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Abstract: Recurrent concussions increase risk for persistent post-concussion symptoms, and may
lead to chronic neurocognitive deficits. Little is known about the molecular pathways that
contribute to persistent concussion symptoms. We hypothesized that salivary measurement of
microribonucleic acids (miRNAs), a class of epitranscriptional molecules implicated in concussion
pathophysiology, would provide insights about the molecular cascade resulting from recurrent
concussions. This hypothesis was tested in a case-control study involving 13 former professional
football athletes with a history of recurrent concussion, and 18 age/sex-matched peers. Molecules of
interest were further validated in a cross-sectional study of 310 younger individuals with a history of
no concussion (n = 230), a single concussion (n = 56), or recurrent concussions (n = 24). There was no
difference in neurocognitive performance between the former professional athletes and their peers,
or among younger individuals with varying concussion exposures. However, younger individuals
without prior concussion outperformed peers with prior concussion on three balance assessments.
Twenty salivary miRNAs differed (adj. p < 0.05) between former professional athletes and their peers.
Two of these (miR-28-3p and miR-339-3p) demonstrated relationships (p < 0.05) with the number of
prior concussions reported by younger individuals. miR-28-3p and miR-339-5p may play a role in the
pathophysiologic mechanism involved in cumulative concussion effects.
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1. Introduction

Concussion is a type of traumatic brain injury that results from sudden acceleration/deceleration
of the head, causing brief impairment of consciousness, strength, and memory [1]. Increased awareness
of concussion, and proper implementation of diagnosis guidelines have led to steadily increasing rates
of sports-related concussions among both collegiate and professional athletes [1–3]. Athletes who
suffer a concussion typically experience a constellation of symptoms, including headache, dizziness,
fatigue, and emotional dysregulation [4]. The character and duration of concussion symptoms can
vary widely between athletes. Those who experience recurrent concussions are more likely to suffer
loss of consciousness and prolonged symptoms [5].

In rare cases, recurrent concussions can have dire consequences. The compounding effects of multiple
concussions may result in second-impact syndrome, a condition characterized by lethal increases in
intracranial pressure [6]. Guidelines for the diagnosis and management of sports-related concussion are,
to a large extent, aimed at preventing this catastrophic outcome. However, a more commonly observed
morbidity of repetitive head trauma is persistent cognitive impairment. Cumulative concussions have
been shown to negatively impact an individual’s processing speed [7,8]. In a large proportion of concussed
individuals, cognitive impairment (such as memory or visuospatial deficits) can persist for months after
injury [9]. In military populations, individuals who report multiple concussions also report prolonged
post-concussive symptoms, but often do not have measurable cognitive impairment [10].

Professional American football athletes, who may sustain numerous concussions over the course of
a playing career, appear to be at risk for even longer-term cognitive effects. Recurrent concussions have
been associated with mild cognitive impairment and clinical depression years later [11–14]. Collegiate
football players also demonstrate slow recovery of neurological function after multiple concussions [15].
Those with a history of concussion display impaired cognitive function on neuropsychological measures,
similar to peers with learning disability [16]. Compared with a single concussion, multiple concussions
are more likely to impair memory performance among collegiate football players. Notably, however,
studies of high school football athletes have not demonstrated a relationship with neurodegenerative
disease later in life [17].

Although the clinical consequences that result from recurrent concussions are well described,
the pathobiology that mediates these effects remains poorly understood. There is growing evidence that
the chronic effects of repetitive traumatic brain injury may result in deposition of hyperphosphorylated
tau protein around the small blood vessels of the cerebral cortex, creating neurofibrillary tangles and
neurites [18,19]. However, it is unclear how the acute physiology resulting from repetitive concussion
would lead to this late, chronic pathologic finding. One explanation is that repetitive head injury may cause
persistent activation of microglia, resulting in chronic neuroinflammation [20]. Goldstein and colleagues
have demonstrated microvascular injury and perivascular neuroinflammation in a mouse model of
concussion with phosphorylated tau pathology [21]. An alternative hypothesis involves dysregulation
of the neurometabolic cascade, caused by indiscriminate release of excitatory neurotransmitters and
perturbation of the ion pumps that regulate neuronal membrane potential [22]. Regardless of the
responsible mechanisms, evidence shows that individuals with a history of concussive injury experience
disrupted neural functioning associated with cognition and regulatory processes [23,24].

