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ABSTRACT Ortholog detection (OD) is a lynchpin of most statistical methods in comparative genomics.
This task involves accurately identifying genes across species that descend from a common ancestral
sequence. OD methods comprise a wide variety of approaches, each with their own benefits and costs
under a variety of evolutionary and practical scenarios. In this article, we examine the proteomes of ten
mammals by using four methodologically distinct, rigorously filtered OD methods. In head-to-head
comparisons, we find that these algorithms significantly outperform one another for 38–45% of the genes
analyzed. We leverage this high complementarity through the development MOSAIC, or Multiple Ortho-
logous Sequence Analysis and Integration by Cluster optimization, the first tool for integrating methodo-
logically diverse OD methods. Relative to the four methods examined, MOSAIC more than quintuples the
number of alignments for which all species are present while simultaneously maintaining or improving
functional-, phylogenetic-, and sequence identity-based measures of ortholog quality. Further, this im-
provement in alignment quality yields more confidently aligned sites and higher levels of overall conser-
vation, while simultaneously detecting of up to 180% more positively selected sites. We close by
highlighting a MOSAIC-specific positively selected sites near the active site of TPSAB1, an enzyme linked
to asthma, heart disease, and irritable bowel disease. MOSAIC alignments, source code, and full documen-
tation are available at http://pythonhosted.org/bio-MOSAIC.

KEYWORDS
multiple
sequence
alignment

ortholog
detection

comparative
genomics

positive selection
open source
software

Orthologs are genes that derive from a common ancestral gene but that
have diverged from one another through speciation. This route is in
contrast to paralogs, which arise through gene duplication within
a given genome. It is common in comparative genomics and phylo-
genetics to extract evolutionary information about a particular gene
from its alignment with orthologous sequences. To enable this analysis,
orthologs must first be inferred, making ortholog detection (OD) an

indispensible first step in a variety of phylogenetic inference tasks
(Ciccarelli et al. 2006; Yandell and Ence 2012).

In general, existing OD methods can be classified as tree-based,
graph-based, or a hybrid of the two (Altenhoff and Dessimoz 2012).
Tree-based methods may use reconciliation techniques between gene
and species trees or may rely on the gene tree alone. Graph-based
methods can use a variety of metrics to quantify similarity between
sequences, including Basic Local Alignment Search Tool (BLAST)
scores or sequence identity. Information about the conserved gene
neighborhood also may be included in this context. Techniques such
as Markov clustering may then be applied to create orthologous
groups, or one may simply define clusters based on a graph’s existing
connections (Kuzniar et al. 2008).

Unfortunately, the few benchmarking studies that have sampled
broadly from this methodologic diversity have provided equivocal
results. Although there are general patterns in relative effectiveness
between methods, performance is highly context-dependent and does
not always favor more sophisticated approaches (Hulsen et al. 2006;
Chen et al. 2007; Altenhoff and Dessimoz 2009a). This is discouraging
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from the point of view of identifying a single best OD method, but it
also suggests a new and relatively facile avenue for methodologic
improvement. By harnessing differences between OD methods, a wide
variety of algorithms may play complementary roles within a cooper-
ative inference framework.

We begin our analysis with a comprehensive comparison of four
popular and methodologically distinct OD methods: (1) MultiParanoid,
a reciprocal-BLAST plus Markov clustering method (Alexeyenko et al.
2006); (2) TBA, a synteny-based aligner used to produce University of
California Santa Cruz’s MultiZ alignments (Blanchette et al. 2004); (3)
six-frame translated BLAT, a fast, approximately-scored protein query
approach that does not rely on predicted proteomes (Kent 2002); and
(4) OMA, a well-established tree-graph hybrid method (Altenhoff et al.
2011). Applying these methods to OD in a range of primates and closely
related mammals, we demonstrate that methodological performance
varies widely by species and appears to depend critically on genome
quality.

Next, we characterize the striking performance gains yielded by
combining these methods. This is demonstrated using sequence
identity, phylogenetic tree concordance, and hidden Markov model-
based functional agreement. This improvement in alignment quality
translates to higher estimated levels of overall conservation. At the
same time, we detect up to 180% more positively selected sites. We
close by highlighting a novel positively selected site (PSS) near the
active site of TPSAB1, an enzyme linked to asthma and irritable bowel
disease.

The implementation of this novel approach for the integration of
diverse ortholog detection methods is presented as the software tool,
MOSAIC, or Multiple Orthologous Sequence Analysis and Integra-
tion by Cluster optimization. MOSAIC is implemented as a well-
documented python package that can be installed using easy_install
bio-mosaic from the command-line. MOSAIC alignments, source
code, and full documentation are available at http://pythonhosted.
org/bio-MOSAIC.

