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Curcumin (Cur) induces neuroprotection against brain ischemic injury; however, the mechanism is still obscure. /e aim of this
study is to explore the potential neuroprotective mechanism of curcumin against oxygen-glucose deprivation/reoxygenation
(OGD/R) injury in HT22 cells and investigate whether type-2 superoxide dismutase (SOD2) is involved in the curcumin-induced
protection. In the present study, HT22 neuronal cells were treated with 3 h OGD plus 24 h reoxygenation to mimic ischemia/
reperfusion injury. Compared with the normal cultured control group, OGD/R treatment reduced cell viability and SOD2
expression, decreased mitochondrial membrane potential (MMP) and mitochondrial complex I activity, damaged cell mor-
phology, and increased lactic dehydrogenase (LDH) release, cell apoptosis, intracellular reactive oxygen species (ROS), and
mitochondrial superoxide (P< 0.05). Meanwhile, coadministration of 100 ng/ml curcumin reduced the cell injury and apoptosis,
inhibited intracellular ROS and mitochondrial superoxide accumulation, and ameliorated intracellular SOD2, cell morphology,
MMP, and mitochondrial complex I activity. Downregulating the SOD2 expression by using siRNA, however, significantly
reversed the curcumin-induced cytoprotection (P< 0.05). /ese findings indicated that curcumin induces protection against
OGD/R injury in HT22 cells, and SOD2 protein may mediate the protection.

1. Introduction

Stroke is one of the leading causes of disability and death in
China and worldwide [1]. In 2015, the number of new
patients with stroke was more than 13 million, leading to a
cost of 11.3 billion USD, which brought about great eco-
nomic burden to the patients and the country [2]. However,
at present, the effective neuroprotective drug against brain
ischemic injury is very limited. Recombinant tissue plas-
minogen activator (rTPA) is the only neuroprotectant used
in clinic; the limited therapeutic time window (within 4.5 h
after the onset of stroke) reduces its utilization rate, leading
to the result that only 3% to 8.5% of stroke patients can

receive rTPA treatment [3, 4]. /erefore, exploring novel
neuroprotective medicine against brain ischemic injury is
very urgent and important.

Curcumin is derived from seasoning curry and herbal
Carcuma longa Linn (turmeric), and some latest in-
vestigations showed that curcumin protects neuronal cells
against brain ischemic injury both in vivo and in vitro [5, 6].
/e curcumin-induced protection against ischemic injury,
however, is still not clear. Type-2 superoxide dismutase
(SOD2) is an antioxidative protein, which is expressed in
mitochondria of cells, and the upregulation of SOD2 in cells
induces neuroprotective effects [7, 8]. And some latest in-
vestigations indicated that neuronal oxidative injury and
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mitochondrial dysfunction are involved in the pathophys-
iological process of brain ischemic injury [9–11]. In addition,
one of our studies showed that SOD2 protein mediates
curcumin-induced protection against β-amyloid (Aβ) in
neuronal cells [12].

/erefore, in the present study, we used oxygen-glucose
deprivation plus reoxygenation (OGD/R) in HT22 neuronal
cells to mimic neuronal ischemia/reperfusion (I/R) injury
[13] and investigated whether SOD2 mediates curcumin-
induced protection against OGD/R.

2. Materials and Methods

2.1. Materials. HT22 cells were obtained from the Xuzhou
Medical University. Curcumin, Dulbecco’s Modified Eagle
Medium (DMEM), fetal bovine serum (FBS), dimethyl
sulfoxide (DMSO), and methylthiazolyldiphenyl-tetrazo-
lium bromide (MTT) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Lactic dehydrogenase (LDH) reagent
kit was obtained from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). SOD2 activity assay kit was
obtained from Trevigen (Gaithersburg, USA). /e DAPI
staining solution and ROS reagent kit were purchased from
Beyotime Technology (Nantong, China). MitoSOX staining
kits were purchased from Invitrogen Molecular Probes (San
Diego, CA). /e primary antibodies of anti-SOD2, anti-
cleaved caspase-3, and anti-β-actin were purchased from
Abcam (Cambridge, UK).

