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Arterial input function (AIF) is estimated from perfusion images as a basic curve for
the following deconvolution process to calculate hemodynamic variables to evaluate
vascular status of tissues. However, estimation of AIF is currently based on manual
annotations with prior knowledge. We propose an automatic estimation of AIF in
perfusion images based on a multi-stream 3D CNN, which combined spatial and
temporal features together to estimate the AIF ROI. The model is trained by manual
annotations. The proposed method was trained and tested with 100 cases of perfusion-
weighted imaging. The result was evaluated by dice similarity coefficient, which reached
0.79. The trained model had a better performance than the traditional method. After
segmentation of the AIF ROI, the AIF was calculated by the average of all voxels in
the ROI. We compared the AIF result with the manual and traditional methods, and the
parameters of further processing of AIF, such as time to the maximum of the tissue
residue function (Tmax), relative cerebral blood flow, and mismatch volume, which are
calculated in the Section Results. The result had a better performance, the average
mismatch volume reached 93.32% of the manual method, while the other methods
reached 85.04 and 83.04%. We have applied the method on the cloud platform,
Estroke, and the local version of its software, NeuBrainCare, which can evaluate the
volume of the ischemic penumbra, the volume of the infarct core, and the ratio of
mismatch between perfusion and diffusion images to help make treatment decisions,
when the mismatch ratio is abnormal.

Keywords: AIF, multi-stream, 3D CNN, perfusion, MRI

INTRODUCTION

In recent years, ischemic stroke has become a tremendous health problem all over the world
(Naghavi et al., 2017). Stroke incidence in China has increased yearly and stroke has become the
leading cause of death (Li et al., 2015; Zhou et al., 2016). The key to the treatment of stroke is
to rescue the ischemic penumbra using advanced imaging techniques, such as CT/MR perfusion
imaging (Hakim, 1998). However, physicians in suburban hospitals cannot accurately identify the
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ischemic penumbra due to the lack of experience in imaging
interpretation, leading to significant delays in stroke treatment.
Hence, enhancing the capabilities of physicians capabilities
coming from these hospitals is of great significance (Bjørnerud
and Emblem, 2010). In this study, we aimed to setup a platform
based on novel arterial input function (AIF) methodology
on perfusion CT/MRI which enables automatic ischemic
penumbra evaluation.

Perfusion-weighted imaging (PWI) can be used to assess
perfusion parameters for noninvasive diagnosis of stroke
conditions. This method involves monitoring the continuous
changes of the time density curves (TDCs) of a bolus tracer
passing though the capillary bed over time. Quantitative analysis
using dynamic susceptibility contrast (DSC) MRI perfusion
requires determination of the AIF, which is the concentration
of the contrast agent over time in a brain-feeding artery.
The tissue TDC can be considered as a convolution of the
response function with the AIF. To analyze ischemic tissue, the
response function which can be calculated by deconvolution with
the AIF is necessary. We operated a deconvolution with the
TDC on each voxel to obtain hemodynamic maps containing
cerebral blood flow (CBF), cerebral blood volume (CBV), time
to maximum of the tissue residue function (Tmax), and mean
transit time (MTT). The characteristic TDC of a voxel in a
major arterial vessel (like the Basal Artery or the Internal
Carotid Artery) is considered as AIF, which is known as a
reference curve to calculate hemodynamic maps. The AIF is a
key reference curve used in the deconvolution model to obtain
quantitative CBF, CBV, Tmax, and MTT estimation. As it is
the reference curve, AIF has a great influence on the result of
the deconvolution operation. To improve reliability, quality, and
reproducibility of the AIF estimation, several approaches have
been proposed, including alternative measurement techniques
such as application of imaging protocols or data processing.
Lorenz and Calamante proposed a local AIF extraction method
to replace the global AIF (Grüner et al., 2006; Lorenz et al., 2006;
Willats et al., 2011). R. Gruner used the theory of homomorphic
transformations and complex cepstrum analysis to obtain a
voxel-specific AIF (Lorenz, 2004). Murase estimated the AIF
using fuzzy clustering for quantification of CBF (Calamante et al.,
2004). Chen incorporated knowledge about artery structure, fluid
kinetics, and the dynamic temporal property to find the AIF
(Zhu et al., 2011). Peruzzo et al. (2011) draws a ROI, then uses a
recursive cluster analysis on the ROI to select the arterial voxels.
From all these previous studies we realized that deep learning
has not yet been used for AIF extraction, and therefore we
proposed a network to extract the AIF and compared our method
with the traditional method and a combination of Unet3D and
fuzzy c-means.