MATERIALS AND METHODS

Retrieval of orthologs
For each human consensus coding sequence (version GRCh37.p9), we
sought to retrieve orthologs for chimp, gorilla, orangutan, rhesus
macaque, marmoset, bushbaby, cat, cow, and horse using four
methodologically distinct methods: (1) MultiParanoid (Alexeyenko
et al. 2006); (2) TBA (Blanchette et al. 2004); (3) six-frame translated
BLAT (Kent 2002); and (4) OMA (Altenhoff et al. 2011; July 2013
release). We used MultiParanoid over OrthoMCL (Li et al. 2003)
because the latter produced no errors or output after careful execution
of the thirteen-stage analysis protocol. For all methods, genomic data
were retrieved for the genome builds listed in Table 1.

For MultiParanoid (Alexeyenko et al. 2006), an all-vs.-all blast
search was run using the following command structure:

blastp -db $blastdatabase -query [query file] -out [output file]
-evalue .01 -num_threads [number of threads] -outfmt 6
-db_soft_mask 21 -word_size 3 -use_sw_tback

From this output, ortholog predictions were produced using the
standard MultiParanoid protocol.

For BLAT (Kent 2002), genomes for each species of interest were
downloaded from the NCBI Entrez Genome database (McEntyre and
Ostell 2002). Queries were conducted using the following command
structure:

blat -q=prot -t=dnax -minIdentity=70 –extendThroughN
[genome file] [query file] [output file]

In the case of MultiZ (Blanchette et al. 2004), CCDS orthologs
were downloaded directly from the UCSC genome browser (Kent
et al. 2002). For OMA (Altenhoff et al. 2011), ortholog predictions
were downloaded from omabrowser.org (December 2012 release). For
genes with more than one CCDS, orthologs were mapped to each
analyzed transcript. Finally, ortholog predictions from metaPhOrs
(Pryszcz et al. 2011) were retrieved from release v201009 (June 2012).

Filtering putatively non-orthologous sequences
All ortholog detection methods produce false positives. For example,
this can result when a gene deletion on one lineage means that no true
ortholog exists in a given species. Typically, these issues are dealt with
through rigorous filtering of input alignments. The intuition is that by
applying a stringent sequence similarity filter, we can remove the vast
majority of evolutionarily unrelated genes. We use this filtering
approach to ensure that only credible, putatively orthologous
sequences are included in the analysis. Because of heterogeneity in
genome quality, similarity cutoffs were chosen heuristically, consid-
ering the known level of genome-wide divergence between human
and the species of interest, as well as the overall distributions of
percent identity between putative orthologs in the two species.
Specifically, we first chose a cutoff based on the species-specific levels
of percent identity to human. We then updated these numbers based
on spot checks of borderline alignment cases. These cutoffs were as
follows: chimp: 82%, gorilla: 77%, orangutan: 75%, rhesus macaque:
73%. A cutoff of 70% was employed for marmoset, bushbaby, cat,
cow, and horse. For applications where consistency across methods
is not important, these cutoffs could be chosen using downstream
quality metrics such as those presented in Figure 4. Note that such
an approach would still require the user to specify a tradeoff between
the quality and number of orthologs.

MOSAIC: OD INTEGRATION AS CLUSTER OPTIMIZATION
MOSAIC provides a highly flexible, graph-based framework for
integrating diverse OD methods. For a given reference sequence,
proposal orthologs are conceptualized as nodes in a graph, connected
with edges weighted according to the pairwise similarity between
sequences (Figure 1). The task of OD integration is then to choose
proposal orthologs from each species such that a chosen measure of
intra-cluster similarity is optimized.

MOSAIC optimizes (weighted) pairwise similarities
To begin, MOSAIC calculates pairwise similarities between all
orthologs from different species. Percent identity- and BLAST-based

n Table 1 Genome builds

Genome Version Release

Chimp panTro4 Feb-11
Gorilla gorGor3.1 May-10
Orangutan ponAbe2 Jul-11
Rhesus macaque rheMac3 Oct-10
Marmoset calJac3 Mar-09
Bushbaby otoGar3 May-11
Cat felCat5 Sep-11
Cow bosTau7 Oct-11
Horse equCab2 Sep-07
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similarity metrics are provided by default, but user-defined similarity
metrics are also accepted. These similarity scores define edge weights,
which are used to construct a graph such as the one presented at the
top of Figure 1. Once this full graph is constructed, it is highly rec-
ommended that it be quality filtered using user-specified similarity
cutoffs. This step is necessary to minimize the effect of gene loss,
duplication, etc. Once the graph is cleaned, MOSAIC then chooses
at most one proposal ortholog from each species so that the overall
pairwise similarity between accepted sequences is optimized.

To accommodate user priorities, pairwise similarities can be
weighted such that sequences from different species contribute
unequally to the total similarity score. For uniform weights, this is
equivalent to maximizing the average pairwise similarity. In the case
where only similarity to a reference sequence is of interest, this reduces
to simply accepting the ortholog for each species that is most similar
to the reference.

