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A B S T R A C T

Potential biomarker detection is a crucial area of study for the prediction, diagnosis, and monitoring of
Alzheimer's disease (AD). The voxelwise genome-wide association study (vGWAS) is widely used in imaging
genomics studies that is usually applied to the detection of AD biomarkers in both imaging and genetic data.
However, performing vGWAS remains a challenge because of the computational complexity of the technique and
our ignorance of the spatial correlations within the imaging data. In this paper, we propose a novel method
based on the exploitation of spatial correlations that may help to detect potential AD biomarkers using a fast
vGWAS. To incorporate spatial correlations, we applied a nonlocal method that supposed that a given voxel
could be represented by weighting the sum of the other voxels. Three commonly used weighting methods were
adopted to calculate the weights among different voxels in this study. Then, a fast vGWAS approach was used to
assess the association between the image and the genetic data. The proposed method was estimated using both
simulated and real data. In the simulation studies, we designed a set of experiments to evaluate the effectiveness
of the nonlocal method for incorporating spatial correlations in vGWAS. The experiments showed that in-
corporating spatial correlations by the nonlocal method could improve the detecting accuracy of AD biomarkers.
For real data, we successfully identified three genes, namely, ANK3, MEIS2, and TLR4, which have significant
associations with mental retardation, learning disabilities and age according to previous research. These genes
have profound impacts on AD or other neurodegenerative diseases. Our results indicated that our method might
be an effective and valuable tool for detecting potential biomarkers of AD.

1. Introduction

Alzheimer's disease (AD) is a complex neurodegenerative disease
and the main cause of age-related dementia (Huang et al., 2017a), so far
affecting millions of people worldwide. Moreover, the underlying pa-
thological mechanism of AD is not well understood. Fortunately, recent
studies have shown that the detection of AD biomarkers can contribute
substantially to AD prediction, diagnosis, and monitoring (Bolkan et al.,
2015; Hugon et al., 2016; Li et al., 2011; Mayeux & Schupf, 2011).

Imaging genomics is a new field that has developed over the past
two decades. It can be used to detect potential biomarkers of AD,
helping to develop new treatments, monitor their effectiveness, and
reduce the duration of clinical trials (Stein et al., 2010; Tairyan & Illes,
2009). In addition, discovering the biomarkers within both imaging and
genetic data has at least three advantages. First, it helps us to gain

insight into the underlying pathologic processes of AD or other neu-
ropsychiatric and neurodegenerative diseases (Chauhan et al., 2014;
Xuan et al., 2017). Second, the genetic pathways by which relevant
genes affect these diseases can be discovered with the help of neuroi-
maging under the assumption that we could, in some ways, identify the
significant but hidden associations between causal genes and specific
variations drawn from the brain regions (Liu et al., 2014; Lu et al.,
2017; Peper et al., 2007; Scharinger et al., 2010). Third, morphometric
changes in the brain areas in neuropsychiatric and neurodegenerative
diseases can be detected, which is rather straightforward in clinical
practice and can be an indicator of functional changes in diseases.

Until now, many methods have been proposed to solve a variety of
problems in the field of imaging genomics studies. Among these
methods, the voxel-wise genome-wide association analysis (vGWAS)
approach offers a holistic perspective, and in recent years, it has
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become the most common way to analyze brain images and genetic
data simultaneously. In contrast to traditional methods, which are
based on candidate phenotype and/or candidate genotype analyses, a
vGWAS detects potential biomarkers of neuropsychiatric and neuro-
degenerative diseases by combining multiple phenotypic variables (e.g.,
voxels in imaging space) and the whole genome (e.g., single nucleotide
polymorphism, SNP) (Bedő et al., 2014). Therefore, a vGWAS does not
require a priori pathological knowledge of diseases to select the can-
didate phenotypes and/or candidate genotypes of interest, thereby re-
ducing the probability of missing both important genes and brain
clusters (Braskie et al., 2011; Hibar et al., 2015; Liu & Calhoun, 2013).
However, a vGWAS is typically impossible without the support of large
amounts of data of approximately 106 voxels and 106 SNPs for a subject
because of its global reach as indicated in our previous study (Huang
et al., 2015), thus creating a heavy computational burden.

To tackle the computational complexity issue, we proposed a more
efficient method, namely, the fast voxel-wise genome-wide association
analysis (FVGWAS), to accelerate the calculation of traditional vGWAS
in our previous study (Huang et al., 2015). FVGWAS includes the fol-
lowing two steps: 1) A global sure independence screening (GSIS)
procedure to eliminate many ‘noisy’ loci that had a weak association
with the image phenotypes. 2) A detection procedure based on wild
bootstrap methods that is intended to prevent the repeated analyses of
simulated datasets. By decreasing both the data size and experimental
times together, the FVGWAS has greatly alleviated the computational
burden. To be specific, FVGWAS is dozens of times faster than tradi-
tional vGWAS.

The vGWAS is known to rely on the assumption that the voxels are
independent of one another, and each voxel is treated as an individual
unit to estimate the gene-voxel pairwise significance. Therefore, the
correlations among voxels commonly known as spatial correlations in
images is ignored in typical vGWAS methods (Ge et al., 2012; Stein
et al., 2010; Tao et al., 2017) as well as in our FVGWAS.

Biologically speaking, the disease-related regions in the brain are
usually not separate but are actually contiguous because of the inherent
biological structure and function of the organ. In other words, struc-
tural changes caused by disease always refer to a relatively large region
in the brain (Hinrichs et al., 2009) rather than the independent voxel or
small clusters. In terms of image processing, the spatial correlations in
images has been proven to contribute to different image-related tasks
(Gong et al., 2012; Li et al., 2013; Moser et al., 2013; Tarabalka et al.,
2010). Hence, exploiting spatial correlations within data provides a
new way to approach neuroimaging studies. For example, Polzehl
(Polzehl et al., 2010) proposed a structural adaptive segmentation
method for structure denoising and signal detection in fMRI, which is
conducted by iteratively updating the smoothing parameters. In addi-
tion, some studies (Li et al., 2011; Li et al., 2012; Liu & Calhoun, 2013)
have flexibly incorporated the neighboring areas of each voxel by using
a multiscale adaptive regression approach whose parameters are
iteratively updated in a sequence of hierarchically nested spheres with
increasing radii. Tao (Tao et al., 2017) proposed a generalized reduced
rank latent factor (GRRLF) regression approach, which works by
smoothing the tensor fields that are parameterized by smoothing the
basis functions in the model, to exploit the spatial structure of the
neuroimaging data indirectly. Recently, a functional genome wide as-
sociation analysis (FGWAS) (Huang et al., 2017b), exploiting the spatial
correlations in imaging data based on a multivariate varying coefficient
model, can effectively detect crucial genetic and functional biomarkers.
Thus, based on the biological mechanism of disease and previous stu-
dies, exploiting the spatial correlations in images is expected to provide
a new and effective point of view to improve the detection accuracy in
vGWAS. However, most of the abovementioned methods incorporated
the spatial correlations within imaging data by fitting a regression
model and smoothing all the parameters for group analyses of the
image phenotype, leading to high computational complexity.