The AIF obtained from a single voxel or a small region is
not reliable enough, since noise in spatial measurements and
motion in temporal measurements affect the AIF estimation.
Therefore, it is more appropriate to extract the AIF in a
region or volume (Bleeker et al., 2011; Shi et al., 2014). In
addition, the spatial resolution of perfusion sequences is low,
making it difficult to identify vessels. Therefore, the selection of
AIF depends on the expertise, experience, and skill of experts.

High time consumption and low reproducibility are the biggest
disadvantages of manual selection of the AIF. Some approaches
have been proposed to partially or fully automate AIF estimation
(Alsop et al., 2002). Murase et al. (2001), Van Osch et al. (2001),
and Duhamel et al. (2006) extracted the AIF using cluster method,
but a ROI should be marked manually prior to AIF extraction.
Reishofer et al. (2003) extracted the AIF by classification using
criteria which involved inherent features of the arterial input,
such as an early bolus arrival and a fast passage, as well as a high
contrast agent concentration.

MATERIALS AND METHODS

Manual Arterial Input Function
Annotation
For manual AIF annotation, the investigator selects an AIF with
the cursor and marks the position of the AIF on the PWI data.
In the meanwhile he checks the corresponding concentration
curve of the bolus tracer. The investigator first selects a region
of interest associated with the main feeding vessel, such as the
middle cerebral artery. The TDC is displayed according to the
pixel as the cursor moves. The investigator determines the pixel
location in the region of interest, when the curve is consistent
with the AIF characteristics. Subjectively, the ideal AIF is defined
as a curve with large amplitude, small width, fast attenuation, and
it can also be described as a gamma variate function fitted to the
bolus tracer TDC.

3D Convolution
In a 2D network, convolutions only compute features in a plane
on the images. It is not applicable to perfusion data analysis,
which must extract features in multiple volumes on spatial
dimensions and features in multiple frames on the temporal
dimension, since 2D convolution can only compute features on
static images. 3D CNN is more efficient for temporal features
learning than 2D convolution (Prasoon et al., 2013; Kamnitsas
et al., 2015; Pereira et al., 2015).

Multi-Stream 3D CNN
Perfusion data are 4D data, both spatial and temporal features
play an important role in AIF ROI estimation. 3D convolutions
alone cannot perform well in the temporal dimension. Since
perfusion data are 4D data, it is difficult to process it in a single
network. In order to fuse spatial features with temporal features
into our network, we applied a multi-stream 3D CNN that
processes information on both dimensions. Thus, our network
performs operations on the input volume data in both streams
simultaneously. Spatial features such as location information in
brain tissue are extracted in the first stream, while temporal
features such as the TDC information are captured in the second.

The spatial network operates on spatial volumes with a size
of f × s × w × h, where f denotes the number of frames, s
denotes the number of slices, and w and h denote the width and
height of a single slice. The static appearance by itself is a useful
clue, since some features are strongly associated with arteries.
A spatial network is essentially a classification or segmentation
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architecture. The spatial network consists of eight convolution
layers, five max-pooling layers, and two fully connected layers,
followed by a softmax output layer. Convolution layers are all
using 3D convolution with 3× 3× 3 kernels and stride 1 in each
dimension. The number of filters in each of the eight convolution
layers is 64, 128, 256, 256, 512, 512, 512, and 512, respectively. All
max-pooling layers are using 3D pooling with 2 × 2 × 2 kernels,
because the cube is treated as a 3D volume. There are 4096 units
in both fully connected layers.