2.2. Cell Culture and OGD Treatment. /e HT22 cells were
cultured in the medium, containing 90% DMEM medium,
10% FBS, 100U/ml penicillin, and 100 μg/ml streptomycin.
/e air of the incubator contained 95% O2 and 5% CO2, and
the temperature of the incubator was 37°C. /e medium was
changed every 2 to 3 days, and the cells were passaged 3
times/week with a 1:4 split ratio.We followed themethods of
Du et al. [12].

For the OGD treatment, the medium of the cells was
changed with DMEMmediumwithout glucose and FBS, and
then the cells were cultured in a sealed container; the air of
the container contained 95% N2 and 5% CO2, and the
temperature of the container was 37°C. After 3 h OGD
treatment, the medium of the cells was changed with normal
medium, and the cells were returned to the normal incubator
to mimic reperfusion.

2.3. Experimental Protocols. To explore a suitable curcumin
concentration, the cells were divided into 5 groups, in-
cluding the normal cultured control group, 3 h OGD plus
24 h reoxygenation (OGD/R) treatment group, 10 ng/ml
curcumin treatment group (10 ng/ml Cur +OGD/R),
100 ng/ml curcumin treatment group (100 ng/ml
Cur +OGD/R), and 500 ng/ml curcumin treatment group
(500 ng/ml Cur +OGD/R). After treatments (Figure 1(a)),
cell viability and LDH release were assessed./en, to observe
curcumin-induced effect on SOD2 expression in normal
cultured cells (Figure 1(b)), the cells were divided into 4
groups, including control and 3 concentrations of curcumin

treatment groups (10, 100, and 500 ng/ml curcumin); after
3 h treatment, SOD2 expression was assessed. Next, to
evaluate the SOD2-siRNA-induced effects on SOD2 ex-
pression and cytotoxicity, the cells were divided into 3
groups, including the normal cultured control group, SOD2-
siRNA treatment group, and scrambled-siRNA (SC-siRNA)
treatment group; after 6 h incubation, western blot andMTT
assay were taken to evaluate SOD2 expression and cell injury
level (Figure 1(c)).

To determine whether SOD2 mediates curcumin-in-
duced protection against OGD/R in HT22 cells, the cells
were divided into 5 groups, including control group, OGD/R
treatment group, 100 ng/ml curcumin treatment group
(Cur +OGD/R), SOD2-siRNA treatment group (SOD2-
siRNA+Cur +OGD/R), and SC-siRNA treatment group
(SC-siRNA+Cur +OGD/R). After the treatments
(Figure 1(d)), cell injury, apoptosis, SOD2 expression, cell
morphology, mitochondrial functions, intracellular ROS,
and mitochondrial superoxide were assessed.

2.4. CellViability. /eHT22 cells were seeded into a 96-well
cell culture plate at a density of 1× 105 cells per well. After
the treatments, 20 μl MTTsolution (5 μg/ml) was added into
each well; after 4 h incubation at 37°C, the medium of the cell
culture plate was removed. /en, 150 μl DMSO was added
into each well. After 15min shaking, as the formazan was
dissolved completely, the absorbance of each well was
measured by using a spectrophotometer (TECAN, CH).

2.5. LDH Release. /e cells were seeded into a 24-well cell
culture plate at a density of 5×105 cells/well. After the
treatments, the supernatants of the plate were collected to
measure the LDH activity of each well, as previously de-
scribed [14].

2.6. Western Blot Analysis. /e cells were seeded into a 6-
well cell culture plate at a density of 1× 106 cells/well. After
the treatments, the medium was removed, and the cells were
collected. /en, the total protein of the treated cells was
evaluated by using the Bradford method as described pre-
viously [14]. /e primary anti-SOD2 (1 :1000 in dilution),
anticleaved caspase-3 (1 : 50 in dilution), and anti-β-actin (1 :
1000 in dilution) antibodies were used. /e antigens were
assessed by using the chemiluminescence technique
(Amersham Pharmacia Biotech Piscataway, USA). Image
analysis was evaluated with the computerized analysis
software (Bio-Rad, Hercules, CH). We followed the methods
of Du et al. [12].

