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Abstract  Background/Objective:  This  study  aims  to  characterize  the  differences  on  the  short-
term temporal  network  dynamics  of  the  undirected  and  weighted  whole-brain  functional
connectivity  between  healthy  aging  individuals  and  people  with  mild  cognitive  impairment
(MCI). The  Network  Change  Point  Detection  algorithm  was  applied  to  identify  the  significant
change points  in  the  resting-state  fMRI  register,  and  we  analyzed  the  fluctuations  in  the  topo-
logical properties  of  the  sub-networks  between  significant  change  points.  Method:  Ten  MCI
patients matched  by  gender  and  age  in  1:1  ratio  to  healthy  controls  screened  during  patient
recruitment.  A  neuropsychological  evaluation  was  done  to  both  groups  as  well  as  functional
magnetic  images  were  obtained  with  a  Philips  3.0T.  All  the  images  were  preprocessed  and  sta-
tistically  analyzed  through  dynamic  point  estimation  tools.  Results:  No  statistically  significant

differences  were  found  between  groups  in  the  number  of  significant  change  points  in  the  func-
tional connectivity  networks.  However,  an  interaction  effect  of  age  and  state  was  detected  on
the intra-participant  variability  of  the  network  strength.  Conclusions:  The  progression  of  states
was associated  to  higher  variability  in  the  patient’s  group.  Additionally,  higher  performance  in
∗ Corresponding author: Facultat de Psicología, Passeig de la Vall d’Hebrón, 171, 08035 Barcelona, Spain.
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the  prospective  and  retrospective  memory  scale  was  associated  with  higher  median  network
strength.
© 2020  Asociación  Española  de  Psicoloǵıa  Conductual.  Published  by  Elsevier  España,  S.L.U.  This
is an  open  access  article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/
by-nc-nd/4.0/).
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Detección  de  puntos  de  cambios  en  redes  de  conectividad  funcional  dinámica  en
situación  de  reposo  en  pacientes  con  deterioro  cognitivo  leve

Resumen  Antecedentes/Objetivo:  Este  estudio  tiene  como  objetivo  caracterizar  las  diferen-
cias en  la  red  dinámica  de  conectividad  funcional  no  dirigida  entre  un  grupo  de  personas  sanas
y otro  con  deterioro  cognitivo  leve.  Se  aplicó  un  algoritmo  de  detección  de  puntos  de  cambio
en redes  complejas  para  identificarlos  en  registros  fMRI  en  estado  de  reposo  y  se  analizaron
las fluctuaciones  en  las  propiedades  topológicas  de  las  subredes  entre  puntos  de  cambio  signi-
ficativos.  Método: Diez  pacientes  emparejados  por  sexo  y  edad  en  proporción  1:1  a  controles
sanos. Se  realizó  una  evaluación  neuropsicológica  a  ambos  grupos  y  se  obtuvieron  imágenes
funcionales  con  un  Philips  Ingenia  3.0T.  Todas  las  imágenes  fueron  preprocesadas  y  analizadas
estadísticamente  a  través  de  herramientas  de  estimación  dinámica  de  puntos.  Resultados:  No
se encontraron  diferencias  estadísticamente  significativas  entre  ambos  grupos  en  el  número  de
puntos de  cambio  en  las  redes  de  conectividad  funcional.  Se  detectó  un  efecto  de  interacción
entre edad  y  la  variabilidad  intra-sujeto  en  algunos  indicadores  de  complejidad  (strength)  de
la red  dinámica.  Conclusiones:  La  progresión  de  la  conectividad  se  asoció  a  una  mayor  variabil-
idad en  el  grupo  de  pacientes.  Además,  se  puede  asociar  un  mayor  rendimiento  en  la  escala  de
memoria  prospectiva  y  retrospectiva  con  un  mayor  valor  de  la  mediana  de  strength  de  la  red.
© 2020  Asociación  Española  de  Psicoloǵıa  Conductual.  Publicado  por  Elsevier  España,  S.L.U.
Este es  un  art́ıculo  Open  Access  bajo  la  licencia  CC  BY-NC-ND  (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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According  to  the  United  Nations  world  population
prospects,  people  aged  65  or  more  are  the  group  with
the  fastest  growth  rates  worldwide  and  the  number  of
people  above  80  years  is  expected  to  triple  by  2050,
although  important  regionals  gaps  do  exist  (United  Nations
&  Department  of  Economic  and  Social  Affairs,  2019).  These
demographic  trend  challenges  the  health  care  management
of  age-associated  diseases,  such  as  cancer,  neurodegen-
erative  disorders,  and  dementia;  all  of  which  are  being
addressed  from  a  wide  range  of  scientific  fields.

Among  age-related  disorders,  Mild  Cognitive  Impairment
(MCI)  is  a  characterized  by  self-  and  hetero-reported  cogni-
tive  complaints,  objective  cognitive  impairment,  preserved
independence  and  functioning  in  daily  activities  and  the
absence  of  dementia.  This  diagnostic  can  often,  though  not
always,  become  a  transition  state  from  preserved  cognitive
functioning  in  healthy  aging  to  Alzheimer’s  Disease  (AD)  and
other  types  of  clinical  dementia  (Petersen  et  al.,  1999).

In  the  field  of  computational  neuroscience,  increasing
efforts  have  been  made  to  understand  the  functional  and
structural  effects  of  MCI  in  relation  to  healthy  aging  and  AD.
In  this  regard,  differences  in  functional  connectivity  or  co-
activation  patterns  between  brain  areas,  measured  though
Blood  Oxygen  Level  Dependent  (BOLD)  contrast,  has  been

extensively  analyzed  in  both  task  and  resting-state  study
designs.

Patients  with  MCI  are  known  to  present  cortical  atrophy,
reduced  brain  activity  between  the  hippocampus  and  the
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osterior  cingulate  cortex  and  the  precuneus  region,  and
ncreased  activity  in  the  Default  Mode  Networks  (DMC)  net-
orks  during  rest  (Esposito  et  al.,  2013;  Farràs-Permanyer,
uàrdia-Olmos,  &  Peró-Cebollero,  2015;  Kim  &  Lee,  2013).
lso,  the  decreased  Functional  Connectivity  was  found  to
e  more  severe  in  those  MCI  patients  who  converted  AD
Hafkemeijer,  van  der  Grond,  &  Rombouts,  2012).