The temporal network operates on data frames with a size of
s× f ×w× h, where s denotes the number of slices, f denotes the
number of frames, and w and h denote the width and height of a
single slice. This network is therefore different from the spatial
network. The dynamic information is obtained to measure the
TDC. The temporal network consists of convolution layers, max-
pooling layers, and fully connected layers, with numbers of layers
of 8, 5, and 2, respectively; and followed by a softmax output layer.
All convolution kernels and strides are the same as in the spatial
network. All pooling layers have 2× 2× 2 kernels, except the first
max-pooling layer with a 2 × 2 × 1 kernel, and stride 2 × 2 × 1,
in order to retain the temporal information in the early stage and
avoid losing it in the convolution process, since the cube is treated
as a frame volume. There are 4096 units in both fully connected
layers. Each stream is implemented using a 3D CNN, the softmax
function converts a raw value into a posterior probability as a
softmax score, and softmax scores of each stream are combined
by late fusion. The fusion method we chose is the linear support
vector machine (SVM) instead of a full connected layer.

The 3D CNN is shown in Figure 1. Since the spatial network
and the temporal network are similar, we illustrated only one 3D
CNN network. The multi-stream network is shown in Figure 2.

PWI data are arranged in the order of frame volumes, as
shown in Figure 3. We rearranged the data in two dimensions,
slice and frame. Spatial network input should be arranged frame
by frame and slice by slice to locate the ROI. Temporal network
input should be arranged slice by slice and then frame by frame,
since AIF curves can only be extracted from time series, as
shown in Figure 4.

Training
The training of the multi-stream 3D CNN framework for
the segmentation of the AIF is done in two steps: manual
labeling ROI’s perfusion data and auto-labeling based on
similarities among the TDCs.

For labeling, we first proceeded to a manual annotation of the
ROI which is used to extract the AIF. Thereafter, we calculated
the similarity between the TDCs and the AIFs in a neighborhood,
then we input the label into the framework. We labeled each
volume into two classes of regions, namely AIF vessels and no
AIF vessels, respectively.

We constructed an architecture in this paper to segment
the AIF vessels in the perfusion volume. The input image is
the 3D volume region. To improve the performance of the 3D
CNN in this case, we built the multi-stream model with the
spatial and temporal networks. Then, the final probability map
is fused together. The loss function over all training datasets
was minimized through a mini-batch gradient descent approach,

and the minimum batch size was 50 inputs. The spatial learning
process goes through 50 epochs with a learning rate of 0.001 and a
gradient momentum of 0.9. The same parameter settings are used
for epoch number, learning rate, and gradient momentum in the
temporal learning process.

Arterial Input Function Extraction
After the segmentation of the AIF vessels, we calculated the AIF
by averaging all TDCs of voxels in the classified vessels.

EXPERIMENTS

Data Preparation and Pre-processing
In this study, we collected 100 PWI cases in which 30 were healthy
cases and 70 were stroke cases. They were used to train and
evaluate the performance of the different methods. Sixty PWI
cases among the total dataset were acquired on a 1.5T Discovery
MR750 GE MRI scanner with contrast agent at a parameter
setting of a TE = 2.6 ms, a TR = 22 ms, and a flip angle = 20-
degree. The voxel size is 0.43× 0.43× 5.00mm3, and each
volume contains 512× 512× 20× 50 voxels, corresponding to
the width, the height, the number of slices, and the number
of frames, respectively. The other 40 PWI cases were acquired
on a 3T Verio SIEMENS MRI scanner with contrast agent at a
parameter setting of a TE = 3.6 ms, a TR = 21 ms, and a flip
angle = 18-degree, their voxel size is 0.43× 0.43× 6.50mm3 and
each volume size is 512× 512× 18× 35.