For these acute pathologic processes to yield chronic impairment in brain function, individual
neurons, glia, and astrocytes must undergo persistent dysregulation of cellular processes. Epigenetic
mechanisms have the ability to alter cellular function in response to an external insult, and have been
implicated in the chronic effects of mild traumatic brain injury [25]. Microribonucleic acids (miRNAs)
are small epitranscriptional molecules that are critical to neuronal function [26], and regulate gene
expression in response to traumatic brain injury [27,28]. Neurons have the ability to package miRNAs
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within protective exosomes as an intracellular signaling mechanism [29]. Recent findings suggest
that exosomal miRNA levels may provide insights into the pathophysiology through which recurrent
concussions lead to chronic symptomology [30].

Previously, we showed that perturbation in miRNA signaling after traumatic brain injury results
in overlapping miRNA profiles in cerebrospinal fluid and saliva [31]. Further, we demonstrated
that disruptions in salivary miRNA levels can persist for weeks after initial injury [32], and predict
the occurrence of persistent post-concussive symptoms [33]. The purpose of the current study was
to determine whether non-invasive salivary measurement of miRNAs could provide insights into
the pathobiology of repetitive concussions among professional football athletes. We hypothesized
that levels of specific salivary miRNAs would be associated with a history of multiple concussive
episodes, and that these same miRNAs would demonstrate unique expression profiles among former
professional American football athletes. To test these hypotheses, we performed a cross-sectional
study of 310 individuals (ages 7–39 years) who provided a detailed concussion history, followed
by a case-control study of 31 individuals (including 13 former professional football athletes and
18 age/sex-matched controls), of ages 46–89 years.

2. Results

2.1. Participant Characteristics

Participants in Group 1 (former professional football athletes and peers) were all male (31/31; 100%),
mostly White (14/19; 74%) and had a mean age of 73 (±8) years (Table 1). No individuals reported
anxiety, depression, or ADHD. Former professional football athletes differed from controls only in
BMI (28 kg/m2 vs. 26 kg/m2; p = 0.004). Both groups reported similar rates of previously diagnosed
concussion (p > 0.05). However, all of the professional football athletes (n = 13) reported undiagnosed
concussions, with an average of five concussions sustained during their professional football career
(mean career duration 13 ± 2 years). Positions played by the former professional football athletes
included quarterback (2), wide receiver (1), offensive/defensive tackle (3), end (2), guard (2), and fullback
(1). Former professional football athletes reported an average of 10/22 (range: 3–21) concussion-related
symptoms on the PCSS, with a mean symptom severity score of 19 (range: 3–78; 132 possible points).
More specifically, difficulty with concentrating (10/13, 77%), and difficulty with balance (9/13, 69%)
were the most commonly reported symptoms on the PCSS. There were five former football athletes
(38%) who reported short-term memory difficulty, and four who reported cognitive difficulty (31%).
None reported self-regulation problems such as impulsivity, apathy, or emotional instability.

Participants in Group 2 (younger individuals with varying concussion history) were mostly male
(208/310; 76%), mostly White (224/310; 82%), and had a mean age of 20 (±5) years. Rates of anxiety,
depression, and ADHD were similar between individuals with prior concussion and those without
prior concussion. Individuals with prior concussion were older, and contained a higher proportion of
males. They had sustained an average of 1.5 concussions each (range: 1–7). Individuals with prior
concussion reported a similar burden of concussion-related symptoms on the PCSS (mean burden:
2/22 symptoms; mean severity = 5) as those without prior concussion (mean burden: 2/22 symptoms;
mean severity = 3).
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Table 1. Participant characteristics.

Group 1, Mean (Range) Group 2, Mean (Range)

All
(n = 31)

Football
Athletes
(n = 13)

Controls
(n = 18)

All
(n = 310)

Concussion
(n = 80)

No
Concussion
(n = 230)

Demographics
Male sex, No. (%) 31 (100) 13 (100) 18 (100) 208 (67) 61 (76) 147 (64) *

Age (years) 73 (46–89) 73 (66–78) 72 (46–89) 20 (7–39) 21 (10–35) 19 (7–39) *
White race, No. (%) 14 (74) 9 (69) 5 (83) 224 (82) 67 (83) 187 (82)

Medical history
BMI (kg/m2) 28 (20–38) 30 (25–38) 26 (20–34) * 24 (13–40) 25 (13–39) 24 (13–40)

ADHD, No. (%) 0 (0) 0 (0) 0 (0) 24 (8) 8 (10) 16 (7)
Anxiety, No. (%) 0 (0) 0 (0) 0 (0) 18 (5) 4 (5) 14 (6)