2.7. siRNA Interfering. SOD2-siRNA and SC-siRNA were
obtained from Qiangen (Germany). /e siRNA oligomers,
including SOD2-siRNA and SC-siRNA, were diluted in
serum-free DMEM medium, and then the medium was
incubated in room temperature for 5min. /e incubated
oligomers were combined with diluted Lipofectamine 2000
and incubated for another 20min. /e cell culture medium
was then removed from the plate, and the cells were washed
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Figure 1: Experimental protocol diagram. (a) Searching a suitable curcumin concentration. /e cells were divided into 5 groups, including
the normal cultured control group, oxygen glucose 3 h OGD plus 24 reoxygenation treatment group (OGD/R), and 3 concentrations of
curcumin treatment groups. After the treatments, cell viability and LDH release were assessed. (b) Observing curcumin-induced effect on
SOD2 protein expression. /e cells were divided into 4 groups, including normal cultured control group and 3 concentrations of curcumin
treatment groups; after 3 h treatment, SOD2 expression was assessed by using western blot analysis. (c) Evaluating interfering effect of
SOD2-siRNA. /e cells were divided into 3 groups, including control group, SOD2-siRNA treatment group, and scrambled (SC)-siRNA
treatment group. After the treatments, SOD2 protein expression was evaluated by using western blot analysis. (d) Exploring the role of
SOD2 in curcumin-induced protection in HT22 cells. /e cells were divided into 5 groups, including control, OGD/R treatment group,
Cur +OGD/R group, SOD2-siRNA+Cur +OGD/R group, and SC-siRNA+Cur +OGD/R group; after the treatments, cell injury, apo-
ptosis, SOD2 expression, cell morphology, intracellular ROS, mitochondrial functions, and superoxide were assessed.
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twice with phosphate-buffered saline (PBS) at 37°C. /en,
the complexes of 90 pmol siRNA and Lipofectamine were
added into the cell culture plate, and the cells were incubated
for 6 h in the incubator at 37°C. /en, the cells were washed
with PBS at 37°C. /e SOD2 expression was measured using
western blot analysis.

2.8. SOD2ActivityEvaluation. HT22 cells were seeded into a
6-well cell culture plate at a density of 1× 106 cells/well. After
the treatments, as previously described in detail [15], SOD2
activities in U/mg protein were calculated.

2.9. Cell Apoptosis Evaluation. /e cell apoptosis level was
measured by using a flow cytometry (BD, USA). /e cells
were planted into a 6-well cell culture plate at a density of
5×105 cells/well. After the treatments, the cells were har-
vested by centrifugation at 1000 rpm for 10min. /en, the
supernatants of the cells were removed, and the cells were
washed twice by ice-cold PBS. After the washing, the apo-
ptotic rates of the cells were evaluated as previously de-
scribed [12, 14].

2.10. Mitochondrial Function Evaluation. /e mitochondria
of the treated cells were isolated by using a mitochondrial
isolation kit according to the manufacturer’s instructions
(Qiagen, Hilden, Germany). And the mitochondrial com-
plex I activity was measured at 30°C as previously described
by Han et al. [16]. In brief, the mitochondrial complex I
activity of HT22 cells was measured by following rotenone-
sensitive oxidation of NADH initiated by ubiquinone-1
(Q1). An appropriate amount of cell lysate was added into
0.5ml assay mixture, containing 20mM potassium phos-
phate buffer, 2mM NaN3, 0.15mg/ml phospholipid, 0.1mM
Q1, and 0.15mM NADH, and the pH value was 8.0. Mi-
tochondrial complex I activity was evaluated by assessing the
decrease in absorbance (340 nm) and confirmed by in-
hibition with 40 μM rotenone. And the activity level (nmol
NADH oxidized·min− 1 mg·protein− 1) was calculated with a
molar extinction coefficient of 6.22 mM− 1 cm− 1.

Mitochondrial membrane potential (MMP) of the
treated HT22 cells was assessed by using the JC-1 (Sigma-
Aldrich, St. Louis, MO, USA). According to the manufac-
turer’s instruction, mitochondrial samples were exposed to
JC-1 staining buffer. At the end of the experiments, vali-
nomycin was used as the negative control. And the fluo-
rescence intensity of the cells was measured by using a
fluorescence spectrophotometer (TECAN, CH), and the
measurement temperature was 37°C. /e ratio of aggregates
to monomer was calculated as the MMP indicator, and the
wavelengths testing the aggregates and monomer were
590 nm (red) and 525 nm (green), respectively. We followed
the methods of Du et al. [12].