Optimization is carried out using cyclic
coordinate descent
For m OD methods and s species, there are up to ms possible in-
tegrated alignments. In the case analyzed in this paper, m = 4 and s =
10. This translates to over a million possible integrated alignments for
each of the ~25,000 reference sequences considered. It is clear to see
from this example that an exhaustive optimization becomes quickly
infeasible. Therefore, MOSAIC choses optimal clusters using cyclic

coordinate descent (CCD), an efficient non-derivative optimization
algorithm (Bertsekas 1999).

In Figure 1, we illustrate the way CCD functions in the context of
MOSAIC. After the full graph that includes all orthologous sequences
is built, random orthologs from each species are chosen as the current
best. MOSAIC then loops through the species of interest in a random
order. For each species, MOSAIC chooses the sequence that optimizes
cluster tightness, given the current best sequences for all other species.
This process is repeated until no further improvements can be made
to cluster tightness. Finally, because CCD is prone to finding local
rather than global optima, this entire process is repeated multiple
times with random starting points and sampling paths.

Scoring and optimization procedures for this study
For the alignments presented here, we consider a protein set with
relatively low levels of evolutionary divergence. We chose percent
identity as our metric for sequence divergence. Note that several other
popular scoring functions are implemented in MOSAIC. For more
distantly related species, the application of scoring matrices (Dayhoff
et al. 1978; Henikoff 1992) or Hidden Markov Models (Ebersberger
et al. 2009) may be preferable. To reduce computational costs related
to pairwise alignment, we considered only similarities between ortho-
logs and the human target sequence. The optimization procedure was
then equivalent to choosing, for each species, the ortholog among all
methods that is most similar to the human sequence. This approach
corresponds to the arguments edgefunc=’perID’, optrule=’pairwise’ when
calling the Mosaic constructor in mosaic.py (see: http://pythonhosted.
org/bio-MOSAIC/Module.html).

Example: measuring similarity
Percent identity was calculated as the percent of sites in the human
sequence that were identical in the orthologous sequence. For example,
the hypothetical sequence below would be scored as 71% identical
(5/7), because there are two mismatches between the seven sites
present in the human sequence and the character to which those sites
are aligned in the chimp sequence (sites where the human sequence
has been deleted or the outgroup has an insertion are ignored):

Human A W V A - T F D
Chimp - W V R Y T F D

A note on gene loss, duplication, and
divergent evolution
For any query protein, there is a risk that a related gene in another
genome has been deleted, or has not maintained the same function
and so provides inapplicable evolutionary information. In the case of
deletions, it is unlikely that a non-homologous gene would be suitably
similar to be classified as an ortholog. Divergence in function would
be expected to sharply increase sequence divergence. In many cases
such functionally distinct can be removed by suitably stringent sequence
similarity filters.

Another pitfall in ortholog detecion is gene duplication within
a particular lineage. This results in so-called in-paralogs, which may
inject additional bias if, compared to the query protein, the most
functionally similar of the set is not the most similar at the sequence
level. Although this is possible, it is the exception and not the rule
under reasonable models of evolution. Indeed, experimental data from
several model systems has demonstrated that there is an extremely high
correlation between functional conservation and sequence conservation
(Mashiyama et al. 2014; Zhao et al. 2014). Taking the single most
similar sequence from a paralogous group is therefore a rational and

Figure 1 A schematic of the sequence selection algorithm. Steps: (1)
Construct graph; (2) Choose the sequence from a random OD method
for each species; (3) Iterate through species. For each species, pick the
orthologs with highest similarity to the current best choices for all other
species; (4) Return current best choices if no changes are made after
iterating through all species; (5) To find global optimum, repeat steps
1-4 with random sampling paths.
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effective (albeit imperfect) approach to this problem. For this reason,
MOSAIC does not exclude putatively orthologous sequences that have
paralogs in the source genomes. It rather picks the paralogous sequence
that is most likely to share the same function as the other putatively
orthologous sequences under examination. We will show that this de-
cision allows us to capture more putative orthologs while simulta-
neously improving ortholog quality by all commonly used metrics.

In summary, MOSAIC is adapted to producing multiple sequence
alignments (MSAs) that are functionally informative at the site-level.
For other applications, researchers may wish to infer genomic events
such as gene loss, duplication, horizontal gene transfer, and/or in-
complete lineage sorting (e.g., Capra et al. 2013). This involves jointly
examining functionally diverged paralogous groups alongside their cor-
responding orthologs. This task generally requires a combination of
tools such as MultiParanoid (to infer paralogs; Remm et al. 2001),
RaxML (to build gene and species trees; Stamatakis 2014), and Notung
(to reconcile gene trees with species trees and infer evolutionary events;
Stolzer et al. 2012). For applications such as this, MOSAIC alignments
can still be leveraged to help ensure the inclusion of relevant sequences.
Likewise, reconstructed evolutionary histories can be used to flag, among
tens of thousands of automatically generated MOSAIC alignments,
those exceptional cases that could benefit most from manual inspection.