More  recently,  Sullivan,  Anderson,  Turner,  and  Spreng
2019)  found  an  effect  of  the  preservation  of  the  cogni-
ive  state  on  higher  interactivity  both  across  hemispheres
nd  between  brain  regions  in  healthy  older  adults  when
ompared  to  MCI  participants.  This  coactivation  increased
ith  age  in  the  healthy  group  and  was  associated  to  higher

cores  in  Mini  Mental  State  Examination  (MMSE)  in  the  MCI
roup.

Increased  resting-state  Functional  Connectivity  in  the
ight  medial  superior  frontal  gyrus  and  the  left  superior  pari-
tal  gyrus  has  been  associated  to  lower  scores  in  MMSE  in
lder  adults  with  MCI  (Zhang  et  al.,  2019).  These  authors
lso  found  an  increased  functional  connectivity  between  the
ight  medial  superior  frontal  gyrus  and  left  parietal  lobe  in
CI  participants  when  compared  to  healthy  controls.

Interestingly,  a  disconnection  syndrome  ---  with  decreased
etwork  centrality  in  limbic  areas,  the  default  mode  net-

ork,  dorsal  attention  network,  and  frontoparietal  control
etwork  ---  appears  to  coexist  with  compensatory  mecha-
isms  in  MCI  individuals  (Wang  et  al.,  2019),  which  may
lleviate  the  effects  of  cognitive  decline.
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the  Spanish  adaptation  of  the  MMSE  (Blesa  et  al.,  2001)
with  the  adjustments  for  the  Mexican  population  proposed
02  

Graph  theoretical  approaches  have  been  used  with  clas-
ification  algorithms  to  identify  network  features  that  could
iscriminate  between  healthy  aging  and  MCI,  as  well  as
etween  those  patients  that  converted  to  AD  and  those  who
emained  stable  during  the  study  period  (Du,  Fu,  &  Calhoun,
018;  Hojjati,  Ebrahimzadeh,  Khazaee,  &  Babajani-Feremi,
017;  Khazaee,  Ebrahimzadeh,  &  Babajani-Feremi,  2016).
sing  classification  techniques,  these  studies  achieved  clas-
ification  accuracy  above  70%.

Compared  to  healthy  controls,  the  Functional  Connectiv-
ty  whole-brain  networks  of  MCI  patients  showed  decreased
lobal  and  local  efficiency,  as  well  as  decreased  connection
trength  between  peripheral  network  nodes  (Zhao  et  al.,
017).

In  the  last  years,  there  has  been  an  increasing  interest
n  dynamic  or  time-varying  Functional  Connectivity  (dFC),
here  the  Functional  Connectivity  between  brain  regions
long  the  resting-state  fMRI  (rs-fMRI)  register  length  is
xpected  to  be  non-constant.  However,  applications  of  these
pproaches  to  the  study  of  MCI  are  still  scarce.

In  a  recent  study,  the  amplitude  of  low-frequency  fluc-
uations  at  voxel  level  was  analyzed  using  a  sliding  window
pproach  and  they  found  altered  regional  patterns  in  terms
f  coefficient  of  variations  in  MCI,  related  to  control  partici-
ants.  Those  patients  showed  more  spatially  distributed  and
aried  low-frequency  fluctuations  in  the  parietal  and  tem-
oral  lobes  (Wang  et  al.,  2019).  Using  multiscale  entropy  in
ealthy  controls  and  patients  with  MCI  and  Alzheimer’s  dis-
ase  (Niu  et  al.,  2018)  found  significant  reductions  in  the
omplexity  of  the  BOLD  signals  in  the  latter  groups  when
ompared  to  control  participants,  which  was  associated  to
he  degree  of  cognitive  decline.

Amnesic  MCI  individuals  spent  more  time  in  one  of  four
dentified  resting  FC  states  in  comparison  to  healthy  older
dults  (Brenner  et  al.,  2018),  which  suggests  a  reduction  in
onnectivity  dynamics.  This  results  are  coherent  with  the
educed  metastability  from  healthy  to  MCI  and  AD  found  in
órdova-Palomera  et  al.  (2017);  understanding  metastabil-

ty  as  the  dynamic  and  flexible  changes  that  is  characteristic
f  the  optimal  neural  activity  at  rest.

The  inclusion  of  the  temporal  dynamics  in  classification
lgorithms  seems  to  be  a  promising  contribution.  For  ins-
ance,  in  Wee,  Yang,  Yap,  and  Shen  (2016),  the  Functional
onnectivity  network  of  MCI  patients  was  characterized
y  lower  small-world  coefficient  (more  random  features
n  the  network),  lower  transitivity  and  higher  character-
stic  path  length  in  MCI,  compared  to  healthy  control
ndividuals.  According  to  these  authors,  the  inclusion  of  tem-
oral  dynamics  of  these  whole  brain  connectivity  measures
mproved  the  performance  of  their  classification  algorithms.

All  things  considered,  we  aimed  to  assess  the  differ-
nces  between  MCI  and  matched  control  individuals  in
esting-state  network  properties  through  a  dynamic  func-
ional  connectivity  approach.  First,  we  identified  rs-fMRI
tates  in  each  individual  through  the  network  change  point
etection  algorithm  (Cribben  &  Yu,  2017)  and  we  tested
he  differences  between  groups  in  the  number  of  change
oints.  Secondly,  we  aimed  to  analyze  the  effects  of  age
nd  state  on  network  strength,  characteristic  path  length,
ransitivity  and  small-worldness  of  each  subnetwork.  Finally,

e  described  the  community  structure  of  each  state  in  each
articipant.

