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Abstract: Tuberculosis remains the most afflicting infectious disease known by humankind, with one
quarter of the population estimated to have it in the latent state. Discovering antituberculosis drugs
is a challenging, complex, expensive, and time-consuming task. To overcome the substantial costs
and accelerate drug discovery and development, drug repurposing has emerged as an attractive
alternative to find new applications for “old” drugs and where computational approaches play an
essential role by filtering the chemical space. This work reports the first multi-condition model
based on quantitative structure–activity relationships and an ensemble of neural networks (mtc-
QSAR-EL) for the virtual screening of potential antituberculosis agents able to act as multi-strain
inhibitors. The mtc-QSAR-EL model exhibited an accuracy higher than 85%. A physicochemical
and fragment-based structural interpretation of this model was provided, and a large dataset of
agency-regulated chemicals was virtually screened, with the mtc-QSAR-EL model identifying already
proven antituberculosis drugs while proposing chemicals with great potential to be experimentally
repurposed as antituberculosis (multi-strain inhibitors) agents. Some of the most promising molecules
identified by the mtc-QSAR-EL model as antituberculosis agents were also confirmed by another
computational approach, supporting the capabilities of the mtc-QSAR-EL model as an efficient tool
for computational drug repurposing.

Keywords: artificial neural networks; drug repurposing; ensemble; MLP; QSAR; tuberculosis; strain;
virtual screening

1. Introduction

Tuberculosis (TB) constitutes the deadliest infectious disease that afflicts humankind.
The causative agent of TB, Mycobacterium tuberculosis (Mtb), was responsible in 2018 for
causing more than 10 million cases of active TB, resulting in 1.5 million deaths [1]. Despite
the efforts of the scientific community in providing anti-TB therapies through the process
known as drug discovery, several aspects pose great challenges for the safe and successful
eradication of TB. On one hand, the thick cell wall formed by mycolic acids, the ability
of certain enzymes to modify/inactivate drug molecules, the presence of drug efflux
systems, and the occurrence of spontaneous mutations in the bacterial genome are the
main biological attributes that make Mtb considerably resistant (multidrug-resistant TB) to
current anti-TB treatments [2]. On the other hand, the FDA-approved anti-TB drugs are
associated with a low diversity of mechanisms of action [3] and exhibit a wide range of
side effects [4]. All these ideas, together with the complexity and remarkable expenditure
of time and financial resources during the drug discovery process [5], demonstrate that TB
is hard to treat and that efficacious anti-TB agents are urgently needed.

A plausible way to tackle the TB problem is to apply the drug repurposing philosophy,
which focuses on finding new applications for “old” drugs [6]. In this sense, in the context
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of identifying novel anti-TB agents, computational approaches have played an essential role
by filtering the chemical space, providing different tools that can speed up the discovery
of molecules able to inhibit the growth of Mtb [7–14]. However, all the computational
approaches reported to date have at least one of the following aspects that prevent their
full exploitation in virtual screening scenarios: (a) the anti-TB activity is predicted in a
generic manner or by considering either only one target protein or Mtb strain, (b) small
datasets of structurally related chemicals are used to build the computational models, (c)
there is no information regarding the experimental protocol or the assay time employed to
assess the inhibitory activity against Mtb, and (d) no insights are provided concerning the
physicochemical properties and structural features that are required in a molecule to have
anti-TB activity.

To solve the aforementioned limitations, several researchers have emphasized the use
of interpretable in silico models focused on a combination of perturbation theory concepts
and machine learning techniques (PTML) [15–17], which can integrate different sources of
chemical and biological data, enabling the simultaneous prediction of multiple biological
endpoints against many targets of varying degrees of complexity. Seminal works on PTML
models have found successful applications in diverse research areas such as infectious
diseases [18,19], oncology [20,21], neuroscience [22–25], proteomics [26], metabolomics [27],
nanotechnology [28–31], toxicology [32], and immunology and immunotoxicity [33,34].

Bearing in mind all the previous ideas, we report in this work a special case of the
PTML modeling methodology in the context of the search for novel anti-TB chemical thera-
pies, establishing the theoretical foundations for the computational repurposing of drugs
as anti-TB agents. Thus, we have developed here a multi-condition model based on quanti-
tative structure–activity relationships and an ensemble of neural networks (mtc-QSAR-EL)
able to perform virtual screening for the identification of multi-strain inhibitors of Mtb. We
also provide the physicochemical and fragment-based structural interpretation of the dif-
ferent molecular descriptors used to build the mtc-QSAR-EL model. Finally, we performed
a virtual screening of a large and heterogeneous dataset of agency-regulated chemicals,
identifying both already proven anti-TB agents and promising chemical structures with
the potential to inhibit Mtb.

2. Results and Discussion
2.1. Performance of the Mtc-QSAR-EL Model and Applicability Domain

The best mtc-QSAR-EL model found by us has twelve D[LQI]cj descriptors, six of
them based on hydrophobic factors, five containing steric information, and one focused
on polar features of the molecules. Additionally, in terms of atom types, five D[LQI]cj
descriptors were based on the effect of halogen atoms, three indicating the influence of
heteroatoms (mainly N, O, S, and P), two characterizing the presence of methyl groups,
and two accounting for the importance of aromatic carbons. The details regarding each
D[LQI]cj descriptor appear in Table 1, while all the molecular descriptors of the chemicals
and the corresponding biological data are reported in Supplementary Material 1.

The most appropriate mtc-QSAR-EL model developed here was an ensemble formed
by three MLP networks whose parameters are represented in Table 2. These MLP networks
have different numbers of neurons in the hidden layer and require diverse error functions
and different numbers of epochs to be trained. Two of these MLP networks (first and
third) have the same type of activation function (hyperbolic tangent), with the other one
having a logistic function. In the output layer, the first and second MLP networks use a
softmax function, while the third one uses a logistic function. The combination of these
aspects resulted in a difference in performance among these MLP networks, particularly in
the case of the sensitivities [Sn(%)]ta, [Sn(%)]bs, and [Sn(%)]ap, as well as the specificities
[Sp(%)]ta, [Sp(%)]bs, and [Sp(%)]ap. These six local metrics were of paramount importance
in assessing the classification performance of the mtc-QSAR-EL model in both trained
and unseen data (training and test sets, respectively) when considering the dissimilar
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experimental conditions cj (see Section 3 for full explanation) under which the molecules
were assayed.