2.11. Cell Morphology Observation. /e cells were planted
into a 6-well cell culture plate at a density of 5×105 cells/
well. After the treatments, the cells were observed by using a

phase-contrast microscope, and the photos of the cells were
taken randomly.

2.12. Intracellular Reactive Oxygen Species. HT22 cells were
seeded into a confocal microscopy special dish at a density of
2×105 cells/well. After the treatments, a reactive oxygen
species (ROS) assay kit (Beyotime Technology, Nantong,
China) was taken to evaluate the intracellular ROS level. In
brief, the DMEMmedium without FBS was added into each
well, containing 100 μM DCF-DA (nonfluorescent and
colorless). After 20min incubation at 37°C, the DCF-DAwas
oxidized into the fluorescent 2′,7′-dichlorofluorescein
(DCF) by intracellular ROS./e dish was washed three times
with PBS, and then the photos were taken by using a
confocal microscope (excitation� 480 nm; emis-
sion� 535 nm). Finally, the fluorescence intensities of the
photos were evaluated by using Image-Pro Plus software.

2.13.Mitochondrial SuperoxideAssay. MitoSOX reagent was
used to measure mitochondrial superoxide level. In brief, the
cells were seeded into a confocal microscopy special dish at a
density of 1× 105 cells/well. After the treatments, the HT22
cells were treated with 5 μM MitoSOX reagent for 20min at
37°C; at the end of the treatments, 100 μl DAPI staining
solution was added into the dish to mark the cell nuclei.
After being washed three times with PBS, a confocal mi-
croscope was used to observe and take fluorescence photos
of the cells, including mitochondrial superoxide (red,
excitation� 510 nm; emission� 580 nm) and nuclei (blue,
excitation� 340 nm; emission� 488 nm). /en, the fluores-
cence intensity of the mitochondrial superoxide was cal-
culated by using Pro-plus software (IPP 6.0, Media
Cybernetics, Silver Spring, MD, USA).

2.14. Statistical Analysis. /e data of this study were ana-
lyzed by using SPSS 13.0 software (SPSS Inc., Chicago, USA).
/e values of all the experiments were expressed as
means± standard deviation (SD), and one-way ANOVAwas
used to assess the data. Tukey’s multiple comparison was
taken to compare the differences between the groups.
P< 0.05 indicated statistical significance.

3. Results

3.1. Curcumin Reduced Cell Injury in OGD/R-Treated HT22
Cells and Upregulated SOD2 Expression. To find a suitable
curcumin (Cur) treatment concentration, the HT22 cells
were divided into 5 groups, including control, OGD/R, and 3
concentrations of curcumin treatment groups (10, 100, and
500 ng/ml curcumin plus OGD/R respectively). After 3 h
OGD and 24 h reoxygenation treatment, compared with the
control, OGD/R treatment reduced cell viability
(Figure 2(a)) and increased LDH activity (Figure 2(b)) in the
medium significantly (P< 0.05), and 100 and 500 ng/ml
curcumin treatment restored cell viability and decreased
LDH activity obviously (P< 0.05). /en, the cells were di-
vided into 4 groups (Figure 2(c)), including control and 3
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doses of curcumin treatment groups (10, 100 and 500 ng/ml
curcumin). After 3 h treatment, compared with the control
group, 100 and 500 ng/ml curcumin groups showed sig-
nificantly increased SOD2 expression (P< 0.05). /e cur-
cumin concentration of 100 ng/ml was used in the
subsequent experiments.

3.2. Downregulation of SOD2 Expression Reversed Curcumin-
Induced Effects on Cell Injury, SOD2 Expression, and Activity.
To explore the role of SOD2 in curcumin-induced protection
against OGD/R in HT22 cells, SOD2-siRNA was taken to
downregulate SOD2 protein expression (Figure 3(a)). /e
SOD2-siRNA used in this study reduced SOD2 expression
significantly (0.31± 0.04 vs. 0.82± 0.03; P< 0.05), but the

scrambled siRNA (SC-siRNA) did not reduce SOD2 ex-
pression (0.81± 0.03 vs. 0.82± 0.03; P> 0.05). Meanwhile,
compared with the normal cultured control (Figure 3(b)),
either the SOD2-siRNA or the SC-siRNA induced no ob-
vious cytotoxicity (P> 0.05).