b
R

N.  Mancho-Fora  et  al.

ethod

articipants

ata  analyzed  in  this  study  was  previously  published  in  a
ork  on  static  functional  connectivity  by  Farràs-Permanyer
t  al.  (2019).  Ten  Mexican  patients  with  MCI  diagnosis  were
ecruited  in  collaboration  with  Laboratorio  Clínico,  Cen-
ro  Integral  de  Diagnóstico  Médico  of  Guadalajara’s  Grupo
ío  Center  (Jalisco,  Mexico),  Instituto  de  Neurociencias  de

a  Universidad  de  Guadalajara  (Jalisco,  Mexico)  and  Uni-
ersitat  de  Barcelona  (Barcelona,  Spain).  All  patients  met
Petersen  et  al.,  1999) criteria  for  memory  complaints,
bjective  memory  impairments,  normal  general  cognitive
unction,  and  unaffected  daily  life  activities,  and  were
ssessed  through  Mini-Mental  State  Examination  (MMSE),
he  Prospective  and  Retrospective  Memory  Questionnaire
PRMQ),  the  Geriatric  Depression  Scale  (GDS),  The  Pfeffer
ctivity  Questionnaire  (PAQ),  the  Clinical  Dementia  Rate
CDR),  the  Boston  Naming  Test  (BNT)  and  the  NEUROPSI
Attention  and  Memory).

Patients  were  matched  in  sex,  age  group  (less  than  65,
rom  66  to  80,  more  than  80)  and  education  level  (up  to  6
ears,  from  6  to  12  years,  more  than  12  years)  in  1:1  ratio
o  healthy  controls  screened  during  patient  recruitment.

Patients  were  excluded  from  the  study  in  presence  of
lliteracy,  inability  to  understand  the  protocol  or  undergo
europsychological  tests,  relevant  psychiatric  disorders,  his-
ory  of  cerebrovascular  accidents,  alcohol  or  substance
buse,  MRI  incompatibilities  or  advanced  cognitive  deterio-
ation,  dementia  or  other  neurodegenerative  diseases  other
han  MCI.  Although  27  participants  were  initially  included  in
he  study,  three  participants  in  the  control  group  and  four
articipants  in  the  MCI  group  had  to  be  discarded  because
he  absolute  root  mean  square  movement  in  their  rs-fMRI
equences  was  above  half  a voxel  (Power,  Barnes,  Snyder,
chlaggar,  &  Petersen,  2012).  Therefore,  the  remaining  10
articipants  in  the  MCI  group  and  10  participants  in  the  con-
rol  group  were  finally  analyzed.

Written  informed  consent  was  obtained  from  every  indi-
idual  prior  to  taking  part  in  the  study,  according  with
he  Declaration  of  Helsinki  and  by  the  institutional  ethics
ommittee.  Moreover,  this  procedure  was  approved  by
he  Bioethical  Committee  of  the  University  of  Barcelona
03/10/2017).

nstruments

europsychological  assessment  was  performed  in  two
tages.  During  a  screening  stage,  participants  were  admin-
stered  the  Mini-Mental  State  Examination  (MMSE;  Folstein,
olstein,  &  McHugh,  1975) to  assess  their  time  and  place
rientation,  attention,  calculation,  and  language  and  visual
onstruction,  while  the  Prospective  and  Retrospective  Mem-
ry  Questionnaire  (PRMQ;  Smith,  Della  Sala,  Logie,  &  Maylor,
000)  was  used  to  detect  prospective  and  retrospective
emory  slips  in  everyday  life.  More  specifically,  we  used
y  Villaseñor-Cabrera,  Guàrdia-Olmos,  Jiménez-Maldonado,
izo-Curiel,  and  Peró-Cebollero  (2010),  and  the  Mexican
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Network  change  point  detection  in  resting-state  functional  c

adaptation  of  the  PRMQ  (González-Ramírez  &  Mendoza-
González,  2011).

During  this  stage,  the  Pfeffer  Activity  Questionnaire
(PAQ;  Pfeffer,  Kurosaki,  Harrah,  Chance,  &  Filos,  1982)  was
also  administered  to  evaluate  their  performance  of  daily
activities,  if  a  relative  of  the  participant  was  also  present.

In  a  second  stage,  those  individuals  who  were  willing  to
continue  their  participation  in  the  study  went  through  a
complete  neuropsychological  evaluation  that  included  the
administration  of  the  Boston  Naming  Test  (BNT)  to  assess
the  language  ability  (Fernández  &  Fulbright,  2015),  NEU-
ROPSI  for  memory  and  attention  (Ostrosky-Solís,  Ardila,  &
Rosselli,  1999)  and  Geriatric  Depression  Scale  (GDS;  Brink
et  al.,  1982;  Fernández-San  Martín  et  al.,  2002).

MR  image  acquisition  and  preprocessing  protocol  has
been  previously  described  in  Farràs-Permanyer  et  al.
(2019).  Functional  magnetic  images  were  obtained  with
a  Philips  Ingenia  3.0-T  system  at  the  Laboratorio  Clínico,
Centro  Integral  de  Diagnóstico  Médico  of  Guadalajara’s
Grupo  Rio  Center  (Jalisco,  Mexico).  A  T1  weighted  Turbo
Field  Echo  (TFE)  structural  image  was  obtained  for  each
subject  with  a  3-dimensional  protocol  (repetition  time
[TR]  =  2800  ms,  echo  time  [TE]  =  6.3  ms,  170  slices,  and
field  of  view  [FOV]  =  240  ×  240  ×  170)  with  sagittal  plane
acquisition.  A  functional  image  T2*  weighted  (BOLD)  was
obtained  (TR  =  2000  ms,  TE  =  30  ms,  FOV  =  230  ×  230  ×  160,
voxel  size  =  2.4  ×  2.4  ×  4  mm,  29  slices)  with  transverse
plane  acquisition.