Depression, No. (%) 0 (0) 0 (0) 0 (0) 10 (3) 4 (5) 6 (3)
Diagnosed concussions, No. (%) 5 (16) 2 (16) 3 (16) 80 (26) 80 (100) 0 (0) *

No. diagnosed concussions 0.3 (1–5) 0.4 (1–5) 0.2 (0–1) 0.4 (0–7) 1.5 (1–7) 0 (0) *
Undiagnosed concussions, No. (%) NA 13 (100) NA NA NA NA

No. undiagnosed concussion NA 5 (1–25) NA NA NA NA
Time since last concussion (years) NA 45 (38–56) NA NA 1 (0–7) NA

Professional football career NA 13 (2) NA NA NA NA
PCSS burden NA 10 (3–21) NA 2 (0–22) 2 (0–22) 2 (0–19)
PCSS severity NA 19 (3–78) NA 4 (0–91) 5 (0–91) 3 (0–42)

Sample collection time (24 h clock) 12 (8–18) 13 (10–18) 11 (8–13) 14 (7–19) 14 (7–18) 12 (7–19) *

* denotes p < 0.05 between groups on two-tailed Student’s t test. Abbreviations: not available/applicable (NA).

2.2. Functional Measures of Balance, Neurocognition, and Olfaction

In Group 1, former professional football athletes had greater stability than controls while standing
in a two-legs eyes-open stance (p = 6.2 × 10−5) and a two-legs eyes-closed stance (p = 0.004; Table 2).
There was no difference (p > 0.05) between groups in stability during tandem stance eyes open,
tandem stance eyes closed, or two-legs eyes open on a foam pad. Former professional football athletes
and controls performed similarly on all measures of neurocognition, and did not differ in olfactory
performance on the BSIT.

Table 2. Functional measures of balance, neurocognition, and olfaction.

Group 1, Mean (SD) Group 2, Mean (SD)

All (n = 28)
Football
Athletes
(n = 12)

Controls
(n = 16) All (n = 149) Concussion

(n = 37)

No
Concussion

(n = 112)

Balance
TLEO 72 (14) 83 (5) 63 (12) * 85 (3) 85 (3) 85 (3)
TLEC 69 (12) 77 (9) 63 (11) * 84 (4) 84 (4) 84 (3)
TSEO 65 (18) 65 (22) 64 (12) 84 (4) 83 (5) 85 (4) *
TSEC 48 (24) 48 (26) 48 (21) 82 (8) 79 (9) 82 (7) *

TLEOFP 61 (20) 69 (18) 54 (19) 86 (7) 85 (7) 86 (6)
Neurocognition

SRT1 156 (40) 159 (41) 155 (39) 191 (24) 188 (22) 192 (25)
SRT2 152 (36) 148 (39) 155 (32) 186 (23) 185 (22) 186 (23)
PRT 79 (13) 76 (10) 81 (14) 100 (13) 99 (12) 100 (13)

GNG 94 (15) 91 (12) 96 (17) 121 (13) 121 (13) 121 (13)
Olfaction

BSIT 69 (23) 63 (23) 82 (17) NA NA NA

Note that balance, neurocognition, and olfaction assessments were available for only a subset of participants in
Groups 1 and/or 2. * denotes p < 0.05 between groups on two-tailed Student’s t test. Note that higher scores indicate
superior performance on respective tasks. Abbreviations: not available (NA); two-legs, eyes open (TLEO); two-legs,
eyes closed (TLEC); tandem stance, eyes open (TSEO); tandem stance, eyes closed (TSEC); two-legs, eyes open on
foam pad (TLEOFP); spontaneous reaction time, trial 1 (SRT1); spontaneous reaction time, trial 2 (SRT2); procedural
reaction time (PRT); go-no-go (GNG); Brief Smell Identification Test (BSIT).



Int. J. Mol. Sci. 2020, 21, 7758 5 of 16

In Group 2, individuals with prior concussion had reduced stability compared to those without
prior concussion while standing in tandem stance eyes open (p = 0.04), and tandem stance eyes
closed (p = 0.04). There was no difference between groups in balance errors during the two-legs
eyes-open stance, the two-legs eyes-closed stance, or the two-legs eyes-open stance on a foam pad.
Individuals with prior concussion performed similarly to those without prior concussion on all
neurocognitive measures.

