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Abstract: Bread is categorized as having a high amount of rapidly digested starch that may result in a
rapid increase in postprandial blood glucose and, therefore, poor health outcomes. This is mostly the
result of the complete gelatinization that starch undergoes during baking. The inclusion of resistant
starch (RS) ingredients in bread formulas is gaining prominence, especially with the current positive
health outcomes attributed to RS and the apparition of novel RS ingredients in the market. However,
many RS ingredients contain RS structures that do not resist baking and, therefore, are not suitable
to result in a meaningful RS increase in the final product. In this review, the structural factors for
the resistance to digestion and hydrothermal processing of RS ingredients are reviewed, and the
definition of each RS subtype is expanded to account for novel non-digestible structures recently
reported. Moreover, the current in vitro digestion methods used to measure RS content are critically
discussed with a view of highlighting the importance of having a harmonized method to determine
the optimum RS type and inclusion levels for bread-making.

Keywords: high-amylose; digestion; bakery; retrogradation; glycemic response; amylose; amylopectin;
α-amylase

1. The Importance of Bread in the Human Diet

Carbohydrates are the most important source of dietary energy for humans (45–70% of total energy
intake) [1], with starch being the main structure-building macro-constituent in many foods, including
bread, pastry, breakfast cereals, rice, pasta, and snacks. White bread, with an average consumption
of about 170 g per day per person in 10 European countries, contributes to the highest proportion of
carbohydrates to the daily dietary intake [2]. Despite current findings showing dose-response relation
between consumption of whole grains and the risk of non-communicable diseases [3], white wheat
bread remains consumers’ first choice mainly owing to its sensory attributes [4]. This event remarkably
highlights the technological challenge of the incorporation of dietary fibers to make palatable breads
acceptable by consumers, that is, the type and amount of dietary fiber ingredients must be meticulously
selected based on their impact on bread quality [5].

Besides lacking the nutritional components from the whole grain fraction, white bread is
categorized as having a high amount of rapidly digestible starch. This is the result of starch
gelatinization produced as a consequence of the high temperatures that the dough reaches during
baking (≥70 ◦C) at relatively high-water content (≥35%) [6,7]. In fact, a complete starch gelatinization
in white bread crumb almost always occurs [6,8,9]. In this regard, consumption of white breads, which
results in a rapid increase of the postprandial blood glucose, is associated with poor health outcomes
including type 2 diabetes, obesity, cardiovascular disease, as well as other metabolic-related health
problems [10–12].

In view of the large consumption of daily white bread and the health benefits associated with
higher dietary fiber consumption [13], the enrichment of bread crumbs with resistant starch (RS)
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ingredients is gaining prominence (Figure 1) and can definitively be positioned as an impactful strategy
to improve human health through the diet. A literature search in the topic also revealed significantly
more studies of RS in breads than in cakes, muffins, and cookies. Because the RS property can change
during baking, this review will cover the structural factors responsible for the RS digestion property
and the thermal stability of RS ingredients to manufacture breads with meaningful health outcomes.
In this review, the structural basis for the RS property of RS in breads will be revised based on recent
pivotal studies. Furthermore, the definition of RS will be discussed, addressing holistically and briefly
the current analytical methods for quantifying the RS content of foods and the current regulations in
terms of food labeling and health claims. We expect that this review provides a brief overlook of the
currently commercially available RS ingredients, with special focus on those that support clean and
natural labels (i.e., RS4 will not be discussed).
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effects of RS consumption on specific metabolic responses and health benefits, which has been 
previously revised elsewhere [5,14–27]. 
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such as the human ileostomy model, where ileal digesta from adults with permanent ileostomies is 
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Figure 1. Literature search of the last 10 years on the topics: “resistant starch (RS) and bread”; “resistant
starch and cake”; “resistant starch and muffin"; and “resistant starch and cookie”. Data collected from
all databases from the Web of Science on 28 June 2019.

2. RS Definition and Analytical Methods

Resistant starch (RS) is defined as the starch portion that escapes digestion by human enzymes in
the upper part of the gastrointestinal tract, entering the large intestine where it can be partially or fully
fermented by colonic microflora. The main health outcomes of RS consumption can be categorized
mainly based on a modulation on the glycemic response, body weight control, and bowel health.
However, this review is not intended, by any means, to provide deep insights into the complex effects
of RS consumption on specific metabolic responses and health benefits, which has been previously
revised elsewhere [5,14–27].