Structural  image  was  preprocessed  using  an  FSL  (FMRIB
Software  Library  v5.0)  pipeline  adapted  under  authorization
from  the  authors  (Diez  et  al.,  2015),  with  its  parameters
adjusted  to  fit  our  data,  including  a  motion  correction  pro-
cedure  to  solve  the  undesired  head’s  movements  in  the  fMRI
sessions  according  to  the  same  procedure  used  in  Calderón
et  al.  (2020).  All  non-brain  tissue  was  removed  to  obtain
an  anatomic  brain  mask  that  would  be  used  to  parcel  and
segment  the  T1  data  images.  Moreover,  T1  images  were
reoriented  and  a  resampled  AC-PC  aligned  image  with  6
degrees  of  freedom  and  all  structural  data  images  were
corregistered  to  the  normalized  space  using  the  Montreal
Neurological  Institute  (MNI)  reference  brain  (Ashburner  &
Friston,  1999).  In  this  case,  the  use  of  a  standard  atlas
such  as  MNI  can  be  a  source  of  uncontrolled  error.  To  avoid
this  possible  effect,  it  was  studied  whether  normalization
in  the  MCI  group  with  atlas  MNI  generated  different  results
if  normalization  based  on  a  DARTEL  model  was  used.  Both
processes  led  to  the  same  results,  so  the  MNI  atlas  was
maintained  to  guarantee  replication  options.  As  usual,  the
preprocess,  apart  from  maximizing  the  signal-to-noise  ratio,
eliminates  the  presence  of  extracerebral  physiological  activ-
ities,  white  matter,  and  Cerebrospinal  Fluid.  Regarding  the
use  of  low  and  high  pass  filters  for  the  elimination  of  outliers,
the  elimination  of  participants  with  excessive  movement
allowed  confirming  that  the  analysis  of  outliers  was  unsuc-
cessful  since  the  final  frequencies  all  ranged  between  0.1
and  0.8  Hz.
Statistical  analysis

Data  treatment  and  statistical  analysis  of  the  participants’
demographic  and  clinical  characteristics,  as  well  as  their
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reprocessed  fMRI  sequences,  were  performed  with  R  soft-
are  (version  3.5.0).

Network  Change  Points  in  functional  connectivity  dynam-
cs  were  detected  through  NCPD  method  (Cribben  &  Yu,
017) which  performs  a  spectral  clustering  to  extract  the
etwork  community  structure  and  principal  angles  are  used
s  the  criterion  for  change  points  in  the  network  community
tructure.  Statistical  significance  of  the  candidate  change
oints  is  tested  with  stationary  bootstrap.  R  function  for  the
CPD  method  were  provided  by  the  authors  and  used  under
heir  authorization.

For  each  participant  we  applied  the  Automated  Anatomi-
al  Labelling  (AAL)  atlas  to  the  preprocessed  fMRI  sequences
o  obtain  time  series  of  300  time  points  (TR  =  2)  for  90  cor-
ical  and  subcortical  regions.  Network  change  points  were
etected  for  each  participant  through  spectral  clustering
ith  7  expected  communities  and  a  minimum  distance  of
0  time  points  between  candidate  change  points.  Statisti-
al  significance  of  these  change  points  was  tested  through
tationary  bootstrap  with  1000  iterations  and  an  outlier
hreshold  of  �  =  .05.

Significant  change  points  were  used  to  segment  each
articipant’s  rs-fMRI  time  series.  In  each  segment,  we  com-
uted  the  network  weighted  adjacency  matrix  though  the
earson  correlation  between  the  BOLD  signal  of  each  pair
f  ROIs.  These  matrices  were  filtered  through  TMFG  algo-
ithm  (Massara,  Di  Matteo,  &  Aste,  2016)  to  obtain  a  sparse
eighted  graph  between  each  significant  change  point.

We  characterized  the  topological  properties  of  each
ndividual’s  Functional  Connectivity  networks  though  their
etwork  strength,  transitivity,  characteristic  path  length,
mall-worldness  and  modularity.  Differences  in  these  mea-
ures  were  analyzed  with  mixed  linear  models  with  clinical
roup  and  time  State  as  a  fixed  effects  and  participant
luster  as  a  random  effect.  Models  were  adjusted  by  neu-
opsychological  variables.

In  order  to  account  for  the  difference  in  scale  between
he  response  variable  and  the  continuous  predictors,  all
ontinuous  numerical  variables,  including  the  response,
ere  standardized.  Therefore,  the  model  estimates  must
e  interpreted  in  standard  scale.

esults

en  patients  were  included  in  each  group  of  the  study,  30%
ere  women  (Table  1).  The  median  age  was  51  (Q1 =  49.20;
3 =  60)  in  the  control  group  and  61  (Q1 =  58.20;  Q3 =  66)  in
he  MCI  group.  Participants  in  MCI  group  had  a  median  of
6.50  (Q1 =  9.75;  Q3 =  17.0)  years  of  education,  while  those
n  the  control  group  had  a  median  of  17  (Q1 = 11.20;  Q3 = 17)
ears  of  education.

Although  no  statistical  differences  were  detected  in  the
istribution  of  MMSE  or  BNT  scores,  statistical  differences
ere  found  in  PRMQ,  PAQ,  GDS  and  NEUROPSI.  More  specif-

cally,  MCI  participants  scored  higher  in  PRMQ,  PAQ  and
DS,  while  they  showed  lower  scores  in  NEUROPSI.  There-

ore,  these  scores  were  incorporated  as  covariates  in  the

odels.
No  significant  change  points  were  de  detected  in  four

articipants  in  the  control  group  and  one  participant  in
he  MCI  group  (Figure  1).  Additionally,  there  were  no  sta-
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Table  1  Demographic  and  clinical  characteristics.a

Control  (n  =  10)  MCI  (n  =  10)  pb

Gender  (Female) 3  (30%) 3  (30%) 1.000
Age 51  [49.20;  60]

55.90  (10.80)
61  [58.20;  66]
61.60  (7.57)

.120

Years of  education  17  [11.20;  17]
14.30  (4.16)

16.50  [9.75;  17]
13 (5.54)

.492

MMSE 27.50  [27;  29.50]
28  (1.49)

27.50  [26.20;  29]
27.40  (1.96)

.537

PRMQ 26.50  [23;  27]
26.10  (3.48)

39.50  [31.80;  44.20]
37.90  (9.12)

.005

PAQ 0 [0;  0]
0.10  (0.32)

1  [0;  1.75]
1.20  (1.40)

.018

GDS 1  [0.25;  3.75]
2 (2.05)

5.50  [5.00;  7.75]
5.90  (5.10)