Table 1. Descriptors of the type D[LQI]cj which entered in the mtc-QSAR-EL model.

Symbol Definition

D[LASSq3(HYD)G]ta
Deviation of the atom-based stochastic quadratic index of order 3, weighted by
the hydrophobicity of the halogens and their chemical environments,
and depending on the chemical structure and the assay time.

D[LASSq0(POL)G]ta
Deviation of the atom-based stochastic quadratic index of order 0, weighted by
the polarizability of the halogens, and depending on the chemical structure and
the assay time.

D[LASSq0(HYD)Y]ta
Deviation of the atom-based stochastic quadratic index of order 0, weighted by
the hydrophobicity of the heteroatoms, and depending on the chemical structure
and the assay time.

D[LASSq1(PSA)Y]ta
Deviation of the atom-based stochastic quadratic index of order 1, weighted by
the polar surface area of the heteroatoms and their adjacent atoms,
and depending on the chemical structure and the assay time.

D[LASSq0(HYD)M]bs
Deviation of the atom-based stochastic quadratic index of order 0, weighted by
the hydrophobicity of the methyl groups, and depending on the chemical
structure and the Mtb strain against which the molecule was tested.

D[LASSq0(AW)P]bs
Deviation of the atom-based stochastic quadratic index of order 0, weighted by
the atomic weight of the aromatic carbons, and depending on the chemical
structure and the Mtb strain against which the molecule was tested.

D[LASSq2(HYD)Y]bs

Deviation of the atom-based stochastic quadratic index of order 2, weighted by
the hydrophobicity of the heteroatoms and their chemical environments,
and depending on the chemical structure and the Mtb strain against which the
molecule was tested.

D[LASSq2(HYD)G]ap

Deviation of the atom-based stochastic quadratic index of order 2, weighted by
the hydrophobicity of the halogens and their chemical environments,
and depending on the chemical structure and information regarding the
assay protocol.

D[LASSq5(AW)G]ap

Deviation of the atom-based stochastic quadratic index of order 5, weighted by
the atomic weight of the halogens and their chemical environments,
and depending on the chemical structure and information regarding the
assay protocol.

D[LASSq3(KU)G]ap

Deviation of the atom-based stochastic quadratic index of order 3, weighted by
Kupchick’s vertex degrees of the halogens and their chemical environments,
and depending on the chemical structure and information regarding the
assay protocol.

D[LASSq2(HYD)M]ap

Deviation of the atom-based stochastic quadratic index of order 2, weighted by
the hydrophobicity of the methyl groups and their chemical environments,
and depending on the chemical structure and information regarding the
assay protocol.

D[LASSq2(AW)P]ap

Deviation of the atom-based stochastic quadratic index of order 2, weighted by
the atomic weight of the aromatic carbons and their chemical environments,
and depending on the chemical structure and information regarding the
assay protocol.
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Table 2. Parameters characterizing the different MLP networks that were employed to build the
mtc-QSAR-EL model.

Network
Notation a

Training
Algorithm b Error Function c Hidden

Activation d
Output

Activation

MLP 12-45-2 BFGS 116 Entropy Tanh Softmax
MLP 12-33-2 BFGS 138 Entropy Logistic Softmax
MLP 12-41-2 BFGS 104 SOS Tanh Logistic

a The number of input nodes appears before the first hyphen, the number of neurons in the hidden layer appears
between the two hyphens, and the number appearing after the second hyphen indicates the number of classes that
were predicted by the mtc-QSAR-EL model. b BFGS—Broyden–Fletcher–Goldfarb–Shanno algorithm; the number
accompanying the symbol BFGS is the number of epochs used to train the MLP networks. c SOS—sum of squares.
d Tanh—hyperbolic tangent.

The mtc-QSAR-EL model exhibited accuracies [Ac(%)] of 93.41% and 85.79% in the
training and test sets, respectively. Furthermore, the global statistical indices depicted in
Table 3 support the good general performance of the mtc-QSAR-EL model. For instance,
the sensitivity Sn(%) and the specificity Sp(%) have values higher than 90% in the training
set. These two global statistical indices reached values higher than 85% in the test set.
Additionally, the MCC values are greater than 0.7, and, given their closeness to the ideal
value of one, we can infer that there is very strong convergence between the observed
[ATBi(cj)] and predicted [Pred_ATBi(cj)]] values of the categorical variable of anti-TB activity
against the different Mtb strains. The classification results for all the molecules of our
dataset are reported in Supplementary Material 2. The file of the MLP networks can be
obtained upon request to the authors.

Table 3. Statistical metrics indicating the global performance of the mtc-QSAR-EL model.

SYMBOLS a Training Set Test Set

NActive 602 201

CCActive 572 172

Sn(%) 95.02% 85.57%

NInactive 582 186

CCInactive 534 160

Sp(%) 91.75% 86.02%

MCC 0.869 0.716
a NActive—number of molecules labeled as active; NInactive—number of molecules annotated as inactive;
CCActive—number of molecules rightly classified/predicted as active; CCInactive—number of molecules cor-
rectly classified/predicted as inactive; Sn(%)—sensitivity (percentage of molecules properly classified as active);
Sp(%)—specificity (percentage of molecules properly classified as inactive); MCC—Matthews’ correlation coefficient.

At the local level, the mtc-QSAR-EL model also had a good performance. In the case
of the training set, the local metrics [Sn(%)]ta, [Sn(%)]bs, [Sn(%)]ap, [Sp(%)]ta, [Sp(%)]bs,
and [Sp(%)]ap were in the range 70–100%. The only exception was the assay time, 4 d (four
days), which exhibited [Sp(%)]ap = 56.25%. In the case of the test set, a similar result was
achieved since the same six statistical metrics were in the interval 71–100%, except for
[Sp(%)]ap = 50% (assay time of four days) and [Sn(%)]ta = 64% (assay time of five days),
as well as [Sp(%)]bs and [Sp(%)]ap, with values of 61.54% for the strain Mtb (H37Rv_NRF)
and the assay protocol “LORA method”, respectively. The previously mentioned global
statistical indices and the local metrics discussed here confirm the internal quality and
predictive power of the mtc-QSAR-EL model. All the values of [Sn(%)]ta, [Sn(%)]bs,
[Sn(%)]ap, [Sp(%)]ta, [Sp(%)]bs, and [Sp(%)]ap can be found in Supplementary Material 2.