In this paper, we introduce an alternative strategy to our framework

for neuroimaging studies, which is known as nonlocal methods in the
field of image processing. Due to the redundancy of the images, non-
local methods employ local similarities between the patch centered at a
given voxel and the patch centered at a neighboring voxel (or between
the given voxel and its neighboring voxel) to approximately represent
the given voxel. Note that the similarities identified here are expected
to reflect the complex correlations among high-dimensional voxels. In
that case, it is reasonable to consider the nonlocal method within our
framework to exploit the spatial correlations in neuroimaging data. In
practice, the nonlocal method quantifies similarities with weightings.
Therefore, the key to this method is how to assign weights to neigh-
boring voxels. Here, we selected three kinds of weighted functions,
namely, the Gaussian (GS) function, nonlocal means (NLM), and block-
matching and 3D/4D filtering (i.e., BM3D for 2-dimensional images and
BM4D for 3-dimensional images). In fact, the similarities in both NLM
and BM3D/BM4D are based on the image patches, whereas the simi-
larities in the GS function are based on voxels. All these weighted
methods are widely used in the field of image processing, and have
achieved good results. They are clearly representative enough to in-
corporate the spatial correlations in images.

In this study, we proposed a novel method using vGWAS based on
spatial correlations exploitation with the aim of detecting more bio-
markers of AD. A schematic overview of the proposed method is given
in Fig. 1. Our method includes two major steps, 1) a nonlocal method is
used to integrate the correlations among voxels, which supposes that
the given voxel can be represented by weighting the sum of its neigh-
boring voxels; and 2) finding the potential AD biomarkers from images
(phenotypes) and genetic data (genotypes) by using FVGWAS, which
actually makes the computation more rapid. To validate our method,
we designed both simulation studies and analyses with real data. For
the simulation studies, we presented experiments to evaluate the ef-
fectiveness of the nonlocal method and compared the performance of
three weighted approaches. For the analyses with real data, we em-
pirically evaluated our proposed method with three different weighted
approaches to detect potential biomarkers, and we successfully detected
the three significant AD-related genes ANK3, MEIS2, and TLR4. The
results showed that our method is very promising for detecting more
biomarkers, and it may provide a new way to gain insight into the
underlying pathological mechanism of AD.

2. Materials and methods

2.1. Data preprocessing

In preparation for our analysis, both genetic data and anatomical
MRI scans of the human brain were obtained from the ADNI database
(http://adni.loni.usc.edu/).

The ADNI was launched in 2003, and it has been running since
2004; it is currently funded until 2021. This funding has been provided
by the National Institute on Aging (NIA), the National Institute of
Biomedical Image and Bioengineering (NIBIB), the Food and Drug
Administration (FDA), private pharmaceutical companies and nonprofit
organizations as a $60 million, 5-year public-private partnership. The
primary goal of the ADNI has been to test whether serial image (MRI,
PET) and nonimage (other biological markers) measures can be com-
bined to measure the progression of mild cognitive impairment (MCI)
and early AD. The determination of sensitive and specific markers of
very early AD progression is intended to aid researchers and clinicians
in developing new treatments and in monitoring their effectiveness, in
addition to decreasing the time and money needed for clinical trials.
Data are collected at a range of academic institutions and private cor-
porations, and subjects have been recruited from over 50 sites across
the United States and Canada. The complete background and metho-
dological detail of the ADNI data as well as up-to-date information can
be found on the project website.

A total of 708 (421 men and 287 women, age 75.61 ± 6.76 years)
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subjects with anatomical MRI scans were involved, including 164 AD,
346 MCI, and 198 healthy subjects. These MRI scan were obtained on a
1.5 T MRI scanner using a 3D MPRAGE sequence in the sagittal plane.
The scan parameters were as follows: the repetition time (TR) was
2400ms, the inversion time (TI) was 1000ms, the flip angle was 8°, and
the field of view (FOV) was 24 cm with a 256× 256× 170 acquisition
matrix (x-, y-, and z-dimensions), which yielded a voxel size of
1.25× 1.26× 1.2 mm3.

The standard process of approaching the MRI data included the
following: (a) The use of a nonparametric nonuniform bias correction
(N3) for image intensity inhomogeneity correction (Sled et al., 1998).
(b) Skull stripping (Wang et al., 2014) and warping a labeled template
to each skull-stripped image to remove the cerebellum (aBEAT in ver-
sion 1.0, http://www.nitrc.org/projects/abeat). (c) The segmentation
of each brain image into four different tissues, i.e., white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF), and ventricles (VN), using
the FAST method (Zhang et al., 2001) (FAST in FMRIB Software Library
version 5.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). (d) All the images
were registered to the common template using the 4D-HAMMER
method proposed in (Shen & Davatzikos, 2004) (HAMMER in version
1.0, https://www.nitrc.org/projects/hammer/). (e) Finally, the use of
the deformation field to generate the RAVENS maps (Davatzikos et al.,
2001), which can be used to quantify the local volumetric group dif-
ferences for the whole brain volume and for each of the tissue types
(WM, GM, CSF, and VN).

We used the Human 610-quad Beadchip (Illumina, Inc., San Diego,
CA) to acquire the genotype data of 818 subjects, including 620,901
SNPs, all of which were provided by the ADNI dataset. To avoid the
effect of population stratification, we used only 749 Caucasians (se-
lected from the 818 subjects) with both genetic data and imaging data
at the baseline in our study. Then, quality control procedures (QCP),
including the steps presented below, were performed to exclude un-
satisfactory data through a (1) gender check; (2) population stratifica-
tion; (3) sibling pair identification; (4) call rate check for each subject
and each SNP marker; (5) marker removal according to the minor allele
frequency; and (6) the Hardy-Weinberg equilibrium test.

Next, we screened the SNPs for the following: (1) at least 95% re-
tention values; (2) at least 95% minor allele frequency; and (3) Hardy-
Weinberg equilibrium p-values> 10−6. We input the remaining
missing genetic data as the modal value. After the QCP and SNPs
screening procedures, there were 708 subjects remaining, and each
subject obtained 501,584 SNPs during the analysis to follow.