.002

BNT 58  [58;  59]
57.40  (2.67)

57  [52.50;  58.50]
55  (5.10)

.252

NEUROPSI 111  [107;  115]
112  (9.68)

95.50  [93.50;  99.20]
99.40  (11.60)

.007

a Categorical variable: Freq. (%). Quantitative variables: Median [Q1;
b Fisher’s exact test was used for gender, while Mann-Whitney test w
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igure  1  Significant  change  points  in  MCI  and  control  partici-
ants.

istical  differences  between  the  MCI  and  controls  in  the
umber  of  change  points  during  the  rs-fMRI  register,  accord-
ng  to  Wilcoxon  rank  sum  test  (W  =  42.50,  p-value  =  .581).
igures  2  and  3  show  the  community  structure  and  the  TMFG
ltered  FC  links  of  the  control  and  MCI  patients,  respec-
ively.  It  must  be  noted  that  the  values  of  Q  were  maximized
eparately  for  each  subnetwork  of  each  participant.  There-
ore,  Q  values  cannot  be  directly  compared.  However,  this
rocedure  permits  the  extraction  of  the  network  commu-
ity  structure  in  relation  to  the  modularity  scores,  which
e  assume  as  stable  between  change  points  and  allow  us  to
odel  he  network  properties  of  these  FC  states.
etwork  strength

etwork  connectivity  density  was  studied  with  three  differ-
nt  approaches.  First,  we  studied  the  total  strength  of  the

P
(
e
m

 Q3]. Below Mean (SD).
as used for continuous variables.

etwork  to  characterize  the  global  density  of  the  functional
onnectivity  networks  in  each  time  segment  of  each  partic-
pant.  Secondly,  we  computed  the  median  node  strength  to
dentify  the  central  tendency  of  each  network.  Median  was
referred  over  mean  as  it  is  a  robust  estimator  of  central
endency  in  non-symmetric  distributions,  as  was  the  case  in
he  node  strength  distribution  of  all  the  participants  in  this
tudy.  Finally,  we  analyzed  the  intra-patient  variance  of  the
ode  strength  of  the  networks.

In  relation  to  the  total  network  strength  (Figure  4A),  the
est  model  in  terms  of  the  reduction  of  the  AIC  was  the
aseline  model  with  group  and  state  in  the  linear  predictor
Table  2,  Model  1).  Although  the  effect  of  the  state  was  close
o  significance  (ˆ̌  =  0.12;  95%  CI:  −0.02,  0.26),  the  marginal
2 = .033  indicates  an  extremely  low  predictive  value  of  the
xed  effects.

As  an  ancillary  analysis,  we  adjusted  the  models  incorpo-
ating  the  results  of  the  neuropsychological  assessment  to
tudy  if  these  variables  modified  the  effects  of  group  and
ime.  In  the  case  of  network  total  strength,  we  detected  no
tatistically  significant  effects  of  MINIMENTAL  (ˆ̌  =  0.16;  95%
I:  −0.20,  0.53),  PRMQ  (ˆ̌  =  0.29;  95%  CI:  −0.21,  0.79),  PAQ
ˆ̌

 =  0.29;  95%  CI:  −0.10,  0.68),  GDS  (ˆ̌  =  0.04;  95%  CI:  −0.50,
.58),  BNT  (ˆ̌ = −0.14;  95%  CI:  −0.51,  0.22).  However,  the
ffect  of  NEUROPSI  was  close  to  statistical  significance
ˆ̌

 =  −0.35;  95%  CI:  −0.75,  0.06).
Regarding  the  median  node  strength,  the  best  model  in

erms  of  the  reduction  of  the  AIC  included  the  fixed  effects
f  group,  state  and  PRMQ  (Table  3,  Model  3).

Although  the  effects  of  group  (ˆ̌  =  −0.57;  95%  CI:  −1.48,
.34)  and  state  (ˆ̌  =  0.03;  95%  CI:  −0.13,  0.18)  were  not
tatistically  significant,  we  detected  a  significant  effect  of

RMQ  where  an  increase  of  one  unit  implied  a  0.53  increase
95%  CI:  0.08,  0.97)  in  the  network  median  strength.  How-
ver,  according  to  the  marginal  R2, the  fixed  effects  of  this
odel  can  only  explain  a  13.30%  of  the  variability  in  the
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Figure  2  TMFG  filtered  functional  connectivity  graphs  for  control  participants.  Each  row  corresponds  to  a  control  individual,  while
each graph  was  constructed  with  the  functional  connectivity  matrices  between  significant  change  points.

trol  

atric

e
a

i
i
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Figure  3  TMFG  filtered  functional  connectivity  graphs  for  con
each graph  was  constructed  with  the  functional  connectivity  m

response  variable.  The  changes  in  median  node  strength  in
both  groups  can  be  seen  in  Figure  4(B).

We  detected  no  statistically  significant  effects  of  MINI-
MENTAL  (ˆ̌  =  0.13;  95%  CI:  −0.23,  0.149),  PAQ  (ˆ̌  =  0.25;  95%
CI:  −0.13,  0.64),  GDS  (ˆ̌  =  0.18;  95%  CI:  −0.34,  0.70),  BNT
(ˆ̌  =  −0.11;  95%  CI:  −0.47,  0.24),  or  NEUROPSI  (ˆ̌  =  −0.23;

95%  CI:  −0.63,  0.17).

As  to  the  intra-patient  variance  of  the  node  strength,  the
best  model  in  terms  of  the  reduction  of  the  AIC  included  the

a

s

participants.  Each  row  corresponds  to  an  MCI  individual,  while
es  between  significant  change  points.

ffects  of  group,  state  and  the  interaction  between  group
nd  state  (Table  4,  Model  2).

According  to  this  model,  there  was  a  statistically  signif-
cant  positive  effect  (ˆ̌ = 0.34;  95%  CI:  0.05,  0.63)  of  the
nteraction  between  group  and  state  on  the  variability  of  the
etwork  strength.  However,  the  marginal  R2 = .104  indicates
 low  predictive  value  of  the  fixed  effects.
The  changes  in  intra-individual  variability  of  the  node

trength  in  both  groups  can  be  seen  in  Figure  4(C).
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Figure  4  Network  strength  for  control  and  MCI  participants  along  the  fMRI  sequence.