2.3. Salivary miRNAs Levels

In Group 1, total salivary miRNA profiles demonstrated superior ability for separating former
professional football athletes from controls, when compared with balance or neurocognitive assessments
(Figure 1). Salivary miRNA expression achieved complete separation between groups in the
two-dimensional model, while accounting for 27.5% of the variance in the data. Among the 264 miRNAs
with robust salivary expression, there were 20 with significant differences in expression (adj. p < 0.05)
between former professional football athletes and controls (Figure 2). Nine miRNAs displayed reduced
levels among former professional football athletes, while 11 miRNAs were elevated.

In Group 2, non-parametric ANOVA identified nominal differences (p < 0.05; adjusted p < 0.15)
between individuals with prior concussion and those without prior concussion for 3/20 miRNA
candidates (miR-339-3p, miR-361-5p, and miR-28-3p; Figure 3). A linear regression analysis assessing
the relationship between number of prior concussions and miRNA concentrations (while controlling for
age and sex) identified a significant relationship between prior concussions and miR-339-3p (R = 0.21,
F = 2.7, p =0.02), as well as miR-28-3p (R = 0.40, F = 11.4, p < 0.001), but not miR-361-5p (R = 0.19,
F = 2.2, p = 0.053).
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Figure 1. Salivary miRNA profiles differentiate former professional football athletes from peers. Partial least squares discriminant analysis (PLSDA) was applied to 
individual salivary miRNA profiles (A), balance performance measures (B), and neurocognitive scores (C) among professional athletes in the National Football League 
(NFL; n = 13; green) and control participants (CTRL; n = 18; red). The two-dimensional PLSDA plot based on saliva miRNA levels achieved complete separation of groups, 
while accounting for 27.5% of variance in the miRNA data. 

Figure 1. Salivary miRNA profiles differentiate former professional football athletes from peers. Partial least squares discriminant analysis (PLSDA) was applied to
individual salivary miRNA profiles (A), balance performance measures (B), and neurocognitive scores (C) among professional athletes in the National Football League
(NFL; n = 13; green) and control participants (CTRL; n = 18; red). The two-dimensional PLSDA plot based on saliva miRNA levels achieved complete separation of
groups, while accounting for 27.5% of variance in the miRNA data.
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Figure 2. Twenty salivary miRNAs differ between former professional football athletes and peers. The heatmap displays salivary levels of 20 miRNAs with significant 
differences (adj p < 0.05) in salivary expression between former professional football athletes (n = 13; green) and control participants (n = 18; red). Hierarchical clustering of 
both participants and miRNAs is based on a Ward clustering algorithm with a Euclidean distance measure. V statistics and adjusted p values on non-parametric analysis 
of variance are presented for each miRNA. 

Figure 2. Twenty salivary miRNAs differ between former professional football athletes and peers. The heatmap displays salivary levels of 20 miRNAs with significant
differences (adj p < 0.05) in salivary expression between former professional football athletes (n = 13; green) and control participants (n = 18; red). Hierarchical
clustering of both participants and miRNAs is based on a Ward clustering algorithm with a Euclidean distance measure. V statistics and adjusted p values on
non-parametric analysis of variance are presented for each miRNA.
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differences (p < 0.05; adjusted p < 0.15) between individuals with prior concussion, and those without 
prior concussion. Red denotes increased expression, while blue denotes decreased expression. 
Notably, for 2/3 miRNAs (miR-339-3p and miR-361-5p), expression levels among individuals with 
prior concussion mirrored differences observed in former professional football athletes. 
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among former professional football athletes (Group 1), and nominal differences among individuals 
with prior concussion (Group 2). These three miRNAs target 1068 messenger RNAs (Tarbase 
alignment, adj. p < 0.01), demonstrating enrichment for eight Kyoto Encyclopedia of Genes (KEGG) 
pathways (Table 3). KEGG pathways with potential implications in chronic brain injury and 
inflammation included extra-cellular matrix interaction (adj. p = 2.6 × 10−7; 9 genes; 3/3 miRNAs), 
protein processing in endoplasmic reticulum (adj. p = 6.3 × 10−5; 25 genes, 3/3 miRNAs), and lysine 
degradation (adj. p = 0.0009; 7 genes; 2/3 miRNAs). Tissues of origin were interrogated for the three 
candidate miRNAs using the Human miRNA Tissue Atlas. All three miRNAs showed robust 
expression in both nervous system and gastrointestinal tissues. Levels of miR-361-5p were highest in 
brain and cerebellum, miR-339-3p was highest in colon and cerebellum, and miR-38-3p was highest 
in the small intestine and nerves. 

