect of nsSNPs on the structure and function of protein predicted by MutPred 2.0. 

SNP ID Mutant MutPred2.0 score Impact and probability P-value 
Gain of strand (30%) 0.003 
Altered transmembrane protein (22%) 0.003 

rs78179744 C891W 0.786 

Altered ordered interface (25%) 0.02 
Altered ordered interface (34%) 0.001 rs116967702 C1060Y 0.871 
Altered metal binding (23%) 0.04 
Altered transmembrane protein (42%) 0.000005 
Loss of loop (29%) 0.01 

rs62625280 D927V 0.886 

Altered ordered surface (26%) 0.01 
Altered metal binding (55%) 0.003 rs146444298 D1125Y 0.81 
Altered ordered surface (41%) 0.0003 
Gain of intrinsic disorder (31%) 0.04 rs45551636 G998E 0.665 
Loss of B-factor (26%) 0.04 
Gain of helix (29%) 0.01 rs143808171 G1021R 0.8 
Altered transmembrane protein (26%) 0.001 

rs62625282 G1121D 0.857 Altered metal binding (39%) 0.009 
Gain of loop (27%) 0.03 rs45478192 L939W 0.862 
Altered transmembrane protein (22%) 0.004 
Altered ordered surface (48%) 0.0003 rs62625283 W1140G 0.942 
Altered metal binding (22%) 0.02 
Altered stability (80%) 0.0003 rs45464500 L947S 0.821 
Gain of intrinsic disorder (46%) 0.03 
Altered coiled coil (90%) 0.0007 
Altered disordered interface (42%) 0.0006 

rs141047069 L35P 0.848 

Loss of helix (28%) 0.02 
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   Loss of acetylation at K30 (26%) 0.01 
Gain of strand (27%) 0.03 
Altered transmembrane protein (21%) 0.004 

rs45566737 L1150R 0.811 

    
Altered ordered interface (30%) 0.02 
Altered disordered interface (30%) 0.02 
Altered DNA binding (25%) 0.009 

rs45510998 S417Y 0.814 

Gain of allosteric site (23%) 0.02 
Gain of strand (27%) 0.02 rs45550935 I887S 0.799 
Altered stability (20%) 0.01 

rs372931676 Q921H 0.717 Altered transmembrane protein (30%) 0.0002 
Altered disordered interface (47%) 0.004 rs200048921 R37S 0.622 
Altered DNA binding (23%) 0.01 

rs369132015 A968G 0.526 Gain of strand (26%) 0.04 
Altered transmembrane protein (33%) 0.00006 rs180177123 T911I 0.534 
Altered ordered interface (26%) 0.01 

rs45525135 L947F 0.655 Altered stability (25%) 0.008 
 
Table 2: Predicted results of noncoding SNPs in miRNA target site. MiRSite: sequence context of the miRNA site: bases complementary to the seed region are in capital letters and 
SNPs are highlighted in bold form; Function class: D= the derived allele disrupts a conserved miRNA site (ancestral allele with support>2); C= the derived allele creates a new 
miRNA site; N= the derived allele disrupts a non- conserved miRNA site (ancestral allele with support<2); Context score= negative increase= increase of SNP functionality. 

SL no. SNP ID Allele miRID miRSite Function class Context+score change 
G hsa-let-7c-3p acatTTGTACAtg D -0.148 

hsa-miR-4495 acattTTTACATg C -0.08 
1 rs180748355 

T 
hsa-miR-548c-3p acATTTTTAcatg C 0.069 
hsa-miR-1250-3p acacttAAAATGA D -0.002 
hsa-miR-153-5p acacttAAAATGA D 0.015 
hsa-miR-595 ACACTTAaaatga N -0.13 

A 

hsa-miR-7856-5p acaCTTAAAAtga N -0.001 
hsa-miR-3616-5p aCACTTCAAatga C -0.387 
hsa-miR-4795-5p aCACTTCAaatga C -0.14 
hsa-miR-573 aCACTTCAAatga C -0.345 
hsa-miR-579-3p acacttCAAATGA C -0.116 