2.2. Spatial correlations exploitation

We will begin our methods with a brief symbol introduction.
Suppose that we observe imaging data, clinical variables, and genetic
markers from n dependent subjects. Let V be a selected brain region that
contains NV voxels, and let v be a voxel in V(v∈ V). Let C be the set of
genetic loci containing NC SNPs, and let c be a locus in C(c∈ C). We

Fig. 1. The schematic of our proposed method, which includes three main parts: (1) exploiting spatial correlations, (2) performing FVGWAS procedure, and (3)
obtaining associated SNPs and Clusters (FVGWAS: fast voxel-wise genome-wide association analysis; GSIS: global sure independence screening procedure).
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denote Yi={yi(v); i=1,…,n}∈ R1×Nv as the image measurement
vector of interest for the i-th subject at voxel v under observation. Here,
xi={(xi1,…,xiK)T; i=1,…,n}∈ R1×K is denoted as the clinical cov-
ariates for the i-th subject, where xik is the k-th clinical covariate, and K
is the dimensions of the clinical covariates. Additionally, we denote
zi(c)= {(zi1(c),…,ziL(c))T; i=1,…,n}∈ R1×L as the genetic data for
the i-th subject at locus c, where zil is the l-th genetic data and L is the
dimensions of genetic data. In particular, we assign values of 0 (major
homozygous alleles), 1 (heterozygote) and 2 (homozygotes of minor
alleles) to the three types of SNPs.

To apply the spatial correlations reasonably in a vGWAS, the non-
local method we broadly presented above should be introduced to our
framework. The assumption of the nonlocal method is that an unknown
voxel can be estimated by the neighboring voxels. The model is de-
signed as follows:

∑=
∈

Ψy v v y v( ) ( ) ( )i i j j j, Θ (1)

where y(vj) denotes the value of voxel j in neighborhood Θ centered at
voxel i, and Ψ(v) denotes the weighted function. Obviously, the key to
this model is to find a suitable function for fitting the weights of the
neighboring voxels as well as possible. This strategy, which is always
regarded as a nonlocal method, is applied during our first step, and we
selected three commonly weighted functions to incorporate the spatial
correlations in the images. The first weighted function was the GS
function, which is most commonly used in image weighting processing
(Vliet et al., 1998; Young & Vliet, 1995). The second one was performed
by NLM, which is known as the data-adaptive image process technique
(Buades et al., 2005a; Buades et al., 2005b). Moreover, the last function
involved BM3D/BM4D to process the imaging data because of its su-
perior effect on image processing (Dabov et al., 2007; Dabov et al.,
2008; Dabov et al., 2015). After that, the FVGWAS procedures, in-
cluding the GSIS and detection procedures, were performed to detect
significant biomarkers efficiently.

In the introduction section, we sketched our entire framework
consisting of the nonlocal method and FVGWAS under the assumption
that a given voxel could be recovered using its neighboring voxels. To
verify this assumption, we designed controlled trials by setting whether
Ψ(⋅) was zero in the simulation studies. The result that applied the
nonlocal method was supposed to be better if the assumption was valid.
Moreover, in the analyses with real data, we performed our method
with the nonlocal process to select the significant biomarkers.
Considering that different weighted functions lead to different effects
on correlations among voxels, here we selected three different weighted
functions, namely, the GS function, NLM and BM3D/BM4D to perform
our method, and their underlying theories are detailed below.

2.2.1. GS weight
Empirically speaking, the correlation between two voxels depends

on their distance because the voxels in the images are not isolated from
one another. This distance leads in a direction for assigning the weights,
and it is just what the GS function relies on. The 2-dimensional GS
function has been widely used for image processing. It assumes that the
weights of the voxels decay by the distance from the given voxel. In a
square neighborhood Θ centered at a given voxel, the GS function
configures a weight matrix to convolve with the voxels (Kumar, 2013)
for estimating the given one.

The weights calculated by the GS function are denoted asΨG, and in
the same way ΨN and ΨB are for NLM and BM3D/4D, respectively. The
ΨG(⋅) is described as.

=
− +

Ψ i j
H

e( , ) 1
G

vi vj

h

( 2 2)

2 2
(2)

where vk denotes voxel k belonging to domain ΘG
m x m, H is a nor-

malization constant, and h is the standard deviation. Specifically, a
larger h leads to a stronger dependence between voxels. The optimal h

could be set in the range of ≤ ≤
− −hm m1
6

1
4 (Seibold, 2010), where m

was one dimension of the square neighborhood ΘG
m x m.

2.2.2. NLM weight
As the most popular application of the nonlocal method, the NLM

approach proposed by Buades (Buades et al., 2005a) is efficient and has
provided an incredible breakthrough in image processing. In this paper,
we scanned a search window (ΩN1) of the image in search of similar
patches (similar windows ΩN2) that clearly resemble the given patch of
interest.

The weights for similar patches in the NLM are defined as.

=
−

−

Ψ i j
T

e( , ) 1
N

y y

t

‖ ( ) ( )‖

2

vi vj a2,
2

2

N N

(3)

where T is the normalizing constant, t is the standard deviation that
controls the degree of weighting, and a > 0 is the standard deviation
of the GS kernel. Note that y ( )viN and y ( )vjN indicate the values of
voxel vectors belonging to a given patch centered at voxel i and a si-
milar patch centered at voxel j, respectively. It is therefore clear that the
interpatch similarities are weighted by the Euclidean distance.
Specifically, all the voxels in a similar patch have the same importance;
that is, the weights of all the voxels in the same patch are shared.

2.2.3. BM3D/BM4D weight
BM3D (for 2-dimensional data in our simulation studies) or BM4D

(for 3-dimensional data in our analyses with real data) are based on an
enhanced sparse representation in the transform-domain, and each was
proposed as a novel image processing method. Similar to NLM, BM3D/
BM4D is based on the same assumption that there are mutually similar
blocks in images (Dabov et al., 2007; Dabov et al., 2008; Dabov et al.,
2015). To calculate the weight for each voxel, BM3D/BM4D has the
following two major steps: basic estimate and final estimate; then there
are three operations within both steps, namely, grouping, collaborative
hard-thresholding (or Wiener filtering) and aggregation. Therefore, the
formulation of weights is hard to describe, with details in (Dabov et al.,
2007). Compared to the two other weighted methods, this strategy
clearly has a higher computational cost.

2.3. FVGWAS procedure

During this step, we attempted to find the association between the
genotypes and imaging phenotypes by using the FVGWAS framework.
Here, we briefly introduce the rationales and the scientific basis of
FVGWAS, and more details can be found in (Huang et al., 2015).

The FVGWAS model formulation was as follows:

= + +Y XB ZΓ E (4)

where X∈ Rn×K, Y∈ Rn×Vand Z∈ Rn×L corresponded to the matrix of
clinical covariates, the matrix of image measurements, and the matrix
of genetic data, respectively. B∈ RK×V and Γ∈ RL×V were the coeffi-
cient matrices and they referred to the covariate effect and the genetic
effect, respectively. E∈ Rn×V is the measurement error.

Note that it was crucial to test the null hypothesis. Here, for all
(voxel, locus) pairs, we need to test the following:

= ≠H c v versus H c vγ γ: ( , ) 0 : ( , ) 00 1 (5)

where H0 represents that there is no association between the genetic
data and the imaging data. We then introduce the standard Wald-type
test statistic to obtain the p-values to test the null hypothesis.