Last, we would like to highlight that, from a physicochemical and structural point
of view, the present mtc-QSAR-EL model classified anti-TB drugs belonging to a wide
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spectrum of chemical families (Figures 1 and 2) such as polyketides, ethylenediamine
derivative, aminoglycosides, nitroimidazopyrans, fluoroquinolones, and diarylquinolines.
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Such heterogenicity of chemical structures together with the different definitions of
the D[LQI]cj descriptors, the size of the dataset, and the relatively high values of the global
and local statistical indices points to the capability and appropriateness of the mtc-QSAR-
EL model to predict the anti-TB activity of structurally dissimilar chemicals against the
different Mtb strains.

Regarding the AD of the mtc-QSAR-EL model, as reported in seminal references
(see Section 3.3), we calculated the so-called total score of applicability domain (TSAD),
which is derived from the descriptors’ space approach. Since our mtc-QSAR-EL model
contained twelve D[LQI]cj descriptors, only those chemicals with TSAD = 12 were consid-
ered to be inside the AD (Supplementary Material 3). By carefully inspecting our dataset,
we found that only 15 out of 1571 molecules/cases in the dataset were outside the AD of
the mtc-QSAR-EL model, 14 of them with TSAD = 11 and one with TSAD = 10. However,
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13 out of these 15 seemingly atypical chemicals were correctly classified by considering
the consensus prediction approach performed by the mtc-QSAR-EL model. We decided to
keep these chemicals in the dataset since the consensus predictions constituted the priority
over the descriptors’ space approach to define the AD.

2.2. Molecular Descriptors and Their Physicochemical and Structural Meanings

The sensitivity values SV of the D[LQI]cj descriptors are depicted in Figure 3, where
the highest values indicate those D[LQI]cj descriptors with the greatest influence and dis-
criminatory power in the mtc-QSAR-EL model. Simultaneously, the comparison between
the class-based means for each D[LQI]cj descriptor represented in Table 4 shows us the
type of variation that the value of a given D[LQI]cj descriptor should undergo to potentiate
the anti-TB activity against the different Mtb strains.
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Figure 3. Molecular descriptors present in the mtc-QSAR-EL model and their relative influences
assessed as sensitivity values (SV). For the sake of simplicity, we used the following abbrevi-
ations: DD1 = D[LASSq3(HYD)G]ta, DD2 = D[LASSq0(POL)G]ta, DD3 = D[LASSq0(HYD)Y]ta,
DD4 = D[LASSq1(PSA)Y]ta, DD5 = D[LASSq0(HYD)M]bs, DD6 = D[LASSq0(AW)P]bs, DD7 = D
[LASSq2(HYD)Y]bs, DD8 = D[LASSq2(HYD)G]ap, DD9 = D[LASSq5(AW)G]ap, DD10 = D
[LASSq3(KU)G]ap, DD11 = D[LASSq2(HYD)M]ap, and DD12 = D[LASSq2(AW)P]ap.

Table 4. Tendencies of variation calculated for the different molecular descriptors in the mtc-QSAR-EL
model according to the class-based mean approach.

Symbol
Class-Based Means

Tendency a

Active Inactive

D[LASSq3(HYD)G]ta −1.1976 × 10−4 −2.0514 × 10−2 Increase

D[LASSq0(POL)G]ta 5.0005 × 10−3 6.3674 × 10−3 Decrease

D[LASSq0(HYD)Y]ta 5.1000 × 10−3 −4.4105 × 10−1 Increase

D[LASSq1(PSA)Y]ta 1.2460 × 10−3 −1.6800 × 10−1 Increase

D[LASSq0(HYD)M]bs 1.4621 × 10−2 −3.0065 × 10−1 Increase

D[LASSq0(AW)P]bs 8.1935 × 10−3 −2.2074 × 10−1 Increase

D[LASSq2(HYD)Y]bs −4.0897 × 10−3 −2.1845 × 10−1 Increase

D[LASSq2(HYD)G]ap 1.0793 × 10−2 −2.4162 × 10−1 Increase

D[LASSq5(AW)G]ap 1.2911 × 10−2 −1.8708 × 10−1 Increase

D[LASSq3(KU)G]ap 9.6900 × 10−3 −1.1239 × 10−1 Increase

D[LASSq2(HYD)M]ap 1.6609 × 10−2 −2.8205 × 10−1 Increase

D[LASSq2(AW)P]ap 1.1549 × 10−2 −2.8297 × 10−1 Increase
a This denotes how the value of a D[LQI]cj descriptor should vary (increase or diminution) in order for a molecule
to enhance its anti-TB activity and versatility (ability to inhibit more than one Mtb strain).
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As mentioned before, in our mtc-QSAR-EL model, we have six D[LQI]cj descriptors
characterizing information regarding atomic hydrophobic contributions. In this sense,
we would like to highlight that such contributions are based on the hydrophobicity scale
proposed by Ghose and co-workers [35]. According to this scale, aliphatic carbon atoms
present negative hydrophobicity values, excluding the fragments of the form CHX3, CR2X2,
CRX3, and CX4 (X = O, N, S, P, Se, or halogen). Nitrogenated and oxygenated functional
groups also have negative hydrophobic contributions except for the pyrrolic nitrogen
(oxygen in furan) atom, Ar–NH–Ar (and its oxygenated counterpart), with Ar being an
aromatic (or heteroaromatic ring), and all the tertiary amines.