/en, the cells were divided into 5 groups, including
control, OGD/R, Cur +OGD/R, SOD2-siRNA+Cur +
OGD/R, and SC-siRNA+Cur +OGD/R. Compared with
the control, 3 h OGD plus 24 h reoxygenation treatment
(OGD/R) decreased SOD2 protein expression, SOD2 ac-
tivity and cell viability, and increased LDH activity in the
medium; concurrently, coadministration with 100 ng/ml
curcumin restored SOD2 expression, SOD2 activity, and cell
viability and reduced LDH release (Figures 3(c)–3(e)).
However, the SOD2-siRNA, but not the SC-siRNA

120

100

80

60

40

20

0

M
TT

 (%
 o

f c
on

tr
ol

)

Control OGD/R 10 100 500

Cur (ng/ml) + OGD/R

NS

∗ ∗

(a)

150

120

90

60

30

0

LD
H

 re
le

as
e (

U
/L

)

Control OGD/R 10 100 500

Cur (ng/ml) + OGD/R

NS

∗∗

(b)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

SO
D

2/
β-

A
ct

in

SOD2

β-Actin

Control 10 100 500
Cur (ng/ml)

∗

NS

(c)

Figure 2: Curcumin decreased cell injury in HT22 cells exposed to OGD/R and upregulated SOD2 expression in normal condition. /e
HT22 cells were divided into 5 groups, including control, OGD/R, and 3 concentrations (10 ng/ml, 100 ng/ml, and 500 ng/ml) of curcumin
plus OGD/R groups. After the treatments, cell viability and LDH release were measured by using the MTT method and reagent kit,
respectively. /en, the cells were divided into 4 groups, including control and 3 concentrations (10 ng/ml, 100 ng/ml, and 500 ng/ml) of
curcumin treatment groups; after 3 h exposure, western blot was performed to assess SOD2 expression. (a) Curcumin restored cell viability
(n� 8). (b) Curcumin reduced LDH release (n� 8). (c) Curcumin increased SOD2 expression (n� 4). Results are expressed as means± SD.
∗P< 0.05; NS: no significance.
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Figure 3: SOD2-siRNA reversed curcumin-induced cytoprotection and SOD2 upregulation in HT22 cells exposed to OGD/R. /e cells
were divided into 3 groups, including control, SOD2-siRNA, and scrambled (SC)-siRNA; after 6 h incubation, western blot and MTTassay
were taken to assess SOD2 expression and cell viability, respectively. /en, the cells were divided into 5 groups, including control, OGD/R,
Cur +OGD/R, SOD2-siRNA+Cur +OGD/R, and SC-siRNA+Cur +OGD/R; after 3 hOGD plus 24 h reoxygenation, SOD2 expression and
activity, cell viability, and lactic dehydrogenase (LDH) were assessed. (a) SOD2-siRNA inhibited SOD2 protein expression (n� 4). (b) Either
SOD2-siRNA or SC-siRNA induced no obvious cytotoxicity (n� 8). (c, d) SOD2-siRNA reversed curcumin-induced effects on SOD2
expression (n� 4) and activity (n� 8). (e) SOD2-siRNA reversed curcumin-induced cell viability restoration (n� 8). (f ) SOD2-siRNA
reversed curcumin-induced LDH release decrease (n� 8). Results are expressed as means± SD. ∗P< 0.05; NS: no significance.
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(P> 0.05), abolished the curcumin-induced cytoprotective
effects against OGD/R injury significantly (P< 0.05). /ese
findings showed that SOD2 mediates curcumin-induced
protective effects against OGD/R in HT22 cells.