= −W c v c v Cov c v c vγ γ γ( , ) ( , ) { ( ( , ))} ( , )͠ ͠ ͠T 1 (6)

The calculation of the Wald-type test statistic for the entire genome
is computationally intensive. To solve this problem, the FVGWAS in-
troduced a GSIS procedure to speed up the calculation. The primary
idea of GSIS is to reduce the dimension from a very large scale to an
appropriate scale by eliminating many ‘noisy’ loci (no-effect loci). Since
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detecting widespread genetic effects is more powerful and meaningful
than testing for local effects during neuroimaging, we calculated a
global Wald-type statistic at locus c as follows:

∑= −

∈
W c N W c v( ) ( , )V v V

1
(7)

We then used an approximation method to select significant voxel-
locus pairs, in virtue of sorting the −log10(p)-value of all of the global
Wald-type test statistics for the entire genome, and then we selected the
top N0 loci, denoted as = …

∼ c cC { , , }͠ ͠ N0 1 0 , as the significant candidate
locus set.

The detection procedure for FVGWAS contained two primary wild
bootstrap methods. One was used to simultaneously detect the sig-
nificant (voxel, locus) pairs by calculating a maximum statistic over all
of the voxels for the top N0 loci. The other was used to simultaneously
detect the significant (cluster, locus) pairs by calculating a maximum
cluster size statistic for the top N0 loci. As discussed before, the wild
bootstrap can prevent the repeated analyses of simulated datasets and
that is why it can considerably reduce the computational.

3. Results

3.1. Simulation studies

In this section, we executed simulation studies by using Monte Carlo

simulation studies to evaluate the prediction performance of vGWAS
with the nonlocal method. For simplicity, we considered only 2D
imaging data during the simulation studies. All these numerical com-
putations were performed on an IBMServer3 with MATLAB.

The simulated imaging data contained NV=3355 pixels in the brain
region of 128×128 images, which corresponded to the middle slice of
the 3D brain images obtained from ADNI. With the assumption that the
SNPs were additive and homogeneous, the simulation of imaging data
yi(v) was, therefore, generated using the following model.

∑= + +
=

y v v c v c e vx β γ z( ) ( ) ( , ) ( ) ( )i i
T

j

N
j i j i1

c

(8)

where xi=(1,xi1,…,xi9)T were the simulated clinical covariates that
were generated from either the binomial distribution with the prob-
ability of 0.5 (for discrete variables, e.g., gender) or U(0,1) (for con-
tinuous variables, e.g., age). The variables zi(cj) were the simulated
genetic data generated by the linkage disequilibrium blocks defined by
the default method (Gabriel et al., 2002) of Haploview (Barrett et al.,
2004) and PLINK (Purcell et al., 2007). The estimate values of β(v) were
generated by fitting the FVGWAS model in Eq. (5) without the genetic
data. The fixed genetic effects γ(cj,v), which corresponded to the pre-
specified pairs of the affected Regions of Interest (ROI) and causal SNPs,
were set to magnitude γ∗. Moreover, the size of the affected ROIs was
set at 10× 10. The measured error satisfied the normal distribution,
ei(v)~N(0,σ2).

Fig. 2. The optimized parameters and the selected results. A, the size of the GS window (ΩG); B, the degree of GS (h); C, the size of the NLM search window (ΩN1); D,
the size of the NLM similar window (ΩN2); E, the degree of NLM (t); and F, the degree of BM3D (f) (GS: Gaussian; NLM: Nonlocal means; and BM3D: Block-matching
and 3D filtering). For simplicity, we denoted the Ω= ∗ as Ω= ∗× ∗ in the legend of Fig. 2A, C and D.
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For the other parameters of the FVGWAS framework, we chose the
first q SNPs as the causal SNPs and set q as 100. The sample size (n), the
standard deviation of the measurement error (σ) and the number of
bootstrap samples were set to 1000, 1 and 100, respectively.

We performed a series of experiments to optimize the parameters of
the three types of weight. For each experiment, we tuned only one
parameter and fixed the other parameters. We then used the Receiver
Operating Characteristic (ROC) curves to evaluate the effectiveness of
the weight setting with different parameters for detecting the causal
voxel-SNP pairs. The parameter that resulted in the highest Area Under
Curve (AUC) value was regarded as the optimal value.

3.1.1. Optimal parameters of three weighted functions
For weight setting by the GS function, the parameters ΩG (the size of

the GS window) and h (the degree of the GS) were set based on Seibold's
introduction manual for optimal GS parameters (Seibold, 2010). During
our experiment, we fixed h=3 and changed ΩG to the range (17×17,
21×21, 25× 25, 29× 29, 33× 33). As shown in Fig. 2A,
ΩG=25×25 had the highest AUC, whereas the AUC decreased with
the value of ΩG was higher or lower than 25× 25. We then fixed
ΩG=25×25, and changed h to a range of (3, 4, 4.3, 4.5, 4.7, 5). As
shown in Fig. 2B, the AUC decreased with the value of h was higher or
lower than 4.3. Therefore, to achieve the best GS performance, the
parameters ΩG and h were set to 25× 25 and 4.3, respectively.

For weight setting by NLM, the parameters ΩN1 (the size of the
search window), ΩN2 (the size of the similar window), and t (the degree
of the NLM) were set based on Buades' study (Buades et al., 2005a). In
our experiment, we first fixed ΩN2= 7×7, t=0.05, and changed ΩN1

to a range of (9× 9, 11×11, 13× 13, 17×17, 21×21). As shown in
Fig. 2C, the AUC decreased with the value of ΩN1 was higher or lower
than 11× 11. Therefore, ΩN1 was set to 11×11 for the following
experiments. We then fixed ΩN1= 11×11, t=0.05, and changed ΩN2

to a range of (5× 5, 7× 7, 9× 9, 11× 11, 13×13). As shown in
Fig. 2D, the NLM achieved the highest AUC when ΩN2= 7×7. Next,
we fixed ΩN1= 11×11, ΩN2= 7×7, and changed t to a range of
(0.01, 0.03, 0.05, 0.07, 0.09). When t=0.05, the NLM achieved the
highest AUC (Fig. 2E). Therefore, to achieve the best performance of
NLM, the parameters ΩN1, ΩN2, and t were set to 11× 11, 7× 7, and
0.05, respectively.

For weight setting by BM3D, the parameter f (the degree of BM3D)
was set based on Dabov's study (Dabov et al., 2007). We changed f to a
range of (2, 6, 10, 14, 18). As shown in Fig. 2F, BM3D performed best
when f=10. Therefore, f was set to 10 for the BM3D.The optimal
parameter settings used in the three weights are summarized in Table 1.

3.1.2. The effect of nonlocal method
Table 2 lists the computational costs of the nonlocal method men-

tioned above for either 2D simulation data or 3D real data. For the 2D
imaging data process, NLM had a cost of close to 104 s, which took a
hundred times slower than GS or BM3D. It was expected to have a
higher computational cost for the 3D images. Due to the excessive
computational burden of NLM, we excluded it from the real 3D data
analysis procedure.