With that being said, the results presented in Table 4 indicate that the anti-TB activity
through the inhibition of different Mtb strains can be enhanced by increasing the value of
D[LASSq3(HYD)G]ta, which describes the augmentation of the product of the hydrophobic
contributions of any two atoms (with at least one of them being a halogen) that are placed
at the topological distance (number of bonds between two atoms without considering
bond multiplicity) of three. Examples of fragments with this characteristic are the 5-
(halomethyl)pyrimidines, including those with substitutions in positions 4 and/or 6. Notice
that D[LASSq3(HYD)G]ta is the eleventh most important D[LQI]cj descriptor in the mtc-
QSAR-EL model. We also have D[LASSq0(HYD)Y]ta whose increase is directly proportional
to the number of heteroatoms in a molecule. In this sense, the presence of fragments such as
Ar–NO2 (Ar = aromatic or heteroaromatic ring), primary amines, amides, hydroxyl groups
(alcohol), thiols, thioethers, functional groups containing sulfur (with sp2 hybridization)
attached to a carbon atom, phosphite, and R3–P = X (R = any group link though carbon,
X = O or S) will considerably increase the value of D[LASSq0(HYD)Y]ta (the fourth most
important D[LQI]cj descriptor), favoring the anti-TB activity. The inhibitory activity against
the Mtb strains seems to be enhanced by the augmentation of the number of methyl groups
in the molecules, and such a structural variation is characterized by D[LASSq0(HYD)M]bs,
which is the third most significant D[LQI]cj descriptor in the mtc-QSAR-EL model. We
also have D[LASSq2(HYD)Y]bs (ranked the sixth most influential D[LQI]cj descriptor),
which indicates the increase in the product of the hydrophobic contributions of any two
atoms (with at least one of them being a heteroatom) that are placed at the topological
distance of two. Substructures such as pyrimidin−2-amine, 2-alkylpyrimidines, and urea,
as well as aliphatic chains (or alicyclic moieties) attached to hydroxyl, amino, amide, and
sulfonamide groups, will favorably increase the value of D[LASSq2(HYD)Y]bs, with the
subsequent improvement in the anti-TB activity. The presence of halogens seems to be of
great importance in the increase in the inhibitory activity against the Mtb strains, and as in
the case of D[LASSq3(HYD)G]ta (commented above), D[LASSq2(HYD)G]ap also positively
contributes through the increment in the product of the hydrophobic contributions of any
two atoms (with at least one of them being a halogen) that are placed at the topological
distance of two. Thus, 5-halopyrimidines and 4,6-disubstituted halobenzene fragments
increase the value of D[LASSq2(HYD)G]ap, which is the tenth most significant D[LQI]cj
descriptor. Last, we have D[LASSq2(HYD)M]ap as the most important D[LQI]cj descriptor
in the mtc-QSAR-EL model. In this sense, D[LASSq2(HYD)M]ap involves the increase
in the hydrophobic contributions of any two atoms (with at least one of them being a
carbon from a methyl group) that are placed at the topological distance of two. Moieties
such as 2-methylpyrimidines, as well as aliphatic chains (or cycloalkane rings) containing
methyl groups, amides, methoxy groups, and toluene fragments, will increase the value of
D[LASSq2(HYD)M]ap, and therefore the anti-TB activity against the diverse Mtb strains
reported here.

Our mtc-QSAR-EL model also has five D[LQI]cj descriptors associated with steric
factors. In this context, D[LASSq0(POL)G]ta describes the diminution of the polarizabil-
ity of the halogens. The value of D[LASSq0(POL)G]ta (having the fifth highest influence)
can be decreased either by diminishing the number of halogens or by the presence of
fluorine atoms. Consequently, halogens are usually important for the activity profiles of
the molecules, and the case of the anti-TB activity is not an exception. Thus, functional
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groups such as trifluoromethyl (and, to a lesser degree, dichloromethyl and bromomethyl),
1,2-difluorobenze, and 2-chlorobenze will decrease the D[LASSq0(POL)G]ta value enough
to favor the inhibitory potency against any Mtb strain. Two of the five steric D[LQI]cj
descriptors characterize the presence of the aromatic carbons in the molecules. On one
hand, the increase in the value of D[LASSq0(AW)P]bs is directly proportional to the increase
in the number of aromatic carbons (e.g., benzene rings and polycyclic substructures such
as naphthalene), while D[LASSq2(AW)P]ap, in addition to benefiting from the presence of
aromatic carbons, is also favored by the presence of relatively heavy atoms (Cl, Br, and
S) placed at the topological distance of two with respect to an aromatic carbon. There-
fore, fragments that also increase the value D[LASSq2(AW)P]ap (and, to a lesser degree,
D[LASSq0(AW)P]bs) are halobenzene and benzenethiol. The descriptors D[LASSq0(AW)P]bs
and D[LASSq2(AW)P]ap rank eighth and second among the most important D[LQI]cj de-
scriptors, respectively. Two other steric D[LQI]cj descriptors take into account the presence
of halogens. One of them is D[LASSq5(AW)G]ap (exhibiting the seventh highest influence),
which characterizes the increase in the atomic weight of any two atoms (with at least one
of them being a halogen) placed at the topological distance of five or less. Fragments of
the type ZCX3 (Z = any atom, X = Cl or Br) and 1,4-dihalobenze can favorably increase the
value of D[LASSq5(AW)G]ap. The other steric D[LQI]cj descriptor is D[LASSq3(KU)G]ap
and expresses the increment in the atomic accessibility (ability to interact with atoms from
other molecules) of any two atoms (with at least one of them being a halogen) placed at
the topological distance of three. In this case, 1,2-dihalobenzene substructures (Cl and
Br favored over F) and moieties such as ZCX3, 5-halopyrimidines, and 4,6-disubstituted
halobenzene are examples of fragments that increase the value of D[LASSq3(KU)G]ap. In the
mtc-QSAR-EL model, D[LASSq3(KU)G]ap is ranked twelfth among all the D[LQI]cj descriptors.

Finally, we have D[LASSq1(PSA)Y]ta (with the ninth highest significance) characteriz-
ing the increase in the polar surface area of any two adjacent heteroatoms, and, therefore,
only pyridazine and 1,2,3-triazine rings, as well as the sulfonamide and phosphorus-
containing functional groups (phosphorus forming bonds with only oxygen and/or sulfur),
will considerably augment the value of D[LASSq1(PSA)Y]ta.