Table 3. Physiologic targets of candidate miRNAs. 

KEGG Pathway p-Value #Genes #miRNAs 
Adherens junction 3.01 × 10−17 20 3 

Figure 3. Three miRNA candidates differ among individuals with prior concussion. A non-parametric
analysis of variance comparing levels of the 20 miRNA candidates identified in former professional
football athletes, identified three miRNAs (miR-339-3p, miR-361-5p, and miR-28-3p) nominal differences
(p < 0.05; adjusted p < 0.15) between individuals with prior concussion, and those without prior
concussion. Red denotes increased expression, while blue denotes decreased expression. Notably,
for 2/3 miRNAs (miR-339-3p and miR-361-5p), expression levels among individuals with prior
concussion mirrored differences observed in former professional football athletes.

2.4. Biologic Functions and Brain Relatedness of miRNA Candidates

DIANA miRPath analysis was used to interrogate putative messenger RNA targets for the three
miRNAs (miR-28-3p, miR-339-3p, and miR-361-5p) that had demonstrated significant differences
among former professional football athletes (Group 1), and nominal differences among individuals
with prior concussion (Group 2). These three miRNAs target 1068 messenger RNAs (Tarbase alignment,
adj. p < 0.01), demonstrating enrichment for eight Kyoto Encyclopedia of Genes (KEGG) pathways
(Table 3). KEGG pathways with potential implications in chronic brain injury and inflammation
included extra-cellular matrix interaction (adj. p = 2.6 × 10−7; 9 genes; 3/3 miRNAs), protein processing
in endoplasmic reticulum (adj. p = 6.3 × 10−5; 25 genes, 3/3 miRNAs), and lysine degradation
(adj. p = 0.0009; 7 genes; 2/3 miRNAs). Tissues of origin were interrogated for the three candidate
miRNAs using the Human miRNA Tissue Atlas. All three miRNAs showed robust expression in
both nervous system and gastrointestinal tissues. Levels of miR-361-5p were highest in brain and
cerebellum, miR-339-3p was highest in colon and cerebellum, and miR-38-3p was highest in the small
intestine and nerves.
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Table 3. Physiologic targets of candidate miRNAs.

KEGG Pathway p-Value #Genes #miRNAs

Adherens junction 3.01 × 10−17 20 3
ECM-receptor interaction 2.5 × 10−07 9 3

Bacterial invasion of epithelial cells 4.3 × 10−06 16 3
Hippo signaling pathway 9.6 × 10−06 15 3

Protein processing in endoplasmic reticulum 6.2 × 10−05 25 3
Proteoglycans in cancer 4.2 × 10−4 24 3

Lysine degradation 9.3 × 10−4 7 2
Cell cycle 4.8 × 10−3 19 3

Abbreviations: Kyoto Encyclopedia of Genes and Genomes (KEGG).

3. Discussion

In the current study, we identified three miRNAs that demonstrate a potential physiologic
relationship with recurrent concussion. Compared with healthy peers, former professional football
athletes who reported a history of multiple undiagnosed concussions demonstrated significant
differences in levels of these three miRNAs. The three miRNAs also demonstrated differences among
younger individuals with prior concussion, when compared to peers without prior concussion. Levels
of two of the miRNAs were significantly related to the number of previous concussions, suggesting
they may change over time as a result of subsequent concussion(s).

Prior studies have shown that recurrent concussions can lead to chronic impairment in memory,
processing speed, and emotional regulation [11–14]. In the present study, we found no significant
differences between former professional football athletes and age/sex-matched peers in neurocognitive
performance. Younger individuals with prior concussion also demonstrated no significant difference
in neurocognitive abilities from peers without prior concussion. Neurocognitive tests represent
semi-objective, clinically available measures that have shown decrements in prior studies of
professional athletes with multiple concussions [11]. Sensitivity of neurocognitive testing for detecting
concussion-related effects may require baseline testing with annual repeated measures, which were
not available in the current study [34]. Alternatively, neurocognitive testing may lack sensitivity due to
general neurologic compensatory processes that could mask compromised functioning [35].

Notably, former professional football athletes outperformed peers on several measures of balance,
which may be attributed to inherent athleticism that persists across the lifespan [34]. This result
also reinforces the need for baseline testing when assessing chronic effects of recurrent concussions.
In contrast, younger individuals with prior concussion displayed a greater instability than peers
without prior concussion on a subset of balance tests. These differences were observed only during
tandem stance assessments, suggesting that challenging individual proprioception may be necessary
to detect neurologic effects of recurrent concussions.