3.3. Downregulation of SOD2 Expression Reversed Curcumin-
Induced Inhibitions of Cell Apoptosis and Cleaved Caspase-3
Expression. To investigate the curcumin-induced anti-
apoptosis in HT22 cells exposed to OGD/R, flow cytometry
and western blot were used to evaluate cell apoptotic rate
and apoptosis-associated protein cleaved caspase-3 expres-
sion (Figures 4(a)–4(c)). Compared with the control, the
OGD/R treatment increased cell apoptosis and cleaved
caspase-3 expression (P< 0.05), and 100 ng/ml curcumin
reduced cell apoptosis and cleaved caspase-3 expression level
(P< 0.05); similarly, SOD2-siRNA, but not the SC-siRNA
(P> 0.05), markedly abolished the curcumin-induced
antiapoptotic effects above (P< 0.05)./ese results indicated
that SOD2 protein mediates curcumin-induced anti-
apoptosis in HT22 cells treated with OGD/R.

3.4. Downregulation of SOD2 Expression Abolished Curcu-
min-Induced Ameliorations of Cell Morphology and Mito-
chondrial Functions. To further observe the curcumin-
induced effects on cell morphology and mitochondrial
functions in HT22 cells exposed to OGD/R, phase-contrast
microscope and reagent kits were taken to assess cell
morphology and cellular mitochondrial functions. /e cells
were divided into 5 groups as shown in the Figure 5.
Compared with the control, 3 h OGD plus 24 h reoxyge-
nation (OGD/R) treatment damaged the cellular mor-
phology (Figure 5(a)) and reduced mitochondrial
membrane potential (MMP) and mitochondrial complex I
activity (P< 0.05), which are associated with the mito-
chondrial functions (Figures 5(b) and 5(c)); 100 ng/ml
curcumin maintained cell integrity and restored MMP and
mitochondrial complex I activity (P< 0.05). However, the
SOD2-siRNA, but not the SC-siRNA (P> 0.05), reversed the
curcumin-induced protection in cell morphology and mi-
tochondrial functions (P< 0.05). /ese findings showed that
SOD2 mediates curcumin-induced protection in cell mor-
phology and mitochondrial functions against OGD/R in
HT22 cells.

3.5.Downregulation of SOD2Expression InhibitedCurcumin-
Induced Ameliorations on Intracellular ROS and Mitochon-
drial Superoxide. High level of intracellular ROS and mi-
tochondrial superoxide can damage cell and mitochondria.
Compared with the control group, 3 h OGD plus
24 reoxygenation (OGD/R) treatment increased ROS
(Figures 6(a) and 6(b)) and mitochondrial superoxide levels
(Figures 6(c) and 6(d)), and coadministration with 100 ng/
ml curcumin reduced the ROS and mitochondrial super-
oxide levels obviously (P< 0.05); similarly, SOD2-siRNA,
but not the SC-siRNA (P> 0.05), reversed the curcumin-
induced downregulation on intracellular ROS and mito-
chondrial superoxide (P< 0.05). /ese observations showed

that SOD2 mediates curcumin-induced antioxidation effects
against OGD/R in HT22 cells.

4. Discussion

In the present study, the HT22 neuronal cells were exposed
to OGD for 3 h and then cultured in normal medium for
24 h to imitate the neuronal I/R injury, and 100 ng/ml
curcumin was coadministered to reduce the OGD/R-in-
duced cell injury. Compared with the control, OGD/R
increased the cell injury, apoptosis, intracellular ROS, and
mitochondrial superoxide, reduced mitochondrial func-
tions and intracellular SOD2, and damaged cell mor-
phology; meanwhile, the presence of curcumin reduced cell
injury, apoptosis, intracellular ROS, and mitochondrial
superoxide, restored mitochondrial functions and SOD2,
and maintained cell integrity. However, SOD2-siRNA, but
not the SC-siRNA, significantly reversed the curcumin-
induced protections above. /ese findings indicated that
curcumin alleviates OGD/R-induced injury in HT22 cells,
and SOD2 may mediate the curcumin-induced protection
(Figure 7).