2.3. Computational Drug Repurposing of Agency-Regulated Chemicals as Anti-TB Agents

We performed the virtual screening of a dataset formed by 8898 agency-regulated
chemicals (Supplementary Material 4), which included (but was not limited to) investiga-
tional and FDA-approved drugs. These were predicted by considering the 24 experimental
conditions cj reported in the dataset used to build the mtc-QSAR-EL model, yielding
213,552 predictions (Supplementary Materials 5 and 6). In terms of the reliability of the
predictions using the AD of the mtc-QSAR-EL model according to the descriptors’ space
approach, we generated the TSAD values for each of these 8898 chemicals (Supplementary
Material 7). Then, the metrics FA(%) and S(TSAD) were calculated (see Section 3.5 for full
explanation). In any case, we would like to highlight that FA(%) describes the anti-TB
potential of a molecule because it expresses the frequency in which a chemical is predicted
as active against Mtb. A high FA(%) value (maximum value is 100%) for a chemical means
that it has a higher probability of having anti-TB activity by inhibiting multiple Mtb strains
with MIC90 < 7622.22 nM, which is the highest of the MIC90 cutoffs reported in this work
(see Section 3.1). At the same time, a high S(TSAD) value (the ideal value = 12 × 24 experi-
mental conditions cj = 288, with 12 being the maximum TSAD value) indicates the general
tendency of a chemical to be inside the AD according to the descriptors’ space approach,
which, together with the consensus predictions performed by the mtc-QSAR-EL model,
helps to assess the degree of reliability of such predictions.

The combined use of FA(%) and S(TSAD) (Supplementary Material 8) allowed us
to rank the 8898 agency-regulated chemicals, and those with FA(%) > 80% and S(TSAD)
≥ 276 were the top ranked, giving priority to those exhibiting the highest FA(%) values.
Notice that there is no “rule of thumb” in terms of the criteria used to prioritize chemicals.
Therefore, in the present study, we employed these rigorous cutoff values for FA(%) and
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S(TSAD) to achieve a virtual screening hit rate of 0.49% (44 out of 8898 chemicals) which is
higher than the greatest hit rate value of 0.14% for high-throughput screening but lower
than smallest hit rate value for virtual screening campaigns (1%) [36].

By using the aforementioned metrics for compound prioritization, the mtc-QSAR-EL
model identified three chemicals with experimentally proven anti-TB activity (Figure 4):
macozinone (PBTZ-169), BTZ-043, and niclosamide. Notice that macozinone is a remark-
ably potent piperazine-containing benzothiazinone, being able to inhibit multiple Mtb
strains at MIC99 ≤ 1 nM [37]. In the case of BTZ-043, although structurally related to
macozinone, it lacks the 2-(4-(cyclohexylmethyl)piperazin-1-yl) moiety, which decreases its
activity. Still, BTZ-043 is a nanomolar inhibitor of several Mtb strains [37,38]. On the other
hand, niclosamide offers very attractive opportunities for anti-TB therapies because, in ad-
dition to being a recognized antihelminthic drug, it also has a wide-spectrum antimicrobial
profile, which includes nanomolar to micromolar potency against diverse viruses (includ-
ing coronaviruses) [39], as well as anti-TB activity in the low micromolar range [40,41].
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We should recall that the cutoff values of the metrics FA(%) and S(TSAD) used by us
are very rigorous. If, for instance, we slightly relax these two metrics (e.g., FA(%) > 60% and
S(TSAD) ≥ 270), other agency-regulated chemicals with experimentally proven anti-TB
activity pop up. These are the cases of biapenem (FA(%) = 66.67% and S(TSAD) = 288) and
TBA-354 (FA(%) = 91.67% and S(TSAD) = 270), whose anti-TB profile has been demon-
strated in vitro (low micromolar range) and in vivo [42,43]. Notice that further relaxing
FA(%) and/or S(TSAD) will allow the mtc-QSAR-EL model to identify more anti-TB agents,
but a larger number of false positives may also be predicted. In the end, it is up to the
analyst to select the adequate values of the metrics FA(%) and S(TSAD), which will depend
on the number of drugs available for testing, with this being a key element when planning
the expenditure of financial resources for experimental validation of virtually selected
chemicals. In any case, we advise the use of FA(%) > 29% and S(TSAD) ≥ 250 since with
these cutoffs, most of the known FDA-approved and investigational anti-TB drugs (not
included in the dataset used to build our mtc-QSAR-EL model) were identified in the
virtual screening analysis. We would like to highlight that the FA(%) value suggested by
us is in the range reported for the hit rate in the prospective virtual screening [36,44].

Returning to the top 44 molecules predicted by the mtc-QSAR-EL model from the 8898
agency-regulated chemicals, we ran an experiment. To obtain a deeper insight regarding
the new molecular patterns with promising anti-TB potential, we used the webserver
mycoCSM [45], which is an online tool with the capability to predict the antimycobacterial
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profile of any molecule, including the anti-TB activity. The results of the top 44 agency-
regulated chemicals identified as potential anti-TB agents (multi-strain inhibitors of Mtb) by
our mtc-QSAR-EL model together with the predictions derived from mycoCSM appear in
Table 5. It can be seen that the mtc-QSAR-EL model and the webserver mycoCSM converge
in 10 out of 44 chemicals (22.73%). In our opinion and experience, such a convergence is
very good taking into account that the mtc-QSAR-EL model and the webserver mycoCSM
employed dissimilar approaches to characterize the molecular structure, different ma-
chine learning algorithms, and distinct ways to consider experimental information when
building the computational models. In the end, given all the experimental and theoretical
evidence, we can conclude that our mtc-QSAR-EL model can be efficiently used alone or
in combination with other in silico tools for virtual screening of anti-TB molecules, which
may inhibit several Mtb strains.

Table 5. Top-ranked regulated chemicals identified by mtc-QSAR-EL as potential multi-strain inhibitors against Mtb (MIC90

< 7622.22 nM) and predicted by the webserver mycoCSM.