The preprocessing for perfusion data includes skull removal,
motion correction, slice time correction, spatial smoothing,
global drift removal, which are general preprocessing stages
for perfusion data. To reduce the impact of the brain skull,
each dataset was preprocessed to remove the brain skull using
the BET2 method (Wels et al., 2009). Motion correction was
performed by registering all the volumes in the time series with
the multiplicative intrinsic component optimization algorithm
(Studholme et al., 1999). We used interpolation to obtain the
data of brain slices at the same time point. Spatial smoothing is
mainly achieved by low-pass filtering, since many researchers use
Gaussian filtering or average filtering, which performances have
almost no difference with the BM3D and NLM denoizing results
in estimating the AIF.

Hardware Settings
In this paper, our experiments were implemented, respectively,
using MATLAB 2017b and Python 3.0 in Window 10 OS.
Environments were made on a desktop computer with eight
Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50 GHz processers, 32 GB
of RAM memory, and NVIDIA GeForce GTX 1080.

Evaluation Method
Network Evaluation
Although manual annotations of 100 cases of PWI sequences
require a considerable amount of time, in each case we
manually segmented the vessels of MIP images on axial planes.
The performance of the proposed method in cerebrovascular
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FIGURE 1 | Single 3D CNN network architecture. The 3D CNN network architecture includes eight convolutional layers, five pooling layers, and two full connected
layers.

FIGURE 2 | Multi-stream 3D CNN network. Each stream is a 3D CNN network, and the streams are combined by a fusion layer using linear SVM.

segmentation is evaluated by comparing MIP post-processed
binary images of the proposed method with manual annotations
of images on axial planes. Because MIP images on axial
planes display most of the blood vessels, the comparison
of MIP binary images on axial planes can better illustrate
cerebrovascular segmentations differences between the proposed
method and manual annotations. Therefore, we evaluated the
binary classification performance of our proposed method with
parameters such as the accuracy, the sensitivity, the specificity,
the precision, and the dice similarity coefficient (DSC), defined
as DSC = 2|A∩B|

(|A|+|B|) , where A and B are ground-truth and
segmentations of the AIF, respectively. DSC ranges from 0 to 1.

AIF Evaluation
Fuzzy c-means is widely used in determination of the AIF (Jipkate
and Gohokar, 2012). Fuzzy c-means clustering was applied to
the TDCs, which can be regarded as n-dimensional vectors, n
denoting the frame number of the perfusion data. These vectors
were grouped into different clusters. The cluster centroids and the

membership matrix were iteratively updated until convergence.
A cost function is used to find a cluster closest to the ideal AIF.

Unet3D is a deep learning network applied to 3D data and
widely used in biomedical image segmentation. We calculated
the maximal intensity projection on the temporal dimension.
Then, we segmented the blood vessels by Unet3D and applied
fuzzy c-means to determine the AIF only in blood vessels
segmented by Unet3D.

Since there is no standard dataset with labeled AIF ROIs,
we can only compare all methods with the manual method.
The result of the manual method is considered as ground-
truth. However, this comparison is not convincing enough, so
we compared the further process result by deconvolution: Tmax
and rCBF; and it is more persuasive. Subjectively, a single blind
investigator will evaluate the shape and location of the AIF result.

The regions in which Tmax is >6 s are considered ischemic
regions. CBF is significantly lower in the ischemic region than in
the contralateral healthy region. Perfusion–diffusion mismatch is
used to identify penumbra in acute stroke. When the apparent
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FIGURE 3 | Data sequence order. The sequence is arranged slice by slice in each frame and then arranged frame by frame.

FIGURE 4 | Arterial input function (AIF) curve extracted from time series. The red point shows the location where AIF is extracted, the value of PWI decreases first
and then increases with time.

diffusion coefficient (ADC) is less than 620, the corresponding
region is defined as an infract core in our application. The
ischemic region beyond the infarct core is considered to be

the ischemic penumbra. Mismatch ratio is the ratio of ischemic
penumbra volume to core infarct volume. The larger the ratio
is, the more tissues can be saved by treatment. Since the infarct
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FIGURE 5 | AIF ROI on each AIF masked on MIP in a single slice. (A) Manual, (B) MS3DCNN, (C) Fuzzy c-means, and (D) U-Net3D + fuzzy c-means, from left to
right.

TABLE 1 | Comparison of DSC value between the automated AIF estimation methods.