According to its definition, RS should be predicted by physiological (in vivo) techniques [28],
such as the human ileostomy model, where ileal digesta from adults with permanent ileostomies is
analyzed for its starch content and compared with the total amount of starch ingested during the study
period [16]. However, in vivo methods are remarkably slow and tedious, and require a considerable
investment in specialized resources and expertise. Added to that, the rate and extent of starch digestion
depends on both extrinsic (e.g., chewing, hormone responses, enzyme activity, passage rate, individual
health) and intrinsic (food structure) factors, with the former providing a high variability included in
in vivo experiments. On the other hand, the variability from extrinsic factors is excluded in in vitro
methods, enabling information for understanding the mechanism of food structural changes during
the digestion time course [16].
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Many in vitro assays for RS determination are variations on Berry’s [29] modification of Englyst’s
original method [30]. Starchy products “as eaten” are subjected to gastric (protease) and luminal
(pancreatic α-amylase) digestions under fixed physiological conditions of temperature, pH, viscosity,
and rate of mechanical mixing similar to those in the gastrointestinal tract. RS is determined by
difference between total and digestible starch [31], with validated in vivo results using the ileostomy
model [32]. Digestion products are obtained at 20 and 120 min of incubation with α-amylase and
further converted to glucose for colorimetric [31] or chromatographic quantification [33]. In the Englyst
test, rapid digestible starch (RDS) is the starch digested fraction within the initial 20 min digestion,
slowly digestible starch (SDS) is the digested fraction between 20 and 120 min, and RS is the remaining
portion after 120 min.

In 2002, McCleary and Monaghan [34] also developed a wide spread method to determine RS,
which was validated by both the Association of Official Analytical Chemists [35] (AOAC Method
2002.02) and the American Association of Cereal Chemists [36] (AACC Method 32-40.01). In this
case, starchy foods are simultaneously incubated with pancreatic α-amylase and amyloglucosidase
for 16 h (vs. 3 h in the Englyst test) in order to hydrolyze and solubilize all the digestible starch. The
non-digested starch, the RS fraction, is recovered after several washes and centrifugation steps, and
the RS pellet is dissolved with potassium hydroxide prior its hydrolysis to glucose and colorimetric
determination. Several other methods were also proposed for analytical determination of RS [37–41].

RS can also be measured following the procedures used for dietary fiber determination. However,
attention should be paid on the methodology used because some RS sources can be underestimated.
Thus, the Prosky [42] and Lee [43] methods, as well as AOAC official methods 985.29 (AACC 32-05.01)
and 991.43 (AACC 32-07.01), respectively, do not quantitatively measure all the RS. Because of the
initial heating step at above 90 ◦C, thermally unstable RS fractions, such as RS2 from banana or potato,
are partially degraded. To alleviate this problem, an integrated procedure for the measurement of
total dietary fiber (AOAC Methods 2009.01/2011.25; AACC Methods 32-45.01/32-50.01), which fully
includes RS (in the same way as in AOAC 2002.02) and other non-digestible oligosaccharides [44,45],
was proposed. Therefore, the combination of AOAC 2009.01 and 2002.02 methods could provide
quantitative determination of total dietary fiber (including all the RS fractions) and RS, respectively.
However, because of the simplicity of AOAC 2002.02, this procedure is recommended if only RS is the
dietary fiber of interest.

RS is usually categorized following the RS classification given by Englyst, Kingman, &
Cummings [31]; Eerlingen & Delcour [46]; and Brown et al. [47] based on the structural features
conferring its resistance. In this way, RS is usually listed into five categories, as follows. RS1: physically
entrapped, non-accessible starch in a non-digestible matrix; RS2: native granular resistant starch (B- or
C-polymorph); RS3: retrograded starch; RS4: chemically modified resistant starch; and RS5: single
amylose helix complexed with lipids. In Table 1, the structural features conferring the RS property
within each category (reported to date) are listed and categorized based on the RS classification given
by Englyst, Kingman, & Cummings [31]; Eerlingen & Delcour [46]; and Brown et al. [47]. Although
this traditional categorization is the most used to date, it is noteworthy that it assumes RS to be a
thermodynamically defined structural form (physical entities) and discards its potential kinetic nature.
If RS was simply thermodynamically defined, only highly chemically-modified starches (RS4) would
be completely resistant to enzyme hydrolysis. This is a critical point in bread-making, as flour/starch
fabrication and baking will strongly alter the RS type and content [6,48–50]. As an example, baking will
generally destroy RS1 and RS2, but may form RS3 and RS5, generally resulting in breads containing
RS < 2.5% (dry matter) [40]. In this section, the structural types of RS listed in Table 1 will be briefly
described and linked to their effects on bread physical and nutritional quality. Special attention will be
put on commercially available RS2 and RS3 clean ingredients (see Section 4 and Table 2). Resistant
maltodextrins, soluble chemically modified-dextrins derived from starch and included in the definition
of RS, are also commercially available. However, this review will only focus on RS excluding starch
degradation products that may also be resistant to digestion by pancreatic α-amylase.
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Table 1. Structural features conferring the resistant digestion property within each clean-label resistant
starch (RS) category.