It is possible that the group of former professional football athletes in this study lack the necessary
number of concussion exposures or severity of concussions to induce long-term cognitive effects.
They did not show difficulties with mood symptoms, attention, or motor coordination that represent
hallmarks of chronic concussion symptoms. However, these individuals reported an average of
five undiagnosed concussions, and undoubtedly experienced numerous subconcussive impacts over
their extended professional careers (which lasted, on average, 13 years). They reported a number
of concussion-related symptoms on the PCSS, with the greatest number of reports for perceived
difficulties involving memory and cognition (which were not assessed through our neurocognitive
testing battery).

There were three miRNAs (miR-28-3p, miR-339-3p, and miR-361-5p) that differentiated both
former professional football athletes and their peers (Group 1), as well as younger individuals with prior
concussion and their peers without prior concussion (Group 2). Levels of these three miRNAs do not
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show a consistent relationship with balance or reaction time. Instead, they may confer information about
the physiologic processes that impact brain function following recurrent concussions. For example,
miR-339-3p has been shown to reduce expression of opioid receptors in the hippocampus, an area
critical to learning and memory [36]. In the present study, elevated levels of miR-339-3p were observed
in both former professional football athletes and individuals with prior concussion. This suggests that
miR-339 may contribute to memory difficulty reported by older athletes with recurrent concussions.
Levels of miR-28-3p have demonstrated clinical potential as a biomarker for Alzheimer’s disease [37],
decreasing in expression with increasing severity of cognitive impairment. Here, we show that salivary
levels of miR-28-3p were reduced in former professional football athletes and demonstrated a direct
relationship with the number of prior concussions in younger individuals. This pattern may arise as
cells increase miR-28-3p expression to regulate remodeling and repair in the early post-concussive
period, but later decrease miR-28-3p levels as a result of chronic dysregulation. Although memory
performance was not assessed in the older cohort of former professional athletes, over one-third of
participants reported subjective difficulty with short-term memory.

To our knowledge, two of these three miRNAs have been identified in prior human studies
of traumatic brain injury. Our previous study of salivary miRNA among children and adolescents
with mild traumatic brain injury identified a 2-fold decrease in miR-28-3p levels compared to healthy
peers [31]. A study of circulating miRNAs among adult patients with chronic hypopituitarism induced
by prior severe traumatic injury identified reduced levels of miR-361-5p [38]. The current study is
among the first to examine the relationship between miRNAs and chronic concussion symptoms [30,39].
The timing of sample collection relative to the concussion event is likely to have a large impact on
miRNA profiles, when comparing these results with prior studies of miRNA levels in concussed
individuals. Differences in biofluids of miRNA origin, methods for miRNA isolation, age of participants,
and severity of head injury may also account for differences between our investigation and the results
of previous studies [27].

Strengths of the current study include the use of two separate case-control groups, recruited
from multiple sites, and assessed with standardized measures of symptomology and neurocognitive
performance. However, several limitations exist. The sample size for Group 1 is small, limited by
the available number of former professional football athletes within the United States population.
As noted in the power analysis, this group was adequately powered to identify biomarker candidates,
and was used here as an exploratory cohort, with the downstream validation in a larger, external
group of participants. It should be noted that there was a significant difference in age and sex between
individuals with prior concussion and peers without prior concussion (Group 2). These differences
may have impacted comparative symptom reports, neurocognitive results, balance performance,
and/or miRNA levels. For this reason, age and sex were used as covariates in our linear regression
analysis assessing the relationship between miRNA candidates and number of prior concussions.
We acknowledge that functional assessments of balance and neurocognition were performed in a limited
subset of participants due to testing capabilities at each clinical site. This may have resulted in selection
bias and influenced between groups comparisons for functional assessments. Finally, the case-control
design used in Group 1 does not provide an opportunity to assess within-subjects temporal changes in
mood, cognition, and motor skills that may occur slowly over time in individuals with prior recurrent
concussions. Furthermore, addition of former professional athletes from non-contact sports as controls
would strengthen the findings in Group 1. Future studies should address these short-comings to better
characterize neurocognitive deficits and gain insights about longitudinal molecular patterns. Parallel
measures of established biomarkers of neurodegeneration, such as neurofilament lite, would also
strengthen the evidence for miRNA pathophysiology in recurrent concussions.