To evaluate the performance of the nonlocal method in detecting

casual SNP rate, we set γ∗=0.0005, 0.001, 0.005, and 0.01, which
correspond to the weak genetic signal (0.0005 and 0.001) and the
moderate/strong signal (0.005 and 0.01), respectively. The top N0 SNPs
were set to a range from 100 to 2000. In addition, the number of causal
SNPs (q) was set to 100. The causal SNP rate Rcasual was calculated as.

=R
N
Ncausal

q

c͠0

(9)

where Nc͠0 was the number of causal SNPs in the candidate significant
locus set ∼C0, and Nq was the total number of causal SNPs. As shown in
Table 3, the application of the nonlocal method presented larger causal
SNP rates than not applying the nonlocal method, which indicated that
more causal SNPs were included in set ∼C0, and the nonlocal method
whose weight setting was done by the GS function had the best result
for a weak genetic signal. For medium/strong signals, the results were
close to one another.

To evaluate the performance of the nonlocal method in detecting
the causal voxel-SNP pairs in the affected ROIs, we used the ROC curves
as an evaluation approach. The parameters N0, γ and q were set to
100, 0.01 and 100, respectively. To eliminate the effect of the location
of the ROI, we chose three different brain areas with a size of 10×10
as the prefixed effect ROIs for analysis, as shown in the first column of
Fig. 3. The second column of Fig. 3 presents the ROC curves that cor-
respond to the three ROIs. As expected, at the three locations of the
affected ROIs that we chose, the AUC values of applying the nonlocal
method (GS, NLM, BM3D/4D) were larger than the values when not
applying the nonlocal method (N-Weight). Moreover, the nonlocal
method setting weights by the GS function, always obtained the best
results for the three ROIs. From comparison of the three ROC curves, we
can see that there was only slight difference among the three locations
of the affected ROIs.

To evaluate the performance of the nonlocal method in detecting
the causal cluster-SNP pairs, we identified the clusters of the contiguous
suprathreshold pixels using an uncorrected 0.01 p-value threshold. In
addition, the other parameters n, q, σ, γ and ROI were set to 1000,
100, 1, 0.01 and 10×10, respectively. We used a number of “false
positive” clusters (a threshold cluster that did not overlap with any
pixels of the prefixed, affected ROI at any causal SNP) and the size of
the number of pixels in the false positive clusters to demonstrate the
accuracy of our detection method. In addition, we used the dice overlap
ratio (DOR), which was the ratio of the number of true positive pixels to
the size of the affected ROI, to compare the nonlocal method and the
absence of nonlocal method application results. A larger average DOR
value corresponded to more effective detection power. As shown in
Fig. 4A and B, no false positive cluster was detected by our method
either with nonlocal operation or without nonlocal operation. Fig. 4C
shows that the nonlocal method has a larger average DOR value than
the result of not applying the nonlocal method. Besides, the nonlocal
method with weight setting by the GS function, had the largest average
DOR value (Fig. 4C) and was thus believed to have the most effective
detection power.

To evaluate the overall Type I error rates (that is, the rate of re-
jecting the null hypothesis when it is true) of the nonlocal method, we
set γ=0 (null hypothesis) and calculated the familywise error rate
(FWER) at the level of both the (voxel, locus) pairs and the (cluster,

Table 1
Summary of the optimal parameter settings used in the three weights (GS:
Gaussian; NLM: Nonlocal means; BM3D: Block-matching and 3D filtering).

Parameter Description Setting

ΩG Size of the GS window 25×25
h The degree of GS 4.3
ΩN1 Size of the NLM search window 11×11
ΩN2 Size of the NLM similar window 7×7
t The degree of NLM 0.05
f The degree of BM3D 10

Table 2
Computation time for different weights in the nonlocal method for 2D simu-
lation data and 3D real data for all n subjects (GS: Gaussian; NLM: Nonlocal
means; BM3D/BM4D: Block-matching and 3D/4D filtering).

Weighted method GS NLM BM3D/BM4D

2D Time (s) 22.776 2109.400 74.315
3D Time (s) 377.234 – 179,760

‘–’ stands for not conducting the corresponding operation.
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Table 3
Causal SNP rates results (in different N0 values and γ∗ values) (N-weight: method without nonlocal operation; GS: Gaussian; NLM: Nonlocal means; BM3D: Block-
matching and 3D filtering).

γ⁎ Weighted Method N0

100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000

0.0005 N-weight 0 0 0 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.05 0.07 0.07 0.11 0.12
GS 0.02 0.03 0.04 0.04 0.05 0.06 0.09 0.09 0.09 0.09 0.11 0.14 0.16 0.18 0.18
NLM 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.06 0.07 0.08 0.09 0.1
BM3D 0.01 0.03 0.03 0.04 0.04 0.04 0.05 0.06 0.07 0.07 0.09 0.1 0.11 0.14 0.17

0.001 N-weight 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.05 0.06 0.09 0.11 0.11
GS 0.04 0.06 0.06 0.08 0.11 0.12 0.14 0.15 0.16 0.18 0.19 0.24 0.26 0.27 0.28
NLM 0.02 0.05 0.08 0.09 0.09 0.1 0.13 0.14 0.15 0.16 0.19 0.21 0.22 0.23 0.24
BM3D 0.02 0.04 0.04 0.04 0.06 0.07 0.09 0.09 0.1 0.1 0.14 0.16 0.2 0.21 0.22

0.005 N-weight 0.27 0.39 0.5 0.59 0.71 0.81 0.89 0.95 0.97 1 1 1 1 1 1
GS 0.27 0.39 0.57 0.69 0.74 0.83 0.88 0.93 0.96 1 1 1 1 1 1
NLM 0.31 0.45 0.51 0.6 0.69 0.76 0.85 0.94 1 1 1 1 1 1 1
BM3D 0.32 0.43 0.55 0.65 0.75 0.78 0.85 0.9 0.98 1 1 1 1 1 1

0.01 N-weight 0.33 0.46 0.61 0.7 0.76 0.82 0.91 0.95 0.97 1 1 1 1 1 1
GS 0.34 0.48 0.62 0.7 0.76 0.83 0.9 0.93 0.98 1 1 1 1 1 1
NLM 0.34 0.5 0.61 0.68 0.76 0.84 0.91 0.94 0.97 1 1 1 1 1 1
BM3D 0.33 0.52 0.6 0.71 0.76 0.82 0.91 0.94 0.97 1 1 1 1 1 1

Fig. 3. Simulation results for the association between SNPs and voxels: the first column shows three different ROI locations with a size of 10×10. The second
column contains the ROC curves of the nonlocal method and the lack of applied nonlocal method corresponding to the three different ROIs shown in the first column
(N-weight: method without nonlocal operation; GS: Gaussian; NLM: Nonlocal means; and BM3D: Block-matching and 3D filtering).
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locus) pairs (Dudoit et al., 2003; Shaffer, 1995). For each weight, we
conducted 1000 replications in a test to assess the FWERs, and the
significance level (α) was varied between 0.1 and 0.5. For any parti-
cular multiple testing procedure, it is said that a particular Type I error
rate must be controlled for at the level of αI. If the FWER was no larger
than αI then the test was deemed conservative; otherwise, the test was
deemed anticonservative or liberal (Dudoit et al., 2003). Here, we set
αI=0.005. As shown in Table 4, we list the results of FWERs that
corresponded to different significance levels of α to detect significant
voxel-SNP pairs and significant cluster-SNP pairs. Applying the non-
local method has larger rejection rates, indicated that it was more ac-
curate for detecting significant voxel-SNP pairs and significant cluster-
SNP pairs. Moreover, the nonlocal method with the weight setting by
the GS function, always has the largest rejection rates.