Methods Accuracy Sensitivity Specificity Precision DSC

Fuzzy c-means 0.9947 0.5073 0.9997 0.9472 0.6141±0.155

U-Net3D + fuzzy c-means 0.9983 0.7620 0.9993 0.8405 0.7941±0.048

MS3DCNN 0.9982 0.7967 0.9991 0.7981 0.7966±0.035

cores were the same in our case, we compared the volumes of the
ischemic penumbra and the mismatch ratio obtained by the AIF
results, which are presented in our method and the other methods
mentioned above.

RESULTS

We show an example of MIP images on temporal dimensions first
and then on spatial dimensions.

The AIFs were estimated by different methods: manual,
MS3DCNN, fuzzy c-means, and U-Net3D + fuzzy c-means.
Subjectively, a single blinded investigator, who is a Doctor of
Medicine working in the Department of Radiology in Xuanwu
Hospital of Capital Medical University, which has a high level of
neurosurgery and neurology, evaluated the results. Objectively,
we compared the AIF location, the curve characteristics of AIF,

the perfusion maps, and the mismatch volume estimated by all
the other three methods with the same corresponding parameters
but estimated by the manual method, respectively.

The AIF Location
We obtained each AIF ROI on the maximum density projection,
and we compared them, as shown in Figure 5.

Subjectively, the AIF extraction location of all samples
calculated by our method in this paper is similar to that of the
manual annotation. And since the manual annotation of each
doctor will be different, hence the investigator believes that the
ROI results of MS3DCNN can be consistent with those obtained
from manual annotation.

Objectively, we compared the manual annotated AIF location
with those from the three other methods. DSC values were
estimated by comparing cerebrovascular segmentations of the

FIGURE 6 | AIF estimated by manual method, multi-stream 3DCNN, Unet3D + fuzzy c-means, and fuzzy c-means. AIF obtained by multi-stream 3D CNN is closest
to the manual AIF.
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MIP images in axial planes with the corresponding manual
ground-truths. Values in each column are the average of the
testing dataset, as shown in Table 1. Our method has the highest
DSC, with a value of 0.7966, while the average DSC value
of widely used fuzzy c-means method is only 0.6141, which
demonstrates that our method is closest to the ROI of manual
annotation. The result was highly consistent with the subjective
evaluation of the investigator.

The Curve Characteristics
Subjectively, the curve of AIF also conformed to the
morphological characteristics mentioned above, such as
large amplitude, small width, fast attenuation, and gamma-like
shape. In all cases, the investigator believed that AIF obtained
by MS3DCNN can have the characteristics mentioned above,
as shown in Figure 6. The AIF automatically extracted can be
involved in the following perfusion processing by deconvolution.

Due to the different conditions of the patients, including
the physical condition, the severity of the disease, the contrast
injection time, and the time to start the scan, it is difficult to
make statistical analysis of the parameters obtained by direct
comparison. So, we only compared the differences of the curve
parameters between the AIF extracted by the three automated
methods and the AIF extracted by the manual method. The
characteristics are amplitude, the center position, and the crest
width, so the differences are represented by 1amplitude, 1center,
and 1width. Although we processed all the samples, considering
the great number of samples, we only showed 20 of them in
Table 2, and calculated the mean and standard deviation for each
difference of the parameters, as shown in Table 3. Compared with
other methods, MS3DCNN has larger amplitude, higher peak
position, fast attenuation, and narrower curve width.

We calculated the similarity of the curves between each
automated method and the manual method. The similarity is
calculated by Frechet distance, which is greater than or equal to
0. The smaller the Frechet distance between two curves is, the
more similar they will be. For better statistical analysis, all the
curves should be on the same scale. They were normalized by
the peak value of the manual extracted AIF, so the curve value
of manual extracted AIF is between 0 and 1, as a reference. The
similarity of all samples was calculated and the means and the
standard deviation of the similarity were obtained. The mean
value of the similarity of our method was lowest, with the
value of 0.83, indicating that MS3DCNN method is the closest
to the manual method. The standard deviation of our method
was also the lowest, with the value of 0.13, indicating that this
method is more stable.