Conclusions

The current study provides evidence that saliva miRNAs may provide molecular information
about the underlying pathophysiology linking recurrent concussions with chronic symptoms. Here,
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we identified three concussion-related miRNAs with unique signatures in both younger individuals
with prior concussion and older former professional football athletes with a history of recurrent head
impacts. Used in conjunction with objective balance tests, non-invasive measurement of these miRNAs
may have utility to identify individuals at risk for chronic concussion symptoms.

4. Materials and Methods

Ethical approval for this study was provided by an independent institutional review board
(Western IRB Study #1271583). Institutional approval was also provided by institutional review boards
at the Penn State College of Medicine (STUDY00003729). Written, informed consent was obtained for
all participants.

4.1. Participants

This study involved two analysis groups: (1) a case-control comparison between 13 former
professional American football athletes and 18 age/gender-matched controls (ages 46–89 years); and (2)
a cross-sectional study of 310 individuals (ages 7–39 years) who provided a complete history of
past concussions. Exclusion criteria for all participants were any concussion in the past 90 days,
primary language other than English, pregnancy, active periodontal disease, ongoing neurologic
disorder (e.g., epilepsy, multiple sclerosis, cognitive impairment, or movement disorder), drug or
alcohol dependency, or active upper respiratory infection. Concussion history, medical history, and a
single saliva sample were collected from each participant, and a subset of participants completed
computerized balance and neurocognitive testing.

The objective of Group 1 was to identify saliva miRNAs that might be uniquely impacted by
recurrent concussions sustained during years of participation in professional American football.
Participants included a convenience sample of 13 former professional football athletes, enrolled
between September 2018 and January 2020 at the National Football Hall of Fame in Canton, Ohio.
Medical characteristics and saliva miRNA from these participants were compared against a control
group of 18 individuals without a history of professional sports participation. The control group
included healthy volunteers, recruited from the State University of New York (SUNY) Upstate Medical
University. The control group was matched to the professional football group by age and sex.

The objective of Group 2 was to determine whether the candidate miRNAs identified in Group 1,
would demonstrate relationships with history of past concussions among children and young adults.
All 310 participants were enrolled as part of a larger parent study of mild traumatic brain injury
between September 2017 and February 2020 at nine institutions: Bridgewater College (Bridgewater, VA,
USA; n = 20), Colgate University (Hamilton, NY, USA; n = 67), the United States Army (Fort Benning,
GA, USA; n = 29), Marist College (Poughkeepsie, NY, USA; n = 25), Penn State University (Hershey, PA,
USA; n = 112), New York Institute of Technology (NYIT; Old Westbury, NY, USA; n = 36), SUNY Upstate
Medical University (Syracuse, NY, USA; n = 5), Syracuse University (Syracuse, NY, USA; n = 9),
and Temple University (Philadelphia, PA, USA; n = 7). Participants in Group 2 were enrolled at
affiliated athletic training clinics and medical clinics. Athletes provided samples in a resting state
(prior to sports participation). Participants included athletes involved in football, soccer, lacrosse,
mixed martial arts, hockey, crew, and distance running. Concussion history was collected from all
Group 2 participants via self-report, and confirmed wherever possible through the electronic medical
record. Participants were divided into those with (n = 80) or without (n = 230) a history of concussion.
Among those with a prior concussion, there were 56 participants with a history of a single concussion,
and 24 participants with a history of recurrent concussions (i.e., 2 or more concussions).

4.2. Measures

Trained research staff collected medical and demographic information for each participant,
including sex (male/female), age (years), race (White, Black or African American, Asian, American
Indian or Other), body mass index (kg/m2), and neuropsychological conditions (presence/absence
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of attention deficit hyperactivity disorder (ADHD), anxiety, depression). All participants reported
presence/absence of any previous concussion, and the number of previous concussions. Computerized
balance and neurocognitive assessment was performed for a subset of all participants (Group 1:
n = 28, 90%; Group 2: n = 149, 48%) using the ClearEdge system (Quadrant Biosciences Inc., Syracuse,
NY, USA). A subset of Group 1 participants (n = 18, 58%) completed standardized olfactory testing
using the Brief Smell Identification Test (BSIT). Finally, for the professional football athletes in Group
1 (n = 13), current concussion-like symptoms were assessed on a 6-point Likert scale using the
Post-Concussion Symptom Scale (PCSS) and total symptom severity (sum of all Likert scores), and total
symptom burden (sum of all symptoms >0) were calculated. Former professional football athletes
also reported position played, years of playing, presence/absence of chronic symptoms that might
result from recurrent concussions (i.e., cognitive impairment, impulsivity, apathy, short-term memory
difficulty, and emotional instability), and total number of suspected concussions (both diagnosed and
undiagnosed). This last element was incorporated to capture potential brain trauma that may not have
been disclosed or identified in an earlier era when concussion reporting and treatment guidelines were
less uniform [40].