Finally, we compared our proposed method with the FGWAS
method (Huang et al., 2017b) in terms of the power for detecting casual
SNPs in the candidate significant locus set ∼C0. With the same simulated
data, we set the number of casual SNPs q=100 and γ∗=0.01,
0.001. Table 5 showed Rcausal with different top N0 SNPs. We found that
the performance of applying the nonlocal method (GS, NLM, and
BM3D) was better than that of FGWAS in terms of weak and moderate/
strong signals, indicating that our method achieved a strong power to

detect casual SNPs.

3.2. Analyses with real data

Here, we considered the RAVENS maps to illustrate the power of the
proposed method with 708 subjects, including 193,275 voxels and
501,584 SNPs. The clinical covariates included the age, gender, inter-
cept, and whole brain volume as well as the top 5 principal component
scores for the SNPs in the ADNI data analysis. When N0= 1000, the
computational time of integrating the spatial correlations for all 708
subjects is given in Table 2. Moreover, our whole framework with the
weighted function of GS function and BM4D required 23,211 and
202,594 s, respectively.

The strategy of the optimal parameters selection for the three
weighted functions should differ from that in simulation studies. With
simulated data, we can prespecify the SNPs that remarkably contribute
to the imaging measures and the affected ROIs, such as like prior
knowledge in statistics. However, exact SNP-voxel/cluster pairs in
GWAS have yet to be verified. In this case, without the assistance of
prespecified values (ground truth), we addressed this problem based on
statistics in this section. In the GSIS procedure, we defined W(c) as the
global Wald-type statistic at c locus, and used an approximation method
to calculate the p-value of all W(c)s. We sorted the −log10(p)− values

Fig. 4. Simulation results for the association be-
tween SNPs and clusters. A: the number of false po-
sitive clusters in each causal SNP; B: the size in the
number of pixels of false positive clusters in each
causal SNP; C: the DOR in each causal SNP; (N-
weight: method without nonlocal operation; GS:
Gaussian; NLM: Nonlocal means; and BM3D: Block-
matching and 3D filtering).

Table 4
Percentage of times when significant voxel-SNP pairs or cluster-SNP pairs were
found at different thresholds (the ratio of repeat times to the total times of
significant pairs). (N-weight: method without nonlocal operation; GS: Gaussian;
NLM: Nonlocal means; and BM3D: Block-matching and 3D filtering).

Replication= 1000 Weighted method α

0.01 0.02 0.03 0.04 0.05

voxel-SNP pairs N-Weight 0.15 0.029 0.044 0.06 0.077
GS 0.026 0.044 0.058 0.069 0.081
NLM 0.019 0.031 0.04 0.057 0.068
BM3D 0.014 0.033 0.045 0.057 0.07

cluster-SNP pairs N-Weight 0.052 0.067 0.092 0.163 0.381
GS 0.05 0.063 0.1 0.176 0.413
NLM 0.047 0.065 0.092 0.156 0.399
BM3D 0.056 0.072 0.096 0.178 0.384

Table 5
The comparison of causal SNP rate between the proposed method and FGWAS
method. (N-weight: method without nonlocal operation; GS: Gaussian; NLM:
Nonlocal means; BM3D: Block-matching and 3D filtering).

γ⁎ Method N0

100 300 500 700 900 1200 1600 2000

0.01 GS 0.34 0.62 0.76 0.9 0.98 1 1 1
NLM 0.34 0.61 0.76 0.91 0.97 1 1 1
BM3D 0.33 0.6 0.76 0.91 0.97 1 1 1
FGWAS 0.26 0.51 0.74 0.84 0.97 1 1 1

0.001 GS 0.04 0.06 0.11 0.14 0.16 0.19 0.26 0.28
NLM 0.02 0.08 0.09 0.13 0.15 0.19 0.22 0.24
BM3D 0.02 0.04 0.06 0.09 0.1 0.14 0.2 0.22
FGWAS 0.02 0.04 0.04 0.06 0.09 0.1 0.12 0.16
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and selected the top N0 loci with the highest −log10(p)− values.
Biologically, it is expected that important genetic markers should be
associated with relatively large ROIs (Huang et al., 2015; Huang et al.,
2017b). Therefore, we could use the p-values of W(c)s to estimate the
association strength between the whole brain and the genetic data and
to select the most relative loci. In this study, we applied a nonlocal
method to process the images to incorporate spatial correlations. We
hoped that incorporating the spatial correlations could strengthen the
associations between the whole brain and the genetic data, leading to a
reduced p-value of W(c). Therefore, we used the p-values of W(c)s to
select the optimal parameters of the three different weighted functions.
The optimal parameter settings used for the weights and the results are
summarized in Table 6.

(1) For weight setting by the GS function, we fixed h=4.3, and
changed ΩG to a range of (11×11, 15×15, 19×19, 23×23,
25× 25). As shown in Table 6, ΩG=15×15 had the smallest p-
values, whereas the p-value increased with the value of ΩG was
higher or lower than 15× 15. Then, we fixed ΩG=15×15, and
changed h to a range of (0.3, 0.5, 1.5, 2.5, 3.5). As shown in Table 6,
the p-values increased with the value of h was higher than 0.5.
Therefore, the parameters ΩG and h were set to 15×15 and 0.5,
respectively. (2) For weight setting by BM4D, we changed the
parameter f to a range of (6, 8, 10, 12, 14). As shown in Table 6,
BM4D performed best when f=8. Therefore, f was set to 8 for
BM4D.

Fig. 5 shows the Manhattan and QQ plots of GWAS for the whole
region of the brain's RAVENS maps. Fig. 5A shows the Manhattan plots
with the weight setting by the GS function and we found that there was
one detected SNP in chromosome 10 near the widely used threshold
5× 10−8 in the GWAS. In Fig. 5C (the QQ plot), shows that the dis-
tribution of the observed p-values fit the expected p-values well for most
p-values when the null hypothesis was true. Moreover, the distribution
of the observed p-values in the upper tail could be compared against
that of the expected p-values, which has an obvious deviation and in-
dicates a strong association between these SNPs and the imaging data.
Fig. 5B shows the Manhattan plot with the weight setting by BM4D and
we found no SNP was detected to pass the threshold of 5×10−8.
Fig. 5D shows the QQ plot with the weight setting by BM4D, which has
a similar result to that of the GS function. However, there was slightly
smaller deviation in the upper tail than deviation in Fig. 5C, demon-
strating that the association between SNPs and imaging data found with
BM4D is weaker than the association found with GS function.