Multiple sequence alignment
Retrieved sequences were jointly aligned to query proteins using
MSAprobs (Liu et al. 2010), a multithreaded aligner with better per-
formance benchmarks than many top aligners, including ClustalW,
MAFFT, MUSCLE, ProbCons, and Probalign (Liu et al. 2010). Im-
portantly, MSAprobs has the further advantage of providing, for each
column of an alignment, dependable estimates of the confidence of the
alignment at the site.

Quality assessment
One approach to evaluating the performance of ortholog detection
methods is to restrict analysis to validation sets, which usually consist
of small, curated gene groups from unicellular model organisms (e.g.,
Salichos and Rokas 2011). Known true positive and true negative
relationships allow researchers to calculation power and sensitivity,
and even provide the possibility of applying supervised learning tech-
niques such as support vector machines or random forest classifiers.
Although such results are assuredly internally valid, it is unclear
whether these results generalize beyond this small and highly biased
subset of genes. As a simple example, “true” orthologous relationships
often are restricted to cases where synteny is also maintained. Filtering
out nonsyntenic orthologous sequences will thus significantly bias
performance metrics toward OD methods that use syntenic informa-
tion. Furthermore, this approach to quality assessment does not allow
researchers to evaluate performance on their own arbitrary dataset.
It is for these reasons that we decided to use the quality metrics
described below. Strictly speaking, the details necessary to truly estab-
lish orthology are buried deep in evolutionary time. We therefore
believe that ortholog detection is perhaps better viewed as an unsu-
pervised learning problem that is amenable to graph-based cluster
optimization.

Sequence identity
MOSAIC optimizes pairwise sequence similarity. In this example,
sequence identity is used as the similarity measure, and pairwise
similarities are weighted such that only concordance with the human
reference sequence is considered. To achieve greater separation

between metrics used for optimization and assessment, comparisons
of sequence identity were performed in the context of the full MSAs.
We believe this choice is sensible because it is the quality of the MSA
that is of primary importance to many downstream phylogenetic
inference tasks. In addition, this approach allows us to indirectly
incorporate information about intra-cluster similarity. As an MSA
incorporates increasingly divergent sequences, performance relative to
pairwise alignments is expected to progressively degrade.

Tree concordance
For each MSA, gene trees were built using RAxML (Stamatakis and
Alachiotis 2010). An unweighted Robinson-Foulds (RF) distance
(Robinson and Foulds 1981) was then calculated between each gene
tree and the known species tree using the python module dendropy
(Sukumaran and Holder 2010). Briefly, the unweighted RF distance
counts the number of operations required to transform one tree into
the other. This quantity is equal to the total number of splits that are
present in one tree but not the other. To normalize for variations in
tree size, we then divided this distance by the sum of the total number
of splits in the gene and species trees (Yu et al. 2011). To summarize
the genome-wide distribution of normalized RF distances, we took the
area under the curve of the cumulative distribution function. This was
limited to values less than 0.4, since beyond this value there is little
difference between the observed curves (see Supporting Information,
Figure S5). This metric is superior to, e.g., calculating the proportion
of genes below a given threshold because it up-weights smaller RF
distances as opposed to, in effect, using non-zero uniform weights
below the cutoff value.

Functional concordance
Profile HMMs were downloaded from the PfamA protein families
database (Punta et al. 2012). Each sequence was then annotated using
the top scoring functional class retrieved by querying that sequence
against the database of all PfamA protein family HMMs. This search
was conducted using HMMER3 (Eddy 2011). Functional concordance
was then measured as a binary quantity, corresponding to whether or
not a putative orthologous sequence had the same inferred function as
its cognate human sequence. It is important to note that not all PfamA
HMMs are functionally validated. In cases where experimental vali-
dation is unavailable, these HMMs provide a family-specific scoring
function that nevertheless yields information not contained in naïve
sequence identity measures.

Evolutionary analysis

Gene-level conservation: Alignments were analyzed using phyloge-
netic analysis by maximum likelihood (PAML) (Yang 2007). For each
alignment three models were fit: (1) a neutral model where the ration
of the non-synonymous to synonymous substitution rates (dN/dS) is
fixed at one, (2) a conservation model where dN/dS is less than or
equal to one, and (3) a positive selection model where some fraction of
the sequence is fit under the conservation model, while another dN/dS
parameter is estimated freely for the remainder of the sequence. Be-
cause evolutionary models are not in general nested, we performed
model selection via the popular Akaike information criterion, a method
that penalizes a model’s fit by its number of included variables (Akaike
1973) and is asymptotically equivalent to maximizing the model’s
predictive performance on unseen data (Stone 1977).