4.3. Saliva RNA

Saliva was collected from each participant in a non-fasting state after oral tap-water rinse,
using OraCollect Swabs (DNA Genotek, Ottowa, Canada). All samples were collected between 7 AM
and 7 PM, and stored following manufacturer instructions. RNA was isolated from each saliva sample
with the miRNeasy Kit (Qiagen, Inc., Germantown, MD, USA) at the Molecular Analysis Core Facility
at SUNY Upstate Medical University. This approach enriches for small, non-coding RNA, which are
predominantly contained within exosomes, but it does not specifically isolate neuronal exosomes.
Quality of RNA was evaluated with the Agilent Technologies Bioanalyzer on the RNA Nanochip.
The TruSeq Small RNA Library Prep Kit (Illumina Inc., San Diego, CA, USA) was used to prepare RNA
libraries. Sequencing of 50 base pair single end reads was performed on a NextSeq 500 (Illumina Inc.,
San Diego, CA, USA), at a targeted sequencing depth of 10 million reads per sample. Fastq files were
trimmed to remove adapter sequences using Cutadapt (v1.2.1; ([41]) and were aligned using Bowtie
(version 1.0.0; ([42]) to miRBase22. Quantification was performed via SamTools (Li et al., 2009; python
implementation, pysam 0.15.2) with a custom-built bio-informatics architecture (Human Alignment
Toolchain, HATCH; Quadrant Biosciences Inc., Syracuse, NY, USA). The miRNA features with low
salivary expression (raw read counts < 10 in > 10% of samples) were excluded. The remaining
264 miRNAs were quantile normalized. Each miRNA feature was scaled through mean centering and
dividing by the feature standard deviation.

4.4. Statistics

Medical and demographic characteristics were compared between professional football athletes
(n = 13) and control participants (n = 18; Group 1), as well as concussion (n = 80) and non-concussion
participants (n = 230; Group 2) using a two-tailed Student’s t test. A one-way analysis of variance
(ANOVA) was used to assess differences in balance, neurocognitive, and smell testing among
professional football athletes and controls (Group 1), as well as differences in balance and neurocognitive
testing among concussion and non-concussion participants (Group 2). To comparative the relative
ability of balance assessment, neurocognitive testing, and miRNA profiles for differentiating former
professional football athletes and controls, a partial least squares discriminant analysis was used. Next,
to identify miRNA candidates whose expression might reflect years of recurrent concussion exposure,
levels of the 264 miRNAs with robust salivary levels were compared among professional football
athletes and control participants (Group 1), using a non-parametic one-way ANOVA. Next, the miRNA
features with significant differences (adj. p < 0.05) in Group 1 were compared among individuals
with or without a history of concussion (Group 2) via non-parametric one way ANOVA. All ANOVA
comparisons were subjected to multiple testing correction with the Benjamini-Hochberg method.
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Finally, we examined miRNAs with significant differences (adj. p < 0.05) in both Group 1 and Group 2
for a relationship with recurrent concussions. For all Group 2 participants, a regression analysis was
used to assess the relationship between levels of each miRNA and the number of previous concussions
(0: n = 230; 1: n = 56; 2 or more: n = 24), while controlling for age and sex. Physiologic relevance of these
miRNA candidates was assessed in DIANA miRPATH v3.0 online software (University of Thessaly,
Volos, Greece, [43]) by mapping high confidence messenger RNA targets in Tarbase, and assessing
over-representation of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways through a Fishers
Exact Test with Bonferroni correction. Brain relatedness of miRNA candidates was assessed using the
Human miRNA Tissue Atlas [44]. All other statistical analyses were performed using Metaboanalyst
v4.0 online software (McGill University, Montreal, Quebec, Canada; [45]) and Jamovi v1.1.9 (The jamovi
project, 2020, https://www.jamovi.org). A post-hoc power analysis employing measures of standard
deviation among salivary miRNAs from our previous concussion studies determined that the sample
size in Group 1 provided 80% power to detect a 1.5-fold difference between 264 miRNAs, with a
per-gene alpha value of 0.049. The sample size in Group 2 provided 98% power to detect a 1.5-fold
difference between the 20 miRNA candidates, with a per-gene alpha value of 0.50.
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