ID a Name FA(%) b S(TSAD) c log10(MIC) d MIC (nM) e

CHEMBL78535 Ancriviroc 100.00 288 −4.624 23768.40
CHEMBL1450565 Aklomide 100.00 279 −4.128 74473.20
CHEMBL2104712 Nisterime acetate 100.00 279 −4.673 21232.44
CHEMBL2106822 Nizofenone 95.83 288 −4.332 46558.61
CHEMBL2104159 Bromoxanide 100.00 276 −4.838 14521.12
CHEMBL1199080 Bretylium 95.83 279 −3.91 123026.88
CHEMBL3330226 Macozinone 95.83 279 −7.558 27.67
CHEMBL1909324 Pinaverium 95.83 279 −4.668 21478.30
CHEMBL292702 Maitansine 95.83 279 −4.776 16749.43

CHEMBL2111120 Nitralamine 95.83 276 −4.02 95499.26
CHEMBL289832 Licostinel 95.83 276 −3.826 149279.44
CHEMBL1448 Niclosamide 95.83 276 −5.249 5636.38

CHEMBL2104616 Clonitazene 91.67 288 −4.866 13614.45
CHEMBL1269025 Edoxaban 91.67 288 −5.731 1857.80
CHEMBL2106056 Cronidipine 91.67 288 −4.771 16943.38
CHEMBL1241348 Faldaprevir 91.67 288 −5.275 5308.84
CHEMBL2013174 Vedroprevir 91.67 288 −5.446 3580.96
CHEMBL2104730 Nitroxinil 91.67 279 −3.881 131522.48
CHEMBL493636 Sulfanitran 91.67 279 −4.678 20989.40
CHEMBL9484 Clofilium 91.67 279 −4.042 90782.05

CHEMBL1822872 BTZ-043 91.67 279 −7.01 97.72
CHEMBL1178725 Nolpitantium 91.67 279 −4.876 13304.54
CHEMBL2104390 Ilatreotide 91.67 279 −5.123 7533.56

CHEMBL56367 Nimesulide 87.50 288 −4.907 12387.97
CHEMBL2107448 Loprazolam 87.50 288 −4.945 11350.11
CHEMBL3670800 ALK-4290 87.50 288 −5.298 5035.01
CHEMBL1181731 Teglarinad 87.50 288 −5.154 7014.55
CHEMBL1170047 Iniparib 87.50 279 −4.117 76383.58

CHEMBL491 Hydroxyflutamide 87.50 279 −4.221 60117.37
CHEMBL452 Clonazepam 87.50 279 −4.223 59841.16
CHEMBL1274 Nilutamide 87.50 279 −4.559 27605.78

CHEMBL2110930 Fubrogonium 87.50 279 −4.125 74989.42
CHEMBL2110825 Dodeclonium 87.50 279 −4.19 64565.42
CHEMBL397647 JNJ-17166864 87.50 279 −4.53 29512.09

CHEMBL2105721 Nivocasan 87.50 279 −4.644 22698.65
CHEMBL2107326 Dasantafil 87.50 279 −5.015 9660.51
CHEMBL1908326 Meclonazepam 83.33 288 −4.281 52360.04
CHEMBL1823817 CE-224535 83.33 288 −4.736 18365.38
CHEMBL1276663 Cefozopran 83.33 288 −5.143 7194.49
CHEMBL2110800 Ciclonium 83.33 279 −4.48 33113.11

CHEMBL1337 Nitisinone 83.33 279 −4.569 26977.39
CHEMBL512306 [18F]D 83.33 279 −4.532 29376.50
CHEMBL435191 Edotecarin 83.33 279 −4.521 30130.06

CHEMBL2074922 Efonidipine 83.33 279 −4.894 12764.39
a Highlighted chemicals are those predicted by the mtc-QSAR-EL model and the webserver mycoCSM to have MIC90 < 7622.22 nM.
b FA(%)—percentage of times that a chemical was predicted as active (anti-TB agent) by the mtc-QSAR-EL model. c S(TSAD)—sum of all
the TSAD values for a given chemical by considering all the experimental conditions reported in this study. d log10(MIC)—predicted value
of anti-TB activity estimated by the webserver mycoCSM. e Minimum inhibitory concentration calculated from the predicted log10(MIC).
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3. Materials and Methods
3.1. Dataset and Computation of the Molecular Descriptors

All the chemical and biological data associated with the anti-TB activity were retrieved
from the public database known as ChEMBL [46–48]. The dataset used in the present study
was formed by 1237 molecules belonging to different chemical families. These molecules
were experimentally tested for their inhibitory activity against Mtb and where the MIC90
(minimum inhibitory concentration that prevents the visible growth in 90% of the Mtb
isolates) was measured. More specifically, each molecule was assayed by considering at
least 1 out of 7 assay times (ta), against at least 1 out of 8 Mtb strains (bs), and involving at
least 1 out of 4 assay protocols (ap). Notice that each combination of the elements ta, bs,
and ap represents a unique experimental condition cj, which can be expressed as cj(ta, bs,
ap). If a molecule was found to be assayed more than one time by considering the same
experimental condition cj, the duplicate data were deleted, and we kept the lowest MIC90
value for that molecule. If two stereoisomers were tested under the same experimental
condition cj, we kept only the stereoisomer with the lowest MIC90 value. In any case, in
our dataset, most of the molecules were tested by considering only one cj, and, therefore,
after removing entries with lacking SMILES codes, values, units, duplicates, and unclear
information regarding the assay time or the test protocol, the dataset ended up having
1571 cases. Each case/molecule in the dataset was annotated as active (ATBi(cj) = 1) or
inactive (ATBi(cj) = −1), where ATBi(cj) was a dichotomous variable indicating the anti-TB
activity of the ith case/molecule under the experimental condition cj. Assignments of
active and inactive cases were realized by considering the different MIC90 cutoff values
depending on the assay time (Table 6).

Table 6. Experimental conditions cj (combinations of the elements ta, bs, and ap) reported in the present work.

MIC90 Cutoff Value (nM) a ta b bs c,d ap e

<1146.75
10d Mtb (H37Rv_NRF) LORA method
10d Mtb (H37Rv) Spectrophotometric assay (OD580-OD600)

≤1500 14d Mtb (H37Rv) Broth dilution method

<7622.22
3d Mtb (H37Rv_NRF) Spectrophotometric assay (OD580-OD600)
3d Mtb (MC2 6220_NRF) Spectrophotometric assay (OD580-OD600)
3d Mtb (MC2 6220_RF) Spectrophotometric assay (OD580-OD600)

<5829.77 4d Mtb (H37Rv) AlamarBlue/Resazurin/MABA method

≤5300

5d Mtb (H37Rv) AlamarBlue/Resazurin/MABA method
5d Mtb (H37Rv_ATCC 25618) Spectrophotometric assay (OD580-OD600)
5d Mtb (H37Rv) Spectrophotometric assay (OD580-OD600)
5d Mtb (INH-R) AlamarBlue/Resazurin/MABA method
5d Mtb (H37Rv_ATCC 27294) Broth dilution method

≤5000
6d Mtb (H37Rv_ATCC 25618) AlamarBlue/Resazurin/MABA method
6d Mtb (H37Rv) AlamarBlue/Resazurin/MABA method
6d Mtb (MC2 6220_NRF) Spectrophotometric assay (OD580-OD600)