Stroke is one of the leading causes of disability and death
in the worldwide [17]. Unfortunately, however, effective
medicine or therapy in treating the disease is extremely
limited. /e limited therapeutic time window of rTPA de-
creases its use greatly. For this reason, exploring medicine or
therapy for stroke is of great importance. According to the
findings of some latest investigations, oxidative injury and
mitochondrial dysfunction participate in the pathophysio-
logical process of stroke [9–11]. Oxidative injury can con-
sume intracellular antioxidants, including glutathione
(GSH), catalase (CAT), and SOD, and also damage the
neuronal membrane [18, 19]. Meanwhile, especially after
reperfusion of stroke, too much ROS could be generated
[20], which may injure mitochondria and consume SOD2
[21]. /erefore, ameliorating mitochondrial functions and
increasing SOD2 level are regarded to be effective in treating
stroke. As stroke causes ischemic injury and reperfusion
injury to brain tissue, and reperfusion injury may be more
serious than ischemic injury [22]. In this study, the HT22
cells were treated with 3 h OGD injury and then cultured in
normal medium for 24 h to mimic the I/R injury of stroke.
Apoptosis is an important cell death pattern after I/R injury,
and to assess the cell apoptosis degree, we took flow
cytometry and western blot to measure cell apoptosis rate
and cleaved caspase-3 expression, which is an apoptosis-
associated protein, and its expression level is closely related
to the apoptosis of cells [23]. In this study, curcumin reduced
cleaved caspase-3 expression in the OGD/R-treated HT22
cells, and SOD2-siRNA reversed the antiapoptosis effects of
curcumin, indicating that the curcumin-induced anti-
apoptosis in neuronal cells exposed to OGD might be via
SOD2 protein.

Curcumin is an extract from seasoning curry and herbal
Carcuma longa Linn. Some recent investigations reported
that curcumin can induce antioxidation, anticerebral in-
farction, anti-inflammation, and neuroprotection [24–26].
In addition, some other studies showed that curcumin can
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Figure 4: SOD2-siRNA reversed curcumin-induced antiapoptotic effects in HT22 cells exposed to OGD/R. /e cells were divided into 5
groups, including control, OGD/R, Cur +OGD/R, SOD2-siRNA+Cur +OGD/R, and SC-siRNA+Cur +OGD/R; after 3 h OGD and 24 h
reoxygenation, cell apoptotic rate and cleaved caspase-3 expression were evaluated by using flow cytometry and western blot, respectively.
(a) Flow cytometry results of cells. (b) SOD2-siRNA reversed curcumin-induced antiapoptotic effect (n� 6). (c) SOD2-siRNA reversed
curcumin-induced downregulation of cleaved caspase-3 expression (n� 4). Results are expressed as means± SD. ∗P< 0.05; NS: no
significance.
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ameliorate mitochondrial functions in neuronal cells [27].
Xie et al. [28] reported that curcumin can reduce neuronal
injury against I/R and OGD/R in vivo and in vitro, and
restricting Bax activation may be the key neuroprotective
mechanism of curcumin. In another two investigations,
nuclear factor erythroid-2-related factor 2 (Nrf2), a nuclear

transcription factor with neuroprotective effects against
central nervous system disease, was reported to be involved
in curcumin-induced neuroprotection against hypoxic-is-
chemic brain injury in neonatal rats and against OGD/R
injury in primary cultured cortical neurons [29, 30]. In the
present study, we explored the role of curcumin in OGD/R-
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Figure 5: SOD2-siRNA reversed curcumin-induced ameliorations of cell morphology and mitochondrial functions in HT22 cells exposed
to OGD/R. /e cells were divided into 5 groups, including control, OGD/R, Cur +OGD/R, SOD2-siRNA+Cur +OGD/R, and SC-
siRNA+Cur +OGD/R; after 3 h OGD and 24 h reoxygenation, cell morphology and mitochondrial functions were evaluated. (a) SOD2-
siRNA reversed curcumin-induced cell morphology amelioration. (b) SOD2-siRNA reversed curcumin-induced amelioration of mito-
chondrial membrane potential (MMP) (n� 8). (c) SOD2-siRNA reversed curcumin-induced amelioration of mitochondrial complex I
activity (n� 8). Results are expressed as means± SD. ∗P< 0.05; NS: no significance; Bar� 20 μm.
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Figure 6: Continued.
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induced neuronal injury and determined whether SOD2
protein mediates curcumin-induced potential protection
against OGD/R. We found that curcumin alleviated the
OGD/R-induced cell injury and apoptosis, maintained cell
morphology and mitochondrial functions, and increased
SOD2 expression, ROS, andmitochondrial superoxide in the
cells. Downregulating SOD2 expression, however, obviously
abolished the curcumin-induced cytoprotection and mito-
chondrial function improvement and also reversed the
curcumin-induced reductions on intracellular ROS and
mitochondrial superoxide. High-level ROS and mitochon-
drial superoxide accumulation can oxidize and damage cell
membrane and mitochondria. SOD2 is a protein expressed
in mitochondria. Too much consumption of SOD2 can