2 rs185410736 

C 

has-miR-664b-3p acacttCAAATGA C -0.125 
  G hsa-miR-4279 tataaAGGAGAAt D -0.169 
rs189962793 hsa-miR-130b-5p tataAAAGAGAat C -0.098 
  hsa-miR-4753-3p tataAAAGAGAAt C -0.313 

3 

  

A 

hsa-miR-6809-3p tataaAAGAGAA C -0.2 
 
Table 3: Structural consequences prediction of nsSNPs by Project HOPE. 

Mutant Models Difference in size Hydrophobicity Charge Change Alteration in bond formation 
C891W Bigger - - - 
C1060Y Bigger Decreased - - 

Disrupts H-bond formation with Lys at position 974; D927V Smaller Increased Negative to neutral 
Disrupts salt bridge formation with Arginine at position 975 and position 976 

D1125Y Bigger Increased Negative to neutral Disrupts salt bridge formation with lysine at position 1062 and position 1124 
G998E Bigger Decreased Neutral to negative - 
G1021R Bigger Decreased Neutral to positive Disrupts local structure backbone 
G1121D Bigger Decreased Neutral to negative - 
L939W Bigger - - - 
W1140G and A968G Smaller Decreased - W1140G disrupts hydrogen bond formation with Cysteine at position 1109 
L947F and Q921H Bigger - - - 
L1150R Bigger Decreased Neutral to positive - 
L947s and I887S Smaller Decreased - - 

Loss of H-bond; T911I Bigger Increased - 
Disrupts correct folding 
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Analysis of nsSNPs in non- coding regions:  
From Ensembl, 110 variations have been found on the non-coding 
regions. Out of 110 variants, 17 of them proved to be functionally 
important by RegulomeDB. All of them returned the score of 2(a-c) 
(Supplementary Table 3) where, lower the RegulomeDB score, 
greater the functionality. PolymiRTS outlined 3 nsSNPs 
rs180748355, rs185410736, rs189962793 that alter miRNA target site 
(Table 2). 
 
Structural analysis: 
For structural analysis, the WD40 domain of PALB2 protein was 
emphasized due to lack of protein structure availability in Protein 
Data Bank (PDB). 
 
Project HOPE:  

The structural effects caused by amino acid mutations such as loss 
of hydrogen bond formation, hydrophobicity change, disruption of 
protein folding etc. were explored by HOPE. The deleterious 
nsSNPs situated within WD40 domain were submitted to HOPE. 
One of the most common structural variations were the 
interruption of interaction with POLH (DNA polymerase eta) and 
POLH DNA synthesis stimulation. Mutations at protein surface 
area such as D1125Y, G1021R and L939W had led to disrupt the 
interaction with neighboring ligand molecules. Moreover, mutation 
at 998, were found to be associated with breast cancer 
susceptibility. L939W reduces interaction with BRCA2, RAD51, 
XRCC3 and decreases double stranded DNA break initiated 
homologous recombination associated with breast cancer 
susceptibility (Table 3). 

 

 
Figure 1: Workflow of nsSNP analysis.  
 



	    
	  

	  

ISSN 0973-2063 (online) 0973-8894 (print)	  

Bioinformation 17(3): 424-438 (2021) 

	  
©Biomedical Informatics (2021) 

	  

	  

431	  

 
Figure 2: A Venn diagram representation of most deleterious nsSNPs estimated by various tools. (a) Deleterious nsSNPs identification by 
SIFT, PolyPhen 2.0, PROVEAN and PANTHER which causes functional alterations; (b) Disease inducing nsSNPs identification by SNAP2, 
PhD-SNP, SNPs & GO and Pmut) 
 