Despite rigorous model selection procedures, in rare cases PAML
may estimate very high levels of selection over a tiny proportion of
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a given sequence (even a single site), leading to greatly inflated average
levels of dN/dS. To reduce the influence of outlying estimates of
selection, all dN/dS values greater than 3 were excluded for the analysis.
For all methods, this corresponded to less than 0.05% of all sequences.

Site-level positive selection: The program sitewise likelihood ratio
(SLR) (Massingham and Goldman 2005) was used to estimate the
number of positively selected sites in each sequence. To eliminate false
positives caused by poorly aligned sites, we filtered out all sites esti-
mated by MSAprobs to be aligned to less than 95% confidence. All
included positively selected sites estimated at 95% confidence or
greater by SLR were included in the subsequence comparison.

To assess agreement in PSS, we calculated the degree of overlap
between PSS from all pairs of methods. This was calculated as the size
of the genome-wide intersection between sites divided by the union of
said sites.

Mapping positively selected sites onto
three-dimensional structures
We leveraged UniProt mapping files (http://www.uniprot.org/docs/
pdbtosp; accessed 9/30/14) to determine which proteins had a relevant
structure in the Protein Data Bank (PDB; Berman 2000). We then
aligned sequences between PDB structures and candidate genes to
determine the degree of coverage and to obtain a mapping between
residues. We found 2003 genes for which there was a structure with
greater than 70% coverage. Of these, 787 had PSS results from all five
ortholog detection methods from at least one species. Reasons for
missing data comprise more than 4 missing species in source MSAs
and lack of convergence in the PSS calculation. Within this set of 787
genes, 76 proteins had PSS from MOSAIC that were not found with
any of the component methods. From this point, the example of
TPSAB1 was quickly identified by manual inspection. We then down-
loaded PDB structure 2ZEC to visualize the location of positively
selected sites. To validate sequences used in the analysis, we blasted
each ortholog against the human SwissProt database. TPSAB1 was the
most similar human protein in each case, confirming that we had
retrieved best bidirectional hits. Annotations for each protein were
also consistent with alpha/beta tryptases activity (Table S1).

RESULTS AND DISCUSSION

Ortholog detection methods frequently outperform
one another
We begin with a comprehensive comparison of four popular,
methodologically distinct OD methods. In Figure 2, we show the
head-to-head performances of these different methods for a range
of primates and closely related mammals. Performance is assessed
using alignments between all human consensus coding sequences
(Pruitt et al. 2009) and their corresponding orthologs from each
method. For each possible ortholog (defined by human target se-
quence and species of origin), we examine whether sequence identity
to human is at least five percentage points greater for one method vs.
another. We otherwise consider the two methods to be tied. By this
metric, one method significantly outperforms another 38245% of the
time. Importantly, no method uniformly outperforms all others,
underlining the complementarity of the chosen algorithms. For each
method, distributions of percent identity and relative performance by
species are presented in Figure S1 and Figure S2,

Combining multiple sequence alignments with MOSAIC: It is well-
known in theory (Wolpert and Macready 1997) and in practice (Van

Der Laan and Gruber 2010) that the comparative performance of
competing statistical inference algorithms often varies by context.
Rather than search for a single best algorithm, researchers have sought
to integrate a variety of methods in order to reap the benefits of
methodological complementarity (Van Der Laan et al. 2007; Rokach
2009; Chandrasekaran and Jordan 2013). As might be expected, the
gains yielded by this approach generally scale with the quality of the
individual methods integrated, the number of methods included, and,
importantly, the diversity of the comprised algorithms (Kuncheva and
Whitaker 2003).

Having observed the complementarity between OD methods, we
sought to develop a structure for the automatic integration of
methodologically distinct OD methods such as those described
above. We term this framework MOSAIC, or Multiple Orthologous
Sequence Analysis and Integration by Cluster optimization. MOSAIC
allows for the flexible integration of diverse OD methods through the
application of standard or user-defined metrics of sequence similarity
and ortholog cluster quality. By the use of the specified similarity
metrics, clusters of proposed orthologs are built. These orthologs are
then adopted or rejected to optimize cluster completeness and quality
(e.g., similarity to a reference sequence or average pairwise similarity).