damage mitochondria and inhibit mitochondrial functions,
leading to a reduction in mitochondrial energy generation
[31]. /en, without enough energy supply, general functions
of neuronal cells, including proliferation, action potential,
excitability, and activation, could be abnormal. For the
neuronal cells, energy supply deficiency can increase glu-
tamate (an excitatory neurotransmitter) release, and the
neuronal excitability may be upregulated, and long-term
exposure to glutamate can activate the N-methyl-D-aspartic
acid (NMDA) receptors expressed in the neuronal mem-
brane, causing neural death and dysfunction ultimately [32].
In this study, we measured the MMP and mitochondrial
complex I levels in the cells. /e activation of NMDA re-
ceptors can induce overload of intracellular calcium [32].

Control

DAPI Mito. superoxide Merge

OGD/R

Cur + OGD/R

SOD2-siRNA +
Cur + OGD/R
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Figure 6: SOD2-siRNA reversed curcumin-induced reduction of intracellular ROS and mitochondrial superoxide in HT22 cells exposed to
OGD/R. /e cells were divided into 5 groups, including control, OGD/R, Cur +OGD/R, SOD2-siRNA+Cur +OGD/R, and SC-
siRNA+Cur +OGD/R; after 3 h OGD and 24 h reoxygenation, intracellular ROS and mitochondrial superoxide were evaluated.
(a) Intracellular ROS fluorescence staining results. (b) SOD2-siRNA reversed curcumin-induced intracellular ROS reduction (n� 8).
(c) SOD2-siRNA reversed curcumin-induced mitochondrial superoxide reduction (n� 8). (d) Mitochondrial superoxide fluorescence
staining results. Results are expressed as means± SD. ∗P< 0.05; NS: no significance; Bar� 20 μm.
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/en, high concentration of intracellular calcium may in-
hibit oxidative phosphorylation and MMP, and the ability of
mitochondria to produce energy (ATP) will decrease,
leading to chloride ion infusion and cell death ultimately
[33]. Mitochondrial respiratory chain consists of five
complexes, including mitochondrial complex I-V, which are
also called mitochondrial complex enzymes, and complex I
is the most sensitive respiratory enzyme to ischemia among
the five. Mitochondrial complex I can oxidize tricarboxylic
acid cycle-produced NADH in the inner mitochondrial
membrane, and it participates in producing ATP with
ATPase. And brain ischemia results in greater complex I
injury after brain oxygen deprivation [34]. /erefore, we
evaluated MMP and mitochondrial complex I levels in the
OGD/R-treated cells to determine the protective effects of
curcumin in mitochondrial functions. Except for SOD2,
SOD1 and SOD3 also induce protection against oxidative
injury, and SOD1 is expressed in intercellular space, while
SOD3 is in the cytoplasm [35]. In addition, evaluating the
change of mitochondrial function is another aim of this
study. /erefore, we explored SOD2, but not SOD1 or
SOD3. In one study about osteoblasts in mice, SOD2 pro-
tected mitochondria against oxidative injury and increased
osteoblast differentiation [36]. Another study reported that
curcumin increased intracellular SOD2 level in human
hepatoma cells [37]. In one of our studies, we found that
curcumin can protect HT22 cells against Aβ-induced injury,
and SOD2 protein mediates the curcumin-induced

protection [12]. /e findings of the present study explained,
to some extent, the neuroprotective mechanism of curcumin
against brain I/R. However, there are several limitations in
our investigation. In the first place, the findings of this study
were from in vitro and neuronal cell line, and whether
similar results can be observed in vivo or in primary cultured
neurons is unknown. In addition, except for SOD2, whether
SOD1 or SOD3 mediates curcumin-induced neuro-
protection is also not clear.

Taken together, in the present study, we found that
curcumin can reduce OGD/R-induced cell injury in HT22
cells, and SOD2 protein mediates the curcumin-induced
neuroprotection.
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