Mutant structures modelling:  
Swiss Modeler modelled 16 mutant structures. One template with 
GMQE (Global Model Quality Estimation) of 0.92 was selected to 
build these 11 models. GMQE score of 0.92 reflected the expected 
accuracy of model built with that alignment. The mutant models all 
had a score near to zero with a “thumbs-up” beside the QMEAN 
score (Qualitative Model Energy Analysis) suggesting they were of 
good quality. Additionally, all the models built by Swiss Modeler 
were validated by PROCHECK, a representative of Ramachandran 
Plot. Each of them had more than 86% region in favored region. 
(Supplementary Table 4) 
 
RMSD, TM score and cluster prediction:   
Superimposition of wild type and mutant structures via PyMol, 
yields that model C891W had the highest RMSD value of 1.463 
followed by several other models (D927V, D1125Y, G998E, A968G, 

T911I, I887S, L939W, Q921H, L1150R) with RMSD value of 1.459 
and 1.458. The one with the lowest RMSD value of 1.266 was 
mutant model L947S. There were 3 other models (C1060Y, G1121D 
and W1140G), which possessed lower RMSD value close to 1.266. 
All the models had TM- score not greater than 0.99918. L939W, 
L1150R and Q921H models had the highest TM-score. Finally, 
based on RMSD value and TM- score prediction, 8 models (C891W, 
D927V, G998E, G1021R, L947F, T911I, A968G and I887S) were 
selected to estimate cluster formation via Mutation 3D 
(Supplementary Table 5). All the models submitted had greater 
MPQS (ModPipe Quality) score from the minimum quality 
requirement threshold. Mutation 3D showed that 4 models (I887S, 
C891W, T911I and L947F) were involved in cluster formation. All 4 
models had significant p- value of 0.000504 and were pictured as 
red cluster balls (Figure 4A). 
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Difference in amino acid interaction:  
Out of the 4 models previously mentioned, 3 mutant models 
(C891W, T911I and L947F) had been selected for further analysis 
via Discovery Studio Visualize as they provoke the most structural 

alterations.  The amino acid interactions at different positions are 
shown both in case of native structure and mutant structures 
(Figure 4B). Upon mutation, each of the native models interacted 
differently than wild type. 

 

 
Figure 3: Amino acid variations distributed into conservation scale by Consurf and protein stability change prediction by I-mutant 2.0 and 
MUpro. 
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Figure 4: A) Visualization of cluster formation by 4 mutant models. B) Visual representation of different amino acid interactions where (i) 
represents Cysteine at position 891, (ii) substituted by Tryptophan at position 891. (iii) Represents Threonine at position 911, (iv) 
substituted by Isoleucine at position 911. (v) Represents Leucine at position 947, (vi) substituted by Phenylalanine at position 947. C) A 
visual representation of structural differences in residue between wild type and mutated structure. Here, (i) Represents Cysteine at wild 
type structure substituted by Tryptophan at position 891. (ii) Represents Threonine at wild type structure substituted by Isoleucine at 
position 911. (iii) Represents Leucine at wild type structure substituted by Phenylalanine at position 947. 
 
Discussion: 
Most human non-synonymous single nucleotide polymorphisms 
(nsSNPs) represent genetic variations along with phenotypic 
differences. The goal of nsSNP research is to comprehend its 
association with many complex human diseases in genetic level 
[43]. PALB2 (partner and localizer of BRCA2) binds with BRCA2 
(breast cancer 2) in nuclear foci and thus permits stable intra-
nuclear localization and accumulation of BRCA2. The interaction 
between PALB2 and BRCA2 is important for maintaining genomic 
integrity [44]. Moreover, BRCA2 and BRCA1 are the most common 
causes of hereditary breast cancer [45]. Loss of function mutations 
in PALB2 can also lead to hereditary breast cancer [46]. Thus, the 
current computational analysis has been done to point out the 
single amino acid variations responsible for alteration of functional 
and structural attributes of PALB2. 1454 missense variants on the 