≤4940

7d Mtb (H37Rv) AlamarBlue/Resazurin/MABA method
7d Mtb (H37Rv_ATCC 27294) AlamarBlue/Resazurin/MABA method
7d Mtb (INH-R) AlamarBlue/Resazurin/MABA method
7d Mtb (H37Rv_ATCC 27294) Broth dilution method
7d Mtb (H37Rv) Broth dilution method
7d Mtb (RMP-R) AlamarBlue/Resazurin/MABA method
7d Mtb (H37Rv) Spectrophotometric assay (OD580-OD600)
7d Mtb (MC2 6220_RF) Spectrophotometric assay (OD580-OD600)
7d Mtb (MC2 6220_NRF) Spectrophotometric assay (OD580-OD600)

a Activity value from which a molecule was considered active. b ta—assay time. c bs—bacterial strain belonging to Mtb. d The following
abbreviations were used: RF (non-replicative form), RF (replicative form), INH-R (isoniazid-resistant strain), and RMP-R (rifampicin-
resistant strain). e ap—information regarding the assay protocol.

Several reasons justified the selection of the MIC90 cutoffs in Table 6. First, by in-
specting our dataset formed by the 1571 cases, one can see that there are FDA-approved
anti-TB drugs (isoniazid, rifampicin, ethambutol, etc.) with MIC90 values that fall either
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above or below the cutoffs, which means that if a query chemical is predicted as active (or
inactive) by the mtc-QSAR-EL model, it will be possible to assess the differences between
the inhibitory potential of that query molecule and the actual activity of the current anti-TB
drugs as a consequence of their differences in their chemical structures. Second, the anno-
tations of the molecules as active or inactive employed a classification approach instead
of a regression one. Notice that, in contrast to their regression counterparts, classification
approaches do not need to predict the exact values of a biological property in a dataset,
and, therefore, they do not need to deal so much with the potentially great uncertainty
of the data. Third, the chosen MIC90 cutoffs prevented (as much as it was possible) the
imbalance between the number of molecules labeled as active and the number of molecules
considered inactive. Fourth, the MIC90 cutoffs are in the range (some of them are lower and,
therefore, more rigorous) of the cutoffs selected in high-throughput screening campaigns
to prioritize chemicals with potent anti-TB activity [49]. Fifth, from a phenomenological
point of view, even though several anti-TB drugs appear in our dataset, the purpose of
our mtc-QSAR-EL was to perform virtual screening of large and heterogenous external
datasets to identify novel molecular patterns different from those present in the current
anti-TB drugs.

The SMILES codes of the 1571 cases were stored in a file of the type *.smi. Following
this, we used the software OpenBabel v2.4.0 [50] to convert this file to *.sdf, obtaining the
connectivity table for each chemical present in our dataset; no additional standardization
actions were applied. Then, using the sdf file as input, we employed the software QuBiLS-
MAS v1.0 to compute the molecular descriptors known as local atom-based stochastic
quadratic indices LQI [51,52]. These are topological descriptors with successful applications
in medicinal chemistry and drug discovery [53,54]. We calculated the LQI descriptors of or-
der k (with k from 0 to 5) by using predefined parameters such as algebraic form (quadratic),
constraints (atom-based), matrix type (stochastic), cutoff (keep all), groups (local—referring
to specific atom types such as aliphatic and aromatic carbons, methyl groups, halogens,
and heteroatoms), and aggregation operator (Manhattan distance). These LQI descriptors
were weighted by atomic properties such as hydrophobicity (HYD), atomic weight (AW),
polarizability (POL), polar surface area (PSA), and Kupchick vertex degree (KU).

Notice that the LQI descriptors are not able to discriminate the effect of the chemical
structure of a molecule on the anti-TB activity when the experimental condition cj changes,
e.g., use of different assay times (ta), Mtb strains (bs), and/or test protocols (ap). This
means that the LQI descriptor for a molecule will have the same value regardless of the
experimental condition cj used to assess the anti-TB activity of that molecule. To solve
this inconvenience, we applied the adaptation of the Box–Jenkins approach, which is a
distinctive characteristic of all the PTML models [18–34,55]:

avg[LQI]cj =
1

n(cj)
×

n(cj)

∑
i=1

LQIi (1)

In Equation (1), the term avg[LQI]cj is the average of the LQIi values for all the
molecules in the training set, which were annotated as active by considering the same
experimental condition cj. Consequently, n(cj) refers to the number of molecules labeled as
active (also in the training set) that were tested under the same cj. Notice that, as mentioned
before, the experimental condition cj depends on the elements ta, bs, and ap, and, therefore,
Equation (1) was applied to each of the elements of cj separately. For instance, if cj = ta,
then avg[LQI]cj = avg[LQI]ta and n(cj) = n(ta), meaning that, in this case, Equation (1) was
employed for calculations depending only on the assay times. The same line of thinking
was applied to the elements bs and ap. In the second step of the Box–Jenkins approach,

D[LQI]cj =
[

LQI − avgLQI(cj)
SDev(LQI)

]
·
√

p(cj) (2)
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In Equation (2), D[LQI]cj is a multi-target descriptor that considers both the chemical
structure of a molecule and a specific element of the experimental condition cj. Therefore,
as in the case of Equation (1), Equation (2) was applied to each element of cj separately.
The descriptor D[LQI]cj characterizes how much any molecule physicochemically and
structurally deviates from a group of molecules annotated as active, having been tested
by considering the same element of cj. Additionally, SDev[LQI] is the standard deviation
calculated from all the values of each LQI descriptor for the molecules/cases present only
in the training set. Last, the term p(cj) is the a priori probability calculated as the quotient
of the number of molecules/cases in the training set assayed by involving a given element
of cj and the total number of compounds present in the training set.

3.2. Building the Mtc-QSAR-EL Model

When generating the mtc-QSAR-EL model, we followed a series of steps. First, we
divided our dataset (containing 1571 cases) into training and test sets. In this sense, for
each assay time, we sorted the molecules in ascending order of their MIC90 values. After,
within each assay time, the first three molecules/cases were annotated as members of the
training set, while the fourth molecule/case was labeled to belong to the test set. Such
a ratio of 3:1 was repeated in the whole dataset. Thus, the training set was formed by
1184 molecule/cases (75.37% of the dataset), 602 active and 582 inactive; the training set
was employed to find the best mtc-QSAR-EL model. The test set (the remaining 24.63%)
contained 387 molecules/cases, 201 considered active and 186 defined as inactive; the test
set was used to estimate the predictive power of the mtc-QSAR-EL model.