In Table 7, we report the top 10 SNPs that were associated with the
entire region of the RAVENS brain maps, including the corresponding
SNPs, chromosome IDs, base pair (BP) values, p-values, and gene. As
reported in Table 7, all of the SNPs surpassed the significance level of

10−5 with both the weight setting by GS function and the BM4D. The
gene ANK3 (chr10) has been known to be associated with mental re-
tardation. The mutations in the ANK3 gene could be involved in bipolar
disorder and/or intellectual disability. The gene TYK2 (chr2) is known
to be associated with immunodeficiency 35 and lymphomatoid papu-
losis. TLR4 (chr10) is an age-related gene. MEIS2 (chr15) is associated
with learning disabilities and was found by the nonlocal method with
weight setting by the GS function. ANK3 and TYK2 could be found by
the nonlocal method with weight setting by BM4D.

To detect significant voxel-SNP pairs, we calculated the raw p-va-
lues of the Wald-type test statistic against the top N0= 1000 SNPs in ∼C0,
and the significance level was set to 10−5. As shown in Fig. 6A and B,
both weight settings could detect some significant voxel-locus pairs
with different N0. Using multiple comparisons, we calculated the cor-
rected p-values of the Wald-type test statistic, with the significance le-
vels set to 0.5 and 0.8, respectively. As shown in Fig. 6C-F, after cor-
recting the p-values, a few significant voxel-locus pairs were detected.
Fig. 6A, C and E correspond to the weight setting by the GS function,
while Fig. 6B, D and F correspond to the weight setting by BM4D.

Fig. 7 shows some slice maps of the −log10(p)-value for the sig-
nificant clusters corresponding to some of SNPs within the top N0.
Several major clusters, including major ROIs and their corresponding
SNPs for the nonlocal method, which involve weight setting by GS and
BM4D function, are listed in Table 8. Fig. 7 shows some symmetric
clusters that were observed; it could be biologically plausible to observe
the symmetric associations between the SNPs and the clusters.

4. Conclusions and discussion

In this paper, we proposed a novel vGWAS method based on spatial
correlations exploitation that is expected to boost the power of de-
tecting potential AD biomarkers. On the one hand, the importance of
spatial correlations in neuroimaging studies cannot be neglected,
especially those that had been demonstrated many times in previous
studies (Bedő et al., 2014; Ge et al., 2012; Li et al., 2013; Moser et al.,
2013; Tao et al., 2017). Therefore, in our paper, a nonlocal method has
been employed to integrate the complex correlations among voxels in
imaging data. It is actually a widely used strategy in the field of image
processing, and it achieved good results. As we discussed before, the
key of this method is the weighted function. Thus, we selected three
representative weighted functions, including the GS function, NLM and
BM4D, to integrate the neighboring information around each voxel. On
the other hand, FVGWAS was proposed in our previous studies (Huang
et al., 2015) and has been applied within our framework to alleviate the
computational burden. Considering the advanced acceleration of
FVGWAS (Huang et al., 2015), we did not compare our proposed
method with the traditional vGWAS in terms of computational time in
this study. Thus, our method not only retained low complexity and a
fast calculation ability but also addressed the important spatial corre-
lations issues that were ignored in previous work. In addition, the
nonlocal method was supposed to have the potential to target a much
larger number of significant AD-associated biomarkers in neuroima-
ging. Consequently, the exploitation of nonlocal method in vGWAS is
meaningful for AD prediction, diagnosis, and monitoring.

In the simulation studies, we designed experiments to evaluate
whether the nonlocal method applying in our framework work or not.
For the results of the causal SNP rate shown in Table 3, there are sig-
nificant differences between the methods with nonlocal operation (GS
function, NLM and BM3D) and those without nonlocal operation
(procedure-weight) for a weak genetic signal, whereas for a moderate/
strong signal, their results were close to one another. Therefore, it can
be considered that the nonlocal method is effective within our frame-
work, especially for the weak signal that was usually difficult to detect
in other previous studies. In fact, the assumption of the nonlocal
method, i.e., an unknown voxel can be estimated by the neighboring
voxels, exactly satisfies the inherent characteristic of an image in which

Table 6
The parameters and select results for the weight setting by the GS function and
the weight setting by BM4D. The bold font corresponds to the parameter we
selected (W is the GS window; h is the degree of GS; and f is the degree of
BM4D) (GS: Gaussian; BM4D: Block-matching and 4D filtering).

ΩG (h=4.3) p-value h (ΩG=15×15) p-value

GS 11*11 1.5783E-07 0.3 7.15979E-08
15*15 4.1590E-08 0.5 6.13960E-08
19*19 4.9311E-08 1.5 1.01940E-07
23*23 5.2805E-08 2.5 2.8267E-07
25*25 5.2805E-08 3.5 2.8556E-07

BM4D f p-value
6 1.4118E-07
8 1.3797E-07
10 1.4203E-07
12 1.6345E-07
14 1.7239E-07
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the information in the image is so redundant that we can even utilize
the neighboring voxels to represent the unknown voxel. In other words,
the results of the causal SNP rate verified this assumption further, as we
mentioned in method section. On the other hand, we compared the
three weighted functions in both the simulation studies and the

analyses with real data. In Table 3, the nonlocal method with weight
setting by the GS function achieved the largest causal SNP rates when
the genetic signal was weak, presenting a strong power to detect causal
SNPs. In Fig. 3, at the different ROI locations, the ROC curve with GS
function outperformed the other methods, indicating a strong power to

Fig. 5. Manhattan and QQ plots. A and C correspond to the weight setting by the GS function; B and D correspond to the weight setting by BM4D (GS: Gaussian;
BM4D: block-matching and 4D filtering).

Table 7
ADNI whole-brain GWAS: top 10 SNPs that were selected for association with the brain-wide conditions (GS: Gaussian; BM4D: Block-matching and 4D filtering).