protein coding region of PALB2 were collected from NCBI dbSNP 
database and submitted into various functional alteration 
predicting tools such as SIFT, PolyPhen, PROVEAN, SNAP2, PhD-
SNP, PANTHER, SNPs & GO and PMut in order to reveal the most 
deleterious mutations. After that, I-Mutant 2 and MUpro to find out 
their capability to stabilize or destabilize the PALB2 examined 28 
nsSNPs. In addition, Consurf web server predicted 27 out of 28 
nsSNPs to be highly conserved. Location of those amino acid 
variations on protein surface or protein center was also marked via 
Netsurf P2.0. Further, post translational modification (PTM) sites 
have also been predicted. R37 and Q921 positions were identified as 
a site of proteolytic cleavage. Position N1096 was found as a site of 
Small Ubiquitin-like Modifiers (SUMO) interaction that may alter 
the ubiquitin binding. And position C1060 was found to be a site of 
palmitoylation, where fatty acids like palmitic acid are covalently 
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attached to cysteine. Alteration of amino acid residues on these 
positions due to SNPs will affect the modification, which may cause 
loss of functionality in the protein. The rest of the nsSNPs did not 
contain any of the PTMs. In subsequent steps, using MutPred2.0, 19 
nsSNPs among the 27s were found to have the harmful structural 
and functional alterations on the protein with a high g -score 
(>0.75).  In addition to that, structural impact of these nsSNPs 
located within PDB available C terminal WD40 domain of PALB2 
was observed. This analysis was particularly done, since mutations 
in WD40 Domain leads to cancer formation [47].WD40 domain 
included residues from 835-1186 where 16 mutant models were 
built using SWISS-Model  and further were examined by Project 

HOPE for structural analysis.  For further interpretations, the 
mutants RMSD value and TM score was compared. The higher the 
RMSD value and the lower the TM-score, the diverse the mutant 
structures were from the native structure. Most of the mutant 
models had RMSD score near 1.459 and TM score near 0.99915. Few 
mutant models which achieved low RMSD score around or less 
than 1.266 and high TM score greater than 0.99915 were excluded 
from later analysis. Thus 9 mutant models (C891W, D927V, 
D1125Y, G998E, G1021R, L947F, T911I, A968G, I887S) were chosen 
to be submitted into Mutation 3D web server for the identification 
of the clusters of mutation on the protein structure. Out of 9 models 
only 4 (I887S, C891W, T911I and L947F) of them formed cluster.  

 