The Perfusion Maps
We calculated the response curve to the AIF of each pixel in
each sample by deconvolution. Then we calculated the time to
peak of response curves as Tmax, and normalized maximum
slope as rCBF, collectively known as perfusion maps, as shown
in Figures 7, 8.

After observing the perfusion maps and analyzing the patient’s
medical history, the investigator concluded that the perfusion
maps could be used for diagnosis. The distribution of rCBF

TABLE 2 | The difference of curve characteristics between the MS3DCNN and
the manual method.

Sample 1amplitude (a.u.) 1center (s) 1width (s)

1. 21.51 0.68 0.33

2. 17.08 1.31 0.16

3. 11.83 0.15 0.77

4. 19.74 0.58 0.36

5. 47.47 2.97 1.22

6. 11.38 0.31 0.87

7. 29.05 0.38 1.27

8. 37.21 0.56 0.67

9. 12.82 0.11 0.75

10. 32.60 1.29 0.38

11. 25.21 0.78 0.16

12. 4.31 2.64 2.14

13. 1.23 0.23 0.29

14. 27.29 2.45 0.23

15. 15.25 0.18 0.06

16. 17.82 0.35 1.35

17. 2.70 5.24 2.17

18. 25.51 1.08 0.46

19. 19.26 0.61 0.08

20. 11.77 0.70 0.86

Mean 19.10 1.08 0.71

SD 11.04 1.23 0.59

TABLE 3 | Mean and standard deviation of the difference between the automated
methods and the manual method.

Method 1amplitude
(a.u.)

1center (s) 1width (s)

MS3DCNN Mean 18.12 1.05 0.72

SD 11.16 1.21 0.59

Fuzzy c-means Mean 14.08 1.31 0.90

SD 12.32 1.43 0.75

U-Net3D + fuzzy
c-means

Mean 13.98 1.36 0.73

SD 12.21 1.31 0.60

and Tmax maps obtained by the same deconvolution processing
based on the AIF extracted by our method is basically the same
as that of the manual method, the location of ischemic regions
can be clearly located through the perfusion maps, while the
other two methods have lower Tmax and rCBF, which leads us
to underestimate of the size of the ischemic penumbra and the
severity of ischemia, respectively.

We still took the perfusion maps calculated by AIF extracted
manually as the reference, and made an objective comparison by
calculating the difference between the perfusion maps calculated
based on AIF extracted by each automatic method and those
calculated based on AIF extracted by the manual method. The
mean and standard deviation of differences between rCBFs and
Tmaxs are shown in Table 4, represented by 1rCBF and1Tmax.

The Tmax and rCBF values obtained by our method are
larger than those obtained by the other two methods, and their
performance is consistent with that AIF. The values of Tmax and
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FIGURE 7 | rCBF calculated by AIF from (A) Manual, (B) MS3DCNN, (C) fuzzy
c-means, and (D) U-Net3D + fuzzy c-means in each column from left to right.

rCBF are both superior to the latter two methods due to the lower
time to peak and the larger peak value of the AIF.

The Mismatch
We applied our method on a cloud platform, Estroke, http://
www.medimagecloud.com/rsplatform/, and the local version of
its software, NeuBrainCare, which can calculate the penumbra for
stroke perfusion.

We defined the region with Tmax >6 s as the ischemic region,
and the region with ADC which is an additional sequence, less
than 620 as the infarct core. The difference between the two
volumes was defined as the mismatch volume, and the mismatch
volume divided by the ADC < 620 was defined as the mismatch
ratio. The larger the mismatch ratio is, the bigger is the volume
of brain tissue that can be saved. A mismatch annotation and
information was shown in Figure 9, including Tmax > 6 volume
(green regions), ADC < 620 volume (red regions), mismatch
volume, and mismatch ratio.

The infarct core cannot be found in the image of many
samples, so this ratio will be infinite, and for different methods,
the ischemic area will be different because of the AIF extracted
by different method, but the infarct core based on the ADC is the

FIGURE 8 | Tmax calculated by AIF from (A) Manual, (B) MS3DCNN, (C)
fuzzy c-means, and (D) U-Net3D + fuzzy c-means in each column from left to
right.