Having presented a schematic of the algorithm itself in Figure 1,
we provide in Figure 3 a view of example inputs and output MSAs.
These are illustrations of real alignments for carbonic anhydrase 12,
an enzyme critical to a number of biological functions, including the
formation of bone, saliva, and gastric acid (Pruitt et al. 2014). MSA
columns that are aligned to below 95% confidence are displayed in red
and masked from the analysis. Orthologs that were not returned for
a given species are denoted with a horizontal black bar. Those that
were filtered using pre-integration sequence identity cutoffs (see the
sectionMaterials and Methods) are indicated with gray bars. Sequence
identity is measured based on pairwise realignment to the human

Figure 2 Comparison of sequence identity levels between methods.
Heat map of the percent of orthologs for which MultiParanoid (MP),
OMA (OMA), BLAT (BL), and MultiZ (MZ) outperform one another.
Performance is based on percent identity of each method’s orthologs
to the human sequence. One method is considered to outperform
another method if it improves percent identity by at least five percent-
age points. Text in diagonal cells shows the number of orthologs
identified by each method, colored by the percent of orthologs for
which a given method outperforms all the others.
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sequence. Note that, just as when employing a single ortholog detection
method, this filtering step is critical to guaranteeing alignment quality.

Method integration increases the number of
included sequences
The gains afforded by MOSAIC vary by species and increase with the
number of methods that are included (Figure 4A). When all four
component methods are included, MOSAIC more than quintuples
the number of alignments for which all species are present (Figure
4B). We observe in Figure 4A that the largest improvements are seen
for gorilla, bushbaby, and cat. Importantly, orthologs for each of these
three species are rescued by different methods (OMA for gorilla,
MultiParanoid for bushbaby, and Blat for cat. See Figure S3 for further
details). In the sections that follow, we will demonstrate that MOSAIC
captures these additional sequences while simultaneously improving
functional-, phylogenetic-, and sequence identity-based measures of
ortholog quality.

MOSAIC improves sequence identity
MOSAIC achieves massive gains in the number of retrieved orthologs
while slightly improving average levels of sequence identity. Although
MOSAIC directly optimizes sequence identity, this result is non-
circular for two reasons. First, average levels of sequence identity could
be reduced by preferentially adding sequences from the lower end of
the sequence identity distribution. This result would be consistent
with a scenario in which most methods correctly inferred that a gene

was deleted on a particular lineage. Second, MOSAIC optimizes
sequence identity measured from pairwise global alignments. In the
validation phase, we calculated this metric in the context of the full
MSA. That is, we do not realign to the human sequence in a pairwise
fashion as we do in the optimization phase. Rather, we measure
sequence identity based on the alignment specified within the full
MSA. We believe this choice is sensible because it is the quality of the
MSA that is of primary importance to many downstream phylogenetic
inference tasks. In addition, this approach allows us to indirectly
incorporate information about intra-cluster similarity. As an MSA
incorporates increasingly divergent sequences, performance relative to
pairwise alignments is expected to progressively degrade.

MOSAIC improves functional concordance
We employed profile HMMs from the Protein Families Database A
(PfamA) (Punta et al. 2012) and HMMER3 (Eddy 2011) to ascertain
putative functional concordance between proposed orthologs and the
human consensus coding sequences of interest. PfamA builds HMMs
via curated alignments of small numbers of representative members
from each protein family. It is important to note that not all PfamA
HMMs are functionally validated. In cases where experimental vali-
dation is unavailable, these HMMs provide a family-specific scoring
function that yields information not contained in naïve sequence
identity measures.

With HMMER3, we queried protein sequences against all PfamA
protein family profiles, annotating each protein according to its top

Figure 3 Illustration of integration process for carbonic anhydrase 12. MSA columns that are aligned to below 95% confidence are displayed in
red. Orthologs that were not returned for a given species are denoted with a horizontal black bar. Those that were filtered using pre-integration
sequence identity cutoffs are indicated with gray bars with the global percent identity from pairwise alignment to human included. Species name
label colors denote the species of origin for orthologs in the MOSAIC alignment.
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protein family hit. This allowed for an ascertainment of functional
concordance that is more comprehensive than relying on gene-
by-gene annotation across species, while retaining many of the
advantages of manual curation where it exists. This assessment
reveals that, for the set of orthologous sequences proposed by all
methods, MOSAIC provides levels of functional concordance that
are slightly better than the best performing component method
(Figure 5). Gains are particularly large for gorilla, bushbaby, and
cat orthologs (Figure S4).

MOSAIC improves phylogenetic concordance
Phylogenetic concordance was ascertained by calculating the normal-
ized, unweighted Robinson-Foulds distance (Robinson and Foulds
1981) between gene trees and the established species tree (Altenhoff
and Dessimoz 2009b). This metric is equal to the sum of the number
of splits in one tree that are not present in the other, scaled by the total
number of splits present across the two trees. Accordingly, larger
Robinson-Foulds distances correspond to worse agreement between
gene and species trees. On a gene-by-gene basis, this metric should be
interpreted with caution, since post-speciation admixture and incom-
plete lineage sorting can lead to true discordance between the species
tree and the phylogenetic history of a particular gene (Maddison and
Knowles 2006). At greater levels of divergence, loss of signal and
homoplasy may similarly confound the analysis in some cases. How-
ever, at the level of the genome, higher concordance between gene
trees and the known speciation process strongly suggests a relative
improvement in OD.