Table  2  Models  for  total  network  strength.a

Predictors  Model  1  Model  2  Model  3

Est.  CIb Est.  CI  Est.  CI

(Intercept)  −0.47  −1.08  to  0.15  −0.26  −0.96  to  0.43  −0.3  −0.92  to  0.32
Group (MCI)  0.19  −0.54  to  0.92  −0.21  −1.19  to  0.77  −0.14  −0.93  to  0.65
State 0.12  −0.02  to  0.26  0.03  −0.17  to  0.23  0.13  −0.01  to  0.26
Group (MCI)  ×  State  0.17  −0.10  to  0.45
NEUROPSI −0.35  −0.75  to  0.06
Random Effects
�2 0.52  0.52  0.53
�00 0.49  0.51  0.42
ICC 0.49  0.49  0.44

Observations  68  68  68
Marg. R2 0.033  0.047  0.12
Cond. R2 0.503  0.519  0.508
AIC 188.275  190.897  188.936

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual variance; �00: inter-individual variance; ICC: Intraclass Correlation
2 2 2 2
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Coefficient; Marg. R : Marginal R ; Cond. R : Conditional R ; AIC:
b *p < .05, **p < .01, ***p  < .001.

As  a  complementary  analysis,  we  adjusted  the  models
ncorporating  the  results  of  the  neuropsychological  assess-
ent  to  study  if  these  variables  modified  the  effects  of

roup  and  time.  In  the  case  of  intra-patient  variance
f  node  strength,  we  detected  no  statistically  significant
ffects  of  MINIMENTAL  (ˆ̌ = 0.17;  95%  CI:  −0.17,  0.50),  PRMQ
ˆ̌

 =  −0.07;  95%  CI:  −0.53,  0.39),  PAQ  (ˆ̌  =  0.22;  95%  CI:
0.14,  0.58),  GDS  (ˆ̌  =  −0.19;  95%  CI:  −0.67,  0.30),  BNT

ˆ̌
 =  −0.23;  95%  CI:  −0.55,  0.09),  or  NEUROPSI  (ˆ̌  =  −0.35;

5%  CI:  −0.71,  0.01).

haracteristic  path  length

he  best  model  for  the  characteristic  path  length  of  the
etworks  in  terms  of  the  reduction  of  the  AIC  included  only

he  effects  of  group,  state  and  NEUROPSI  score  (Table  5,
odel  3).  Although  the  effects  of  group  and  state  were  not

tatistically  significant,  an  increase  of  one  standard  unit
n  the  NEUROPSI  score  implied  a  0.39  (95%  CI:  0.06,  0.71)

T

T
o

ke Information Criteria.

ncrease  in  the  characteristic  path  length  of  the  network.
he  marginal  R2 =  .123  indicates  a  low  predictive  capacity
f  the  fixed  effects.

The  incorporation  of  PAQ  scores  in  the  model  increased
he  marginal  R2 to  0.184  but  failed  to  reduce  the  deviance
f  the  model  (Table  5,  Model  4).  However,  given  the  limita-
ions  of  our  sample  size,  this  effect  should  be  considered  in
urther  research.

The  fluctuations  in  the  characteristic  path  length  in  both
roups  can  be  seen  in  Figure  5(A).

Ancillary  analysis  concluded  that  there  was  no  effect
f  MINIMENTAL  (ˆ̌  =  −0.15;  95%  CI:  −0.45,  0.15),  PRMQ
ˆ̌

 =  0.19;  95%  CI:  −0.33,  0.43),  GDS  (ˆ̌  =  0.26;  95%  CI:  −0.16,
.67)  and  BNT  (ˆ̌  =  0.07;  95%  CI:  −0.22,  0.37).
ransitivity

he  best  model  for  the  transitivity  of  the  networks  in  terms
f  the  reduction  of  the  AIC  included  only  the  effects  of  group
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Table  3  Models  for  median  strength.a

Predictors  Model  1  Model  2  Model  3

Estimates  CIb Estimates  CI  Estimates  CI

(Intercept)  −0.19  −0.81  to  0.43  −0.41  −1.13  to  0.32  0.22  −0.47  to  0.90
Group (MCI)  0.18  −0.52  to  0.88  0.6  −0.41  to  1.62  −0.57  −1.48  to  0.34
State 0.02  −0.13  to  0.18  0.12  −0.10  to  0.34  0.03  −0.13  to  0.18
Group (MCI)  ×  State  −0.18  −0.49  to  0.13
PRMQ 0.53  0.08  to  0.97*
Random Effects
�2 0.66  0.65  0.64
�00 0.4  0.4  0.33
ICC 0.38  0.38  0.34

Observations  68  68  68
Marg. R2 0.008  0.019  0.133
Cond. R2 0.381  0.394  0.428
AIC 197.985  200.545  195.9

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual variance; �00: inter-individual variance; ICC: Intraclass Correlation
Coefficient; Marg. R2: Marginal R2; Cond. R2: Conditional R2; AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p < .001.
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and  state  (Table  6,  Model  1).  However,  none  of  these  effects
were  statistically  significant  and  the  marginal  R2 =  .022  indi-
cates  a  low  predictive  capacity  of  the  fixed  effects.  The
fluctuations  in  the  transitivity  coefficient  in  both  groups  can
be  seen  in  Figure  5(B).