We employed the software IMMAN v1.0 [56], which allowed us to prioritize those
D[LQI]cj descriptors that were likely to exhibit the highest discriminatory power. In doing
so, we used two information theory metrics: the differential Shannon entropy [57] and
the information gain ratio [58]. We ranked the D[LQI]cj descriptors according to their
decreasing values of the geometric mean between the two aforementioned metrics. While
selecting the D[LQI]cj descriptors with the highest discriminatory power (high geometric
mean values), we estimated the redundancy among them by computing the pairwise
Pearson correlation coefficient (PCC) [59]. Only the D[LQI]cj descriptors with pairwise
correlation values in the interval −0.7 < PCC < 0.7 were chosen to construct the mtc-QSAR-
EL model.

We should recall that the mtc-QSAR-EL model is an ensemble of artificial neural
networks (ANNs), and, thus, to form such an ensemble, we searched for the best ANNs,
all of them being based on the multi-layer perceptron (MLP) architecture. When selecting
the most appropriate MLP networks, we examined, in a first step, global statistical metrics
such as accuracy [Ac(%)], Matthews’ correlation coefficient (MCC) [60], sensitivity [Sn(%)],
and specificity [Sp(%)]. However, ultimately, the best mtc-QSAR-EL model was chosen as
an ensemble of those MLP networks that exhibited the highest values of the sensitivities
[Sn(%)]ta, [Sn(%)]bs, and [Sn(%)]ap, as well as the specificities [Sp(%)]ta, [Sp(%)]bs, and
[Sp(%)]ap. Notice that these six local statistical indices depended on specific elements of the
experimental condition cj. The ANN package of the software STATISTICA v13.5.0.17 [61]
was employed to generate the MLP networks and subsequently build the mtc-QSAR-
EL model.

3.3. Applicability Domain

When defining the applicability domain (AD) of the mtc-QSAR-EL model, we used
two approaches. One of them was the consensus predictions since our mtc-QSAR-EL model
was an ensemble of different MLP networks [62,63]. This means that for each molecule
present in our dataset, the predicted probabilities given by each of the MLP networks
were averaged, resulting in the probability of the ensemble (mtc-QSAR-EL) model for
that molecule. As the second method to estimate the AD, we used a modification of the
descriptors’ space approach reported by Speck-Planche [64]. In doing so, for each molecule
present in the dataset containing the 1571 cases/molecules, we generated the local scores
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(LS) of the applicability domain for each D[LQI]cj descriptor in the following manner. If
for a specific D[LQI]cj descriptor, the D[LQI]cj value of a query molecule fell between the
maximum and minimum D[LQI]cj values, the LS took the value of one; otherwise, the LS
was equal to zero. This operation was repeated for each D[LQI]cj descriptor that entered
in the mtc-QSAR-EL model. Then, the metric known as the total score of applicability
domain (TSAD) was calculated for the aforementioned query molecule as the sum of the
LS values. In the end, in magnitude, the maximum value of TSAD was equal to the number
of D[LQI]cj descriptors present in the mtc-QSAR-EL model.

3.4. Interpretation of the Molecular Descriptors in the Mtc-QSAR-EL Model

Due to the non-linear nature of the mtc-QSAR-EL model, we provided the physico-
chemical and structural interpretation of the D[LQI]cj descriptors by strictly following the
guidelines recently reported by Speck-Planche and co-workers [21,64]. In this sense, we
used the sensitivity values SV calculated by the ANN package of the software STATISTICA
v13.5.0.17 to rank the different D[LQI]cj descriptors in terms of their importance in the
mtc-QSAR-EL model while calculating the class-based means to help us gain insights
regarding how the values of the D[LQI]cj descriptors should vary (increase or decrease) to
enhance both the anti-TB activity and the versatility of a molecule to inhibit more than one
Mtb strain.

3.5. Virtual Screening of Agency-Regulated Chemicals

We virtually screened a large and heterogeneous dataset formed by 8898 agency-
regulated chemicals. None of these molecules were present in the dataset used to build
the mtc-QSAR-EL model (1571 chemicals/cases). We predicted each of the 8898 agency-
regulated chemicals under the 24 experimental conditions cj reported in Table 6. Then, we
generated the metric FA(%), which expressed the percentage of experimental conditions
cj in which each of these 8898 agency-regulated chemicals was predicted as active (anti-
TB agent) by the mtc-QSAR-EL model (Supplementary Material 8). We also defined a
second metric symbolized as S(TSAD); this was calculated as the sum of all the TSAD
values reported for a single agency-regulated chemical by considering the 24 experimental
conditions cj. The meaning of S(TSAD) was that the higher its value, the more reliable
the predictions associated with that agency-regulated chemical in terms of whether it fell
within the AD of the mtc-QSAR-EL model by considering the 24 experimental conditions
cj (Supplementary Material 8). By using FA(%) and S(TSAD), we could rank the agency-
regulated chemicals according to their predicted anti-TB activity and the reliability of the
predictions, respectively.

4. Conclusions

The search for novel and more efficient anti-TB therapies can be greatly accelerated
by employing in silico models as tools in the context of computational drug repurposing,
where the prioritized hits could then be experimentally validated. Current computer-
aided drug discovery approaches should, however, focus on including more information
regarding the experimental conditions under which the molecules are assayed. By doing
so, computational models will be able to make more accurate predictions while also
providing a deeper phenomenological understanding of the physicochemical properties
and structural requirements associated with the potentiation of the anti-TB activity and
versatility to inhibit different Mtb strains. The mtc-QSAR-EL model created in this work
constitutes an advance in early drug discovery against TB, demonstrating that it is possible
to identify anti-TB agents and/or multi-strain inhibitors of Mtb via virtual screening while
proposing new molecular patterns that could be promising as starting points for anti-TB
drug development. The present report confirms the promising applications of the PTML
modeling methodology, which can be extended to diverse research areas devoted to finding
treatments for unmet needs.
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