Figure 5 presents a comparison of genome-wide phylogenetic con-
cordance (see the section Materials and Methods for details on this
metric). MultiZ performs the best of any individual method, likely due
to its utilization of syntenic information. Surprisingly, OMA, the OD
method that incorporates phylogenetic tree information, exhibits the
worst performance according to this tree-based metric. MOSAIC, on
the other hand, provides significant performance gain over all com-
ponent methods, including a 59% increase in phylogenetic concor-
dance compared to OMA.

Increased ortholog quality leads to more conservation
and positively selected sites
Having demonstrated an increase in ortholog quality using tree-,
function-, and similarity-based measures of quality, we next sought to
assess the influence of increased alignment quality on estimated levels
of selection. To assess gene-level conservation, we applied PAML
(Yang 2007) with automated likelihood-based model selection. To
ascertain site-level positive selection, we used SLR, a method shown

to have a greater power and a lower false positive rate than PAML’s
popular Bayes Empirical Bayes method (Massingham and Goldman
2005).

Because varying numbers of sequences can sway evolutionary
estimates in unpredictable ways due to, e.g., inhomogeneous levels of
selection across organisms, we assessed the performance of MOSAIC
relative to each method by matching the species present in each
alignment. We refer to this approach as MOSAICmatched. In the case
of both PAML and SLR, synonymous substitution rates in coding
DNA are used as a background against which to test for changes
in rates of non-synonymous substitution. We compared our per-
formance to that of metaPhOrs, an OD integration method that
works on tree-based methods only. Since the metaPhOrs database
provides only protein sequences for its alignments, no evolutionary
comparison with this method was possible given the available data.
However, we demonstrate in Figure S6 that MOSAIC outperforms
metaPhOrs according to the metrics presented in Figure 3, despite
integrating nearly half the number of OD methods in this example.
An analysis with a matching number of OD methods was not
possible because metaPhOrs is available only as a pre-calculated
database.

In Figure 6B, we see that MOSAIC leads to greater gene-level
conservation (lower dN/dS) compared with every method except
Blat, for which the difference was not statistically significant. Full
distributions of dN/dS for each method are presented in Figure S7.
Despite greater levels of conservation, MOSAIC was able to detect
~30–180% more positively selected sites than any of its component
methods. This was not due to an increase in the inferred rate of
positive selection. Rather, most of this increase in power was attrib-
utable to the fact that more sites were aligned to high confidence and
therefore included in the analysis. This step of filtering for alignment
quality is important because site-wise estimates of positive selection
are highly sensitive to short poorly aligned regions (Jordan and
Goldman 2012).

To investigate the quality of the positively selected sites detected by
MOSAIC, we assessed concordance with and between component
methods. For a pair of method, we measure overlap by dividing the
total size of the intersection between positively selected sites by the
total size of the union. These results are shown in Figure 6B. We
observe that the minimum overlap betweenMOSAIC and a component
method (MOSAIC/Blat) is still better than the best overlap between
component methods (MultiZ/OMA). Averaging over comparisons, we
find the improvement in concordance with vs. between component
methods is statistically significant beyond computational precision
(P , 1e-16).

Figure 4 OD power and the effect of
pooling methods (A) The cumulative
proportion of human transcripts for
which an ortholog was detected, strat-
ified by species. Envelopes illustrate
results from pooling an increasing
number of methods. (B) The cumula-
tive number of human transcripts as
a function of the maximum number of
missing species allowed.
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Understanding MOSAIC’s improvements
in performance
As we have mentioned, ensemble-based inference frameworks have
been shown to operate effectively in a wide variety of statistical
contexts. For the methods examined here, MOSAIC may provide
increased MSA quality for a variety of reasons, not all of which are
related to the performance of the component algorithms. For example,
the ability to specify a custom scoring function for pairwise similarity
gives MOSAIC an advantage over component methods. For example,
BLAST-based scoring such as that used by MultiParanoid may in
some cases reward substitutions over than sequence identity. This is
the result of building substitution matrices on libraries of sequences
that are much more highly diverged than those within mammalian
proteomes.

The quality of a genome assembly also plays an important role.
For methods like MultiZ, improperly assembled genomic segments
may provide misleading information about orthologous relation-
ships. Similarly, naïve methods such as BLAT will miss proteins
whose exons are spread across unassembled genomic segments.
Other methods such as MultiParanoid and OMA may be robust

to this effect since they draw from more sophisticated proteome
predictions. However, the stringent and sometimes arbitrary filtering
required for proteome prediction cause these methods to miss
sequences that can be found using BLAT’s six-frame genomic
translation.