Complementary  analysis  led  to  conclude  the  absence  of
significant  effects  of  NEUROPSI  (ˆ̌  =  −0.28;  95%  CI:  −0.66,
0.10),  MINIMENTAL  (ˆ̌  =  0.21;  95%  CI:  −0.12,  0.54),  PRMQ
(ˆ̌  =  0.36;  95%  CI:  −0.11,  0.83),  PAQ  (ˆ̌  =  0.29;  95%  CI:  −0.08,

0.65),  GDS  (ˆ̌  =  0.13;  95%  CI:  −0.38,  0.64)  and  BNT  (ˆ̌  =  0.08;
95%  CI:  −0.43,  0.27).

t
s

Table  4  Models  for  intra-patient  Variance  of  Node  Strength.a

Predictors  Model  1  Model  2

Estimates  CIb Estimat

(Intercept)  −0.56  −1.16  to  0.03  −0.16  

Group (MCI)  0.16  −0.50  to  0.81  −0.64  

State 0.17  0.02  to  0.32*  −0.01  

Group (MCI)  ×  State  0.34  

NEUROPSI 

Random Effects
�2 0.65  0.59  

�00 0.33  0.37  

ICC 0.34  0.38  

Observations  68  68  

Marg. R2 0.055  0.104  

Cond. R2 0.372  0.447  

AIC 194.957  193.993

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual va
Coefficient; Marg. R2: Marginal R2; Cond. R2: Conditional R2; AIC: Akai

b *p < .05, **p < .01, ***p < .001.
mall-worldness

iven  that  some  of  the  variance  components  for  the  random
tructure  are  zero,  the  linear  mixed  models  for  the  network
mall-worldness  dynamics  are  compromised  and  the  R2 can-
ot  be  computed.  Therefore,  the  models  shown  in  Table  7
hould  be  considered  with  caution.

The  fluctuations  in  the  small-worldness  coefficients  in
ontrol  and  MCI  participants  can  be  seen  in  Figure  5(C)  and

hey  do  not  appear  to  indicate  different  patterns  in  the
mall-world  network  topology  across  groups.

 Model  3

es  CI  Estimates  CI

−0.84  to  0.53  0.03  −0.66  to  0.73
−1.61  to  0.32  −1.03  −2.04  to  −0.01*
−0.22  to  0.20  −0.01  −0.22  to  0.20
0.05  to  0.63*  0.36  0.06  to  0.65*

−0.35  −0.71  to  0.01

0.59
0.29
0.33

68
0.181
0.449

 194.165

riance; �00: inter-individual variance; ICC: Intraclass Correlation
ke Information Criteria.
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Table  5  Models  for  characteristic  path  length.a

Predictors  Model  1  Model  2  Model  3  Model  4

Estimates  CIb Estimates  CI  Estimates  CI  Estimates  CI

(Intercept)  0.06  −0.55  to  0.67  −0.25  −0.98  to  0.47  −0.12  −0.71  to  0.48  −0.26  −0.85  to  0.32
Group (MCI)  0.12  −0.53  to  0.76  0.73  −0.29  to  1.74  0.47  −0.17  to  1.12  0.79  0.12  to  1.46*
State −0.04  −0.20  to  0.12  0.09  −0.14  to  0.32  −0.05  −0.21  to  0.11  −0.06  −0.22  to  0.10
Group (MCI)  ×  State  −0.25  −0.57  to  0.07
NEUROPSI  0.39  0.06  to  0.71*  0.37  0.07  to  0.67*
PAQ −0.31  −0.61  to  −0.01*
Random Effects
�2 0.76  0.73  0.76  0.76
�00 0.28  0.3  0.17  0.12

ICC 0.27  0.29  0.18  0.13
Observations  68  68  68  68
Marg. R2 0.006  0.03  0.123  0.184
Cond. R2 0.272  0.313  0.285  0.293
AIC 202.098  203.539  200.993  201.135

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual variance; �00: inter-individual variance; ICC: Intraclass Correlation Coefficient; Marg. R2: Marginal R2; Cond. R2:
Conditional R2; AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p  < .001.
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Figure  5  Characteristic  path  length,  transitivity  and  Small-worldness.  (A)  Characteristic  path  length,  (B)  transitivity  and  (C)  small-
world coefficient.  Each  line  represents  a  single  individual  and  brakes  in  the  lines  correspond  to  changes  in  the  network  measure
after a  significant  change  point.

Table  6  Models  for  transitivity.a

Predictors  Model  1  Model  2

Estimates  CIb Estimates  CI

(Intercept)  −0.37  −0.98  to  0.24  −0.3  −1.02  to  0.42
Group (MCI)  0.2  −0.49  to  0.88  0.05  −0.95  to  1.06
State 0.09  −0.07  to  0.24  0.06  −0.17  to  0.28
Group (MCI)  ×  State  0.06  −0.25  to  0.37
Random Effects
�2 0.66  0.67
�00 0.37  0.37
ICC 0.36  0.36

Observations  68  68
Marg. R2 0.022  0.024
Cond. R2 0.375  0.374
AIC 197.142  200.856

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual variance; �00: inter-individual variance; ICC: Intraclass Correlation
2 2 2 2
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Coefficient; Marg. R : Marginal R ; Cond. R : Conditional R ; AIC:
b *p < .05, **p < .01, ***p < .001.

Discussion

This  study  aimed  to  characterize  the  differences  in  the
resting-state  network  properties  between  MCI  and  healthy
control  participants  through  a  dynamic  functional  connec-
tivity  approach.  rs-fMRI  states  in  each  individual  were
identified  through  the  NCPD  algorithm  (Cribben  &  Yu,  2017)
and  the  subnetworks  between  change  points  were  described
in  terms  of  their  connectivity  strength,  characteristic  path
length,  transitivity,  small-worldness  and  modularity.  The
effects  of  group,  state  and  neuropsychological  assess-
ment  on  graph  measures  were  tested  through  mixed  linear
models.

Overall,  no  significant  differences  were  found  between

control  and  MCI  participants  in  the  number  of  change  points
during  the  fMRI  time  register.

g
g
L

ke Information Criteria.

Although  no  significant  effects  of  group  or  the  state  were
ound  in  either  the  total  or  the  median  network  strength,
igher  scores  in  the  PRMQ  seemed  to  be  associated  to  higher
edian  strength  of  the  networks.  We  also  found  a  significant

nteraction  effect  of  group  and  state  on  the  variance  of  the
etwork  strength.  However,  the  low  marginal  R2 (R2 =  .133
nd  R2 =  .104,  respectively)  lead  to  conclude  that  the  fixed
ffects  of  the  model  could  poorly  predict  the  response  vari-
ble.  Therefore,  further  studies  are  required  in  order  to
ssess  whether  these  effects  fall  in  line  with  the  loss  of
ariability  and  the  altered  fluctuations  patterns  found  in
renner  et  al.  (2018), Córdova-Palomera  et  al.  (2017),  and
iu  et  al.  (2018).