Weighted method SNP CHR BP p-Value Gene Diseases associated

GS rs10761514 10 62,276,317 6.14e-08 ANK3 Mental Retardation, Autosomal recessive and Neuroma
rs2901788 2 65,908,706 1.20e-07 LOC105369166 –
rs2068043 10 62,320,330 3.47e-07 ANK3 Mental Retardation, Autosomal recessive and Neuroma
rs2765480 10 131,844,235 3.88e-07 – –
rs2304259 19 10,491,352 1.29e-06 TYK2 Immunodeficiency 35, Lymphomatoid Papulosis
rs1927914 9 120,464,725 1.36e-06 TLR4 Macular Degeneration, Age-Related, and Colorectal Cancer
rs5754850 22 34,546,682 1.64e-06 LL22NC03-86d4.1 –
rs885720 12 12,248,099 1.80e-06 BCL2L14 –
rs11857187 15 37,317,545 2.20e-06 MEIS2 15Q14 Microdeletion Syndrome, Learning Disability
rs10445654 2 144,879,660 2.48e-06 GTDC1

BM4D rs10761514 10 62,276,317 1.32e-07 ANK3 Mental Retardation, Autosomal recessive and Neuroma
rs10445654 2 144,879,660 4.65e-07 GTDC1 Colon Adenocarcinoma
rs2068043 10 62,320,330 6.14e-07 ANK3 Mental Retardation, Autosomal recessive and Neuroma
rs2901788 2 65,908,706 6.23e-07 LOC105369166 –
rs2444861 8 99,100,932 1.35e-06 ERICH5 –
rs12275375 11 13,802,919 2.21e-06 – –
rs2304259 19 10,491,352 2.27e-06 TYK2 Immunodeficiency 35, Lymphomatoid Papulosis
rs845016 21 33,998,284 2.52e-06 – –
rs2765480 10 131,844,235 2.62e-06 – –
rs2420936 10 123,208,881 2.69e-06 – –

‘–’ in the table indicates the item was not found to correspond to genes or not found to be associated with diseases.
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detect causal voxel-SNP pairs in the affected ROIs. In Fig. 4C, the
nonlocal method with weight setting by the GS function also obtained
the largest average DOR, suggesting that this method could detect the
ROI correctly. In Table 4, the nonlocal method with weight setting by
the GS function had the largest rejection rates, implying that it was
accurate for detecting significant voxel-SNP pairs and cluster-SNP pairs.
In the analyses with real data, the QQ plot with GS function had a
slightly larger deviation in the upper tail than that shown in the QQ plot
with BM4D, demonstrating that the association between SNPs and the
imaging data found with GS function was stronger than the association
found with BM4D (Fig. 5). Therefore, the weights set by the GS function
always had the best performance among the three weighted functions
possibly because of the following reasons: 1) For a given voxel, the
neighboring voxels are assigned weights that are decaying by distance
in the GS function. This approach exactly conforms to the law of pa-
thology present in neuroimaging in which disease-related regions are
generally perceived to be contiguous. 2) In contrast to the GS function,
which depends on the similarity among voxels, the weights set by NLM
and BM3D/BM4D incorporate spatial correlations depending on the
similarity among patches. Their worse performance compared with the
GS function may be attributed to a lack of strong correlations between
similar patches in the brain MRI scans. 3) The MRI data collected in the
spatial frequency space are usually corrupted by Gaussian noise
(Mahmood et al., 2016), and GS can help reduce the effect of Gaussian

noise by exploiting the spatial correlations. Therefore, the nonlocal
method with weight setting by the GS function always obtained the best
results.

Besides, there was a slight difference in the ROC curves among the
three locations of the affected ROIs in Fig. 3, presumably because of the
gray difference degree at different locations in the brain. This finding
could affect the weights setting and thus affect the estimate results.

In our method, some new risk genes and clusters were detected,
which will contribute to the prevention and earlier treatment for AD. As
listed in Table 7, the genes that we detected included ANK3 (chr10),
which is associated with mental retardation; MEIS2 (chr15), which is
associated with learning disabilities; and TLR4 (chr10), which is an age-
related gene. Therefore, we can conclude that those genes could affect
the occurrence of AD. As shown in Table 8, we found that the following
areas of the brain that exhibited changes would be affected by the
progression of AD: the hippocampus, which is related to memory and
cognition (Voineskos et al., 2015); the inferior frontal gyrus, which is
associated with language comprehension and production; the insula,
which is involved in consciousness and plays a role in both self-
awareness and cognitive functioning; the precuneus, which is involved
in episodic memory, reflections on the self, and aspects of conscious-
ness; the caudate nucleus, which experiences a ‘significant reduction in
the caudate volume’ in AD patients (Jiji et al., 2013) and is linked with
patients diagnosed with schizophrenia; the putamen, which is

Fig. 6. The number of significant voxel-locus pairs based on the raw p-values (rawpv) of the Wald-type test statistic at the 10−5 significance level with the top
N0= 1000 SNPs. The number of significant voxel-locus pairs based on the corrected p-values (corpv) of the Wald-type test statistic at the 0.5 or 0.8 significance level
with the top N0= 1000 SNPs. A, B and C correspond to the weights setting by the GS function; D, E and F correspond to the weights setting by BM4D (GS: Gaussian;
BM4D: block-matching and 4D filtering).
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associated with cognitive decline in AD and is also correlated with
schizophrenia and depression; the thalamus, which provides differ-
entiation in the functioning of recollective and familiarity memory; and
the temporal gyrus, which is connected to memory, emotion, language
comprehension and recognition.

Many issues remain to be solved. Some unobservable and latent
factors accounting for the final analyses have been completely ignored,
as elucidated in some studies (Bhattacharya & Dunson, 2011; Montagna
et al., 2012). To address this problem, for example, Zhu (Zhu et al.,
2014) proposed a Bayesian generalized low rank regression model
(GLRR) based on a Markov chain Monte Carlo algorithm, but the cost of
the computational complexity would be difficult to overcome. Overall,
we can attempt to introduce unobservable latent factors into our model
in some way to improve its performance. In addition, because of a
variety of image phenotype characteristics drawn from different neu-
roimaging modalities (e.g., functional MRI, PET, and diffusion tensor
imaging), different image phenotypes combined with our research
would probably achieve better results.
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Fig. 7. ADNI whole-brain GWAS: selected slice maps of −log10(p)-value for significant clusters corresponding to some SNPs within the topN0. Fig. 8A corresponds to
the weight setting by the GS function, and B corresponds to the weight setting by BM4D (GS: Gaussian; BM4D: block-matching and 4D filtering).

Table 8
Significant clusters, including major ROIs and their corresponding SNPs, for the
weight setting by GS and BM4D (GS: Gaussian; BM4D: Block-matching and 4D
filtering).

Weighted method Clusters SNP

GS Hippocampus Left/Right. rs3914177
Thalamus Left/Right; Precuneus Left. rs4147593
Inferior Frontal Gyrus Right; Insula Left/Right;
Caudate Nucleus Right; Putamen Left/Right.

rs10478926

Caudate Nucleus Left/Right; Thalamus Left/
Right.

rs12726928

BM4D Caudate Nucleus Left/Right. rs2781066
Caudate Nucleus Left/Right. rs1015739
Inferior Frontal Gyrus Left. rs3026792
Insula Left/Right; Caudate Nucleus Left/Right;
Putamen Left/Right; Superior Temporal Gyrus
Right.

rs10478926
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