Classification
Structural Features Conferring

the RS Property within Each
Category

Detrimental Steps That
May Decrease RS
Content during
Bread-Making

Assisting Steps That
May Increase RS
Content during
Bread-Making

RS1
Intact plant tissues Milling, sieving, baking -

Highly dense food matrices - Baking and cooling

Confined starch within a
continuous layer of certain

proteins
-

Baking of starch
materials containing

specific layer forming
proteins

RS2 Starch granules with an outer
high-density shell structure

Baking (of note that high
amylose RS2 is more

heat-resistant)
-

RS3
Retrograded amylose - Baking and cooling

High-density processed amylose -
Extrusion of high

amylose starch
ingredients

Retrograded amylopectin Baking Baking and cooling

RS4
Chemically substituted starches - -
Chemically cross-linked starches - -

a Resistant maltodextrins - -

RS5
Amorphous amylose-lipid

complexes (form I) - Baking and cooling

Crystalline amylose-lipid
complexes (form II) - Baking and cooling

a Resistant maltodextrins can be defined as chemically-modified dextrins instead of chemically-modified starch. In
that case, they should be excluded from this list.

3. Natural RS Ingredients in Bread-Making and Structural Basis of Their Resistant Digestion

3.1. Physical Barriers Comprising Plant Cell Walls and/or the Food Matrix (RS1)

The resistant digestion property of RS can be the result of its confinement within the intact plant
cell (surrounded by the plant cell wall) and/or the food matrix. Overall, the role of cell walls in limiting
starch digestion is based on three mechanisms [51–57]: (1) the difficulty for amylase to permeate
through the cell wall; (2) the limitation of starch gelatinization during cooking; and (3) the binding of
α-amylase by cellulose and other cell wall components. Whole or partly milled grains or seeds with
intact cell walls are clear examples of physically confined starch within cell walls. Milling should be
performed carefully to avoid the loss of RS1, as the tissue matrix (cell wall and protein network) could
be damaged [57,58]. The effects can be minimized with coarse milling or selection of large particles
after mechanical fractionation [57,59]. Nonetheless, large particles are not always suitable and the
selection of plant materials with thicker and less permeable cell walls, such as legume flours [52,54] or
cereal flours from hard endosperm [57], could increase the content of starch that escapes digestion
entirely, even after cooking.

The presence of whole or partly milled grains and seeds has been reported to decrease the glycemic
index of breads [60,61]. However, the use of intact kernels (or broken kernels) will always impact
significantly the bread physical and sensory properties. Therefore, food technologists should bear in
mind that white bread is the most consumed bread type nowadays [4]. There is little doubt about
the health benefits associated with a higher consumption of whole grains [3]. However, to what
extent can the particle size of intact grains be reduced to result in breads with lower starch digestion
(glycemic response)? Interestingly, Edwards et al. [55] demonstrated that fully cooked and gelatinized
porridges, made with 2 mm wheat flour particles, resulted in significantly lower blood glucose, insulin,
C-peptide, and glucose-dependent insulinotropic polypeptide concentrations than porridges made
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with <0.2 mm particles. In fact, they showed that the structural integrity of coarse wheat particles
was retained during gastroileal transit using a randomized crossover trial in nine healthy ileostomy
participants. However, flours for bread-making are usually smaller than 250 µm and complimentary
studies should be performed with smaller variations in particle size. Martinez, Calvino, Rosell, &
Gomez [62] observed that among <250 µm flour particles, a differential of 100 µm (coarser) can result in
a lower rate and extent of starch digestion, even after full gelatinization through high-shear extrusion.
Nevertheless, their effect after incorporation into breads has received little attention. Only de la Hera et
al. [63] observed that breads made with coarser rice flour (132–200 µm) presented higher RS than those
made with fine flours (<132 µm). On the other hand, Protonotariou, Mandala, and Rosell [64] did not
observe differences in the amount of RS between breads made with whole wheat flours with particle
size ranging from 57 to 120 µm. Remarkedly, these two studies included the RS values of bread samples
after freeze-drying and milling. Even if freeze-dried crumb samples were corrected for moisture and
sieved to discard particle size effects, this approach for sample preparation still disregards potential
changes in the permeability of the intact plant cell and/or the food matrix. In any case, differences in RS
were small and human intervention studies should be performed to confirm or discard the use of coarse
flours feasible for bread-making for better postprandial metabolism. Added to that, it should be noted
that the amount of ungelatinized starch is dramatically higher in bread crust than in bread crumb [6],
and hence the effects of varying particle size could be completely different between crumbs and crusts.
In this sense, de la Hera et al. [63] and Protonotariou, Mandala, & Rosell [64] investigated the RS
content in bread slices containing the crust portion, so the question of whether particle size differences
in the range of 100 µm affect RS in bread crumb, the major fraction of a bread slice, remains unclear.