Better alignments may yield new insights into
human evolution
We next sought to examine the biological significance of some of the
positively selected sites identified uniquely by MOSAIC. This led us to
Tryptase Alpha/Beta 1 (TPSAB1), a tetrameric serine protease that has
been implicated in the pathogenesis of asthma (Taira et al. 2002; Cui
et al. 2014), heart disease (Bot et al. 2014), inflammatory bowel disease
(Hamilton et al. 2011), and other disorders with allergic and/or in-
flammatory components (Sommerhoff and Schaschke 2007). Shown
in Figure 7 is the three-dimensional structure of a TPSAB1 tetramer
with inhibitor (white) bound (Costanzo et al. 2008). In orange, distal
to the active site, is the positively selected residue detected by com-
ponent methods and by MOSAIC. Note that positive selection at this
location is active only outside of the great apes, with a fixed lysine

Figure 5 MOSAIC improves align-
ment quality. We show the fold im-
provement of each method over the
worst performing method in four cate-
gories: sequence identity, functional
concordance, phylogenetic concordance,
and number of orthologs detected.

Figure 6 A comparison of evolutionary estimates. (A) The relative difference of MOSAICmatched vs. each component method for: (1) the number of
positively selected sites, (2) the number of confidently aligned sites, and for reference, (3) the average level of conservation across all alignments. (B)
The agreement between positively selected sites (1) between MOSAIC and component methods, and (2) among component methods. Fractional
overlap values are plotted as Venn diagrams to illustrate the two methods being compared.

636 | M. C. Maher and R. D. Hernandez



observed in human, chimp, gorilla, and orangutan (Figure S9 and
Figure S10).

In red, directly within the proteolytic pore, is the site identified by
MOSAIC as positively selected. This residue is a positively charged
arginine in humans. This would be expected to modify the
electrostatics of ligand binding. In chimp, we instead observe
a kink-inducing proline. We might anticipate this change to have
a large steric effect, possibly allowing the inward-facing unstructured
loop to act as a more rigid lid closing over top of the substrate, or as
a modifier of subunit contacts. Importantly, these changes occurred
repeatedly in mammals. Proline is observed at this position in rhesus
macaque and marmoset. Arginine, on the other hand, is present in
gorilla and horse (Figure S9 and Figure S10). In orangutan, we observe
a histidine: another positively charged amino acid.

Throughout this examination, we must be cognizant that tryptases
evolved rapidly during primate evolution (Trivedi et al. 2007). The
expansion of this gene family can itself be viewed as an example of
positive selection. However, the presence of several paralogs creates
the risk of inappropriately aligning pseudo-orthologous sequences that
have evolved to serve divergent functions. Given the challenges, this
case study provides an excellent opportunity to compare the high-
throughput performance of MOSAIC to that of manually curated
alignments.

As a first step, we showed that each proposal ortholog was a best
bidirectional hit to TPSAB1 (Table S1). Next, we compared our
sequences to those retrieved manually by Trivedi et al. (2007). Al-
though we notice a few minor discrepancies between the two sets of
alignments (see Figure S9 vs. Figure S11, reproduced from Trivedi
et al. 2007), these differences do not alter our conclusion of human-
relevant positive selection at the highlighted site in the proteolytic core
of TPSAB1. Illustrations of component alignments from each method
are shown in Figure S8.

In this paper we have introduced a novel algorithm, MOSAIC,
which is capable of integrating an arbitrary number of methodolog-
ically diverse ortholog detection methods. We have demonstrated that
MOSAIC provides large increases in power relative to its component
methods, while simultaneously maintaining or improving functional-,
phylogenetic-, and sequence identity-based measures of ortholog
quality. Further, given the same number of species, MOSAIC align-
ments include more columns aligned with high confidence. This
translates to higher levels of estimated conservation, and simulta-

neously, a greatly increased number of positively selected sites
detected. Moreover, MOSAIC’s positively selected sites agree better
with those from component methods than component results do with
each other. This suggests that not only does MOSAIC detect more
positively selected sites—these sites are more reproducible and are
detected due to an increase in alignment quality. Finally, we illustrated
the significance of this increase in power by highlighting a positively
selected site near the active site of the tryptase TPSAB1. Given the role
of this enzyme in asthma and other allergic and inflammatory disor-
ders, we feel that this case study is worthy of experimental follow-up.

In summary, MOSAIC provides the unique flexibility to in-
corporate any OD method that may be available now or in the future.
It can therefore capture the entire swath of methodologic diversity,
thereby improving OD performance, and allowing researchers to take
advantage of methodological gains in a variety of areas of OD
research. In addition, it provides the flexibility to adapt scoring and
optimization procedures to the set of species under study. In future
work, it will be interesting to ascertain how optimal procedures vary
between species sets that have differing mean levels of divergence and
markedly different patterns of evolution. For example, mammals and
prokaryotes will likely have distinct optimal parameter values within
MOSAIC. This tool is available a python package that can be installed
using easy_install bio-mosaic from the command-line. MOSAIC
alignments, source code, and full documentation are available at
http://pythonhosted.org/bio-MOSAIC.
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