 
Figure 5:  A) Gene expression of PALB2 in specific tissues. B) Comparison of BRCA2 and PALB2 mutation frequency. C) Comparison of 
mutation frequency with PALB2 mutation carriers and without PALB2 mutation carriers. 
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Mutation cluster mainly provides a data of single residue 
mutational hotspot across various cancer types [48]. These can 
eventually bring about functional driver genes. Finally, 3 models 
(C891W, T911I and L947F) were chosen based on their RMSD value, 
TM score and cluster formation data. A visual representation of 
C891W, T911I and L947F mutation models by HOPE depicted 
bigger amino acids in structure and thus do not fit into the core of 
protein (Figure 4C). Besides, charged mutations cause repulsion 
between mutant and neighboring residues. Difference in the 
interaction among amino acids from the wild type has been shown 
via discovery studio visualizer. In case of C891W, the mutant 
structure attained one pi-donor hydrogen bond with Serine. It also 
interacted with Cysteine via amide pi- stacking. In T911I mutant 
model, the mutant structure lost a pi sigma bond with Histidine 
and gained a pi- alkyl bond instead. Besides that, hydrogen bond 
with Serine got disrupted and a pi-alkyl interaction with histidine 
was observed. Lastly, the third mutant model, L947F, when 
Phenylalanine substituted Leucine, interaction with Tryptophan via 
pi-sigma bond and alkyl bonds with valine and phenylalanine got 
interrupted. Instead, a new C-H bond was created, with Arginine. 
Those intra-molecular bonds are crucial for protein structure as 
well as function. However, most of the human genome consist of 
non-coding regions and single nucleotide polymorphism in this 
region can affect gene expression pattern, gene splicing 
transcription factor binding, miRNA target site binding etc. [49]. 
Thus, nsSNPs in non-coding region can also be pathogenic and can 
manifest into a higher risk of cancer. Therefore, non-coding 
nsSNPs, retrieved from Ensemble were analyzed via RegulomeDB. 
It examines the putative function of the genetic variants to identify 
a significant association among multiple tagged SNPs in complex 
diseases [50]. 17 mutations were found to be pathogenic and 
according to PolymiRTS, three mutations altered the targeted 
miRNA binding sites. SNPs located within or near the regions that 
are required for interaction with other proteins can alter the protein 
interaction complexes altogether [51]. Based on STRING, PALB2 
closely interacts with BRCA2, BRCA1, RAD51, RAD51C and 
FANCD2. PALB2 serves as the molecular scaffold for the formation 
of BRCA2-PALB2-BRCA1 complex through its ability to recruit 
BRCA2 and RAD51. FANCD2 is also involved in DNA double 
stranded break repair by homologous recombination [52]. Thus, 
mutation in any functionally important region in PALB2 can lead to 
interruption of DNA repair mechanism and eventually cause 
disruption in genomic integrity.  According to GWAS (Genome 
Wide Association Study) catalog, PALB2 gene has been seen 
associated with bipolar disorder [53]. Moreover, from GTEx portal 
it was found that PALB2 is maximally expressed in EBV 
transformed lymphocytes and fibroblasts and minimally expressed 
in whole blood (Figure 5A). It is also fairly expressed in breast 

mammary tissues, brain cerebellum and cerebral hemisphere. 
Elevated chromosome instability is observed in lymphocytes with 
PALB2 mutation carriers [54].  PALB2 mutations may have a higher 
risk of breast cancer predisposition than BRCA2 variants [55] 
(Figure 5B). Besides, in the germline mutation analysis, it was 
clearly seen that somatic gene mutation rate of other genes that are 
responsible for breast cancer are much higher in case of PALB2 
mutation (Figure 5C). Thus, this mutation analysis depicts the 
importance of PALB2 mutation studying biological correlation in 
various disease conditions. 
 
Conclusion: 
In this study, non- synonymous single nucleotide polymorphisms 
(nsSNPs) were characterized that alter PALB2 protein structure and 
functional activity.  Out of initially screened 28 deleterious nsSNPs, 
the most damaging nsSNPs were identified. Due to unavailability 
of whole protein structure of PALB2 protein in Protein Data Bank, 
only nsSNPs within WD40 domain (PDB code: 2W18) were 
emphasized for structural investigations. Lastly, 3 mutations were 
chosen to be most deleterious according to RMSD and TM score. 
Importance of PALB 2 investigated from cBioportal, GTEx and 
GWAS portal also indicate the pathogenic effect of deleterious 
SNPs.  Thus, this study provides us with a new region to look into 
diseases like breast cancer and investigate the proteins mechanism 
performing further polymorphism analysis studies. 
 
Supplementary Materials (see connected Excel file) 
Table S1: Prediction of functional effect of nsSNPs by various tools. 
Abbreviations: D (Deleterious), T (Tolerated), Dis (Disease), N 
(Neutral), E (Effect) 
Table S2: Conservation Profile and prediction of solvent 
accessibility by Consurf and NetSurfP 2.0. 
Table S3: Functional importance assessment of UTR region nsSNPs 
by RegulomeDB 
Table S4: Quality assessment of mutant models by PROCHECK 
Table S5: Root Mean Square Deviation value, Template Modelling 
score and Cluster formation prediction of 16 mutant models 
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