In relation  to  the  fluctuation  in  the  segregation  and  inte-

ration  properties  of  the  networks,  no  significant  effects  of
roup  and  state  were  found  on  either  the  Characteristic  Path
ength  or  the  Transitivity  coefficients.  Therefore,  we  could
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Table  7  Models  for  small-worldness.a

Predictors  Model  1  Model  2  Model  3  Model  4

Estimates  CIb Estimates  CI  Estimates  CIb Estimates  CI

(Intercept)  0.36  −0.21  to  0.94  0.75  0.01  to  1.49*  0.49  −0.10  to  1.08  0.06  −0.59  to  0.71
Group (MCI)  −0.17  −0.65  to  0.31  −0.92  −1.95  to  0.10  −0.45  −1.01  to  0.12  0.33  −0.36  to  1.02
State −0.11  −0.29  to  0.07  −0.26  −0.51  to  −0.00*  −0.1  −0.27  to  0.08  −0.09  −0.27  to  0.08
Group (MCI)  ×  State  0.29  −0.06  to  0.65
PAQ 0.25  −0.03  to  0.53
GDS −0.34  −0.69  to  0.01
Random Effects
�2 1  0.98  0.97  0.96
�00 0  0  0  0
ICC 0  0  0  0

Observations 68  68  68  68
Marg. R2 ---  0.063  ---  ---
Cond. R2 ---  0.063  ---  ---
AIC 206.44  207.415  207.463  206.422

a Est.: Estimates; CI: 95% Confidence Interval; �2: intra-individual variance; �00: inter-individual variance; ICC: Intraclass Correlation Coefficient; Marg. R2: Marginal R2; Cond. R2:
Conditional R2; AIC: Akaike Information Criteria.

b *p < .05, **p < .01, ***p  < .001.
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Farràs-Permanyer, L., Guàrdia-Olmos, J., & Peró-Cebollero, M.
(2015). Mild cognitive impairment and fMRI studies of brain func-
Network  change  point  detection  in  resting-state  functional  c

not  confirm  the  higher  CPL  and  transitivity  in  MCI  found  in
Wee  et  al.  (2016).  However,  a  higher  performance  in  the
NEUROPSI  scale  was  associated  to  higher  characteristic  path
length  of  the  network.  Additionally,  our  results  suggested  a
possible  effect  of  the  level  of  dependency  in  daily  life  activ-
ities  in  this  indicator  that  should  be  explored  in  subsequent
studies  in  dynamic  FC.

Finally,  the  linear  mixed  models  for  the  network  small-
worldness  dynamics  are  compromised  due  to  the  lack  of
variance  in  the  response.  Therefore,  we  cannot  test  whether
our  study  falls  in  line  with  the  increased  small-worldness
coefficient  found  in  Wee  et  al.  (2016).

There  are  some  limitations  in  this  study  that  should  be
considered.  In  relation  to  modularity,  this  measure  allows  to
study  the  structure  of  a  network  or  graph.  Each  network  can
be  partitioned  into  modules,  also  called  communities.  Net-
works  with  higher  modularity  are  characterized  by  stronger
and  more  solid  connections  between  nodes  inside  the  com-
munity  and  having  sparse  links  and  connections  between
other  communities.  Thus,  a  network  with  higher  modular-
ity  is  composed  by  sparsely  connected  communities,  while
in  networks  with  lower  modularity  have  highly  connected
modules.

However,  this  measure  has  limitations  when  small  com-
munities  are  considered,  as  these  can  be  easily  masked.  In
our  case,  the  estimations  of  modularity  should  be  inter-
preted  as  an  assessment  of  the  possible  independence
between  communities  of  reasonable  size.  From  this  per-
spective  and  being  dynamic  rs-fMRI  networks  with  restricted
variability,  both  the  magnitude  and  the  intra-participant
variability  of  these  values  are  relatively  low.

All  things  considered,  we  employed  the  modularity  in  our
study  to  visualize  the  structure  of  the  network  of  each  par-
ticipant  in  each  state,  but  it  was  not  be  used  in  our  modelling
approaches.

Secondly,  we  acknowledge  that  our  sample  size  poses  a
methodological  challenge.  However,  we  deemed  necessary
to  apply  strict  inclusion  and  exclusion  criteria  in  order  to
guarantee  a  correct  MCI  diagnosis  and  matching  strategy  in
our  study  design.  Therefore,  the  tentative  effects  of  MCI
and  state  on  the  variance  of  the  network  strength  that  we
have  detected  in  this  work,  as  well  as  the  effects  of  the  neu-
ropsychological  assessment  scores,  suggest  that  the  dynamic
fluctuations  of  the  FC  should  be  further  analyzed.

From  a  more  clinical  point  of  view,  we  must  mention  that
the  diagnosis  of  MCI  was  not  confirmed  using  biomarkers.
It  was  based  on  psychiatric  and  neuropsychological  evalua-
tions.  This  could  be  a  confounding  factor  since  some  of  the
MCI  patients  could  meet  criteria  for  prodomal  AD  or  some
controls  could  be  in  the  preclinical  AD  phase.  This  aspect
should  be  controlled  in  future  studies.

Finally,  FC  networks  were  obtained  by  regionally  aver-
aging  the  BOLD  voxel  signals  through  the  AAL  parcellation
scheme  of  90  cortical  regions  of  interest.  Although  this  atlas
was  preferred  for  simplicity,  choices  in  parcellation  can  lead
to  different  network  configurations  that  can  greatly  impact
the  results  of  the  spectral  clustering  and,  therefore,  the  net-
work  properties  and  the  network  change  points  detection.
In  the  future,  these  results  should  be  replicated  with  other
atlases  that  provide  more  functionally  meaningful  parcella-

tion  schemes,  such  as  Glasser  et  al.  (2013)  and  Gordon  et  al.
(2016).
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