TABLE 4 | The difference of Tmax and rCBF between the automated methods
and the manual method.

Method 1Tmax (s) 1rCBF (a.u.)

MS3DCNN Mean 0.79 0.76

SD 0.10 0.11

Fuzzy c-means Mean 0.43 0.49

SD 0.20 0.28

U-Net3D + fuzzy c-means Mean 0.39 0.43

SD 0.29 0.24

same. This is the reason we did not compare mismatch ratios, but
only compared the mismatch volumes.

The mismatch volume depends on the severity of the stroke.
For example, some samples have only small ischemic areas, and
others have an entire brain hemisphere tissues with ischemia,
there is a huge difference between such samples. For this reason
we calculated the mean of the mismatch volumes for all samples
with stroke in each method, but without standard deviation,
and the ratio to the manual method as the reference was also
calculated, as shown in Table 5. The result of our method is the
closest to the manual method, with a ratio reaching 93.32%.
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FIGURE 9 | Stroke analysis results of the ischemic region, the infarct core, the mismatch volume, and the mismatch ratio. The infarct core was marked in magenta
while the ischemic region was marked in green.

DISCUSSION

CNN models are deep learning models which have been widely
used for object recognition and segmentation. They are usually
trained with a large amount of images labeled by humans. But
this has not yet been applied for AIF estimation. While automatic
AIF estimation only relies on and is heavily influenced by one’s
prior knowledge, most of the traditional segmentation methods
are unsupervised. These last ones can only extract objects based
on observable or expressed features using prior knowledge. In
this study, we applied a multi-stream 3D CNN to find the AIF
ROI, then we calculate the average curve as AIF.

According to our experimental results, multi-stream 3D
CNN has a good performance in AIF ROI segmentation.
Different blood vessels share many similar features such as
their shapes, while their differences mainly are intensity contrast
and vessel thickness. On the timeline, the changes of each
voxel are continuous and have large amplitude, small width,
fast attenuation, and gamma-like shape. The network extracts
features from both the spatial and the temporal parts, followed
with a fusion classification to output the result. Moreover, to

TABLE 5 | The average mismatch volume and ratio to reference of the automated
methods and the manual method.

Method Average mismatch
volume (ml)

Ratio to
reference (%)

Manual (reference) 48.52 100

MS3DCNN 45.27 93.32

U-Net3D + fuzzy c-means 41.26 85.04

Fuzzy c-means 40.29 83.04

improve the robustness of the proposed method for different kind
of perfusion images, we included from both 1.5T GE and 3.0T
SIEMENS, images of healthy and ischemic brain tissue in the
training dataset.

Because manual annotations from public datasets were not
available, hence we decided to directly compare our method
to other network-based segmentation methods. We therefore
compare our method to a traditional method, and to a
network pre-process method followed by a traditional method.
However, in terms of Dice numbers, our unsupervised method
shows great potential to perform AIF ROI segmentation.
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RAPID is a currently available commercial software which
can measure ischemic penumbra. It has been proved effective in
several international multicenter clinical trials (Lansberg et al.,
2017; Albers et al., 2018; Guenego et al., 2018; Nogueira et al.,
2018). The rate of severe disability and death was reduced from 42
to 22% in the thrombectomy group with this advanced imaging
software. In our study, our method was applied to Estroke,
a cloud-based platform, and the local version of its software,
NeuBrainCare, and it could evaluate ischemic penumbra as
accurate as RAPID with the datasets from more than 40
hospitals in China. AIF methodology improves the confidence of
physicians from suburban hospitals.

CONCLUSION

We proposed a new multi-stream 3D CNN network to estimate
AIF in brain perfusion images. The model was trained by the
labels obtained from manual annotations and similar ROIs based

on annotations, which is cost effective in terms of manual
efforts. This segmentation framework had a good performance
evaluated on perfusion images. The AIF estimation also had a
good performance evaluated on PWI data.
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