Besides plant cell walls, storage proteins from certain plants, such as those from wheat (glutenin
and gliadin), maize (zein), and sorghum (kafirin), have the ability to form disulphide bonds that
result in a continuous layer around starch granules upon cooking, and in a slowdown of starch
digestion [65,66]. In any case, the effect of network-forming proteins on the resulting RS (or glycemic
response) after baking has received little attention. Only Berti et al. [67] and Jenkins et al. [68] showed
lower postprandial glucose levels of gluten-containing breads compared with gluten-free breads,
which was attributed to the presence of a protein network encapsulating the starch. Jenkins et al. [68]
also proved that the addition of gluten to gluten-free breads did not reduce the glycemic response,
suggesting that the protective effect of the protein present in the wheat is the result of the natural
junctions between protein and starch, and is lost once the protein–starch network is disrupted. On the
other hand, zein and kafirin, presumably owing to their relative hydrophobicity and disulphide bond
cross-linking [69], are isolated in protein bodies in the endosperm cells of the mature grain [70]. The
localization of storage proteins in protein bodies, unlike what occurs in wheat, prevents the formation
of a continuous matrix around the starch granules within the cells. For zein and kafirin to be functional
in doughs, the protein bodies must be disrupted during dough mixing and the proteins freed. However,
disruption of the protein bodies has only been observed to occur during high shear extrusion [71] or
roller flaking [72].

3.2. Granular Surface Properties (Granular Resistant Starch, RS2)

Starch usually gelatinizes in the range of 54 to 76 ◦C at ≥20% water [73]. Therefore, considering
that, even for those breads made with the lowest possible hydration level (refined dough bread, also
known as candeal bread), the moisture content in the crumb is above 35% throughout baking (where a
temperature above 70 ◦C is reached [7]), an extensive (mostly complete) starch gelatinization (Figure 2)
is expected to occur [6]. On the contrary, the fast evaporation of water from the crust owing to its high
surface temperature impairs the full gelatinization of the starch [6]. In this way, it is possible to find
from 56% to 70% (or even higher) of the starch in the crust ungelatinized (Figure 2), depending on the
type of bread [6,9]. Restriction of swelling and gelatinization can also be achieved by the interplay of
starch with other ingredients in the formula, including lipids, protein, fibers, and sugars [74]. In any
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case, the presence of starch granules inherently resistant to digestion (RS2) could increase the final
content of RS in breads coming from their crust portion [9].
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starch. Detailed magnification (20 µm) denotes the presence of some granules in the gelatinized crumb.

RS2 has been found in ungelatinized tubers, particularly in potato, as well as in starchy fruits,
such as green banana, both in vitro [31] and in vivo [32,75]. High-amylose starch is also a source of RS2.
High-amylose starch, which is found mainly in maize, is obtained by mutation of the amylose-extender
(ae) gene and the gene encoding starch branching-enzyme I [15]. Thus, this starch presents longer
branch chains of intermediate material and higher amylose content [76]. RS2 starches are present in
starch granules containing the B-type crystalline allomorph. Although differences in the crystalline
structure help explain the higher resistance to amylolytic enzymes of potato, high amylose, and banana
starches, crystallinity itself does not fully explain the resistance of these starches. At a superior level
of starch structure, A-polymorphic starches are reported to have pores (0.1 to 0.3 µm diameter) and
channels (0.007 to 0.1 µm diameter) through which α-amylase (around 3 nm radius) could diffuse [77].
On the contrary, larger “blocklets” at the periphery of B-type polymorphic starch granules result in the
absence of pores and channels [78], which could significantly limit the enzyme digestion, and possibly
be the primary determinants for the RS property [25,79].

In general, the addition of RS2 ingredients may result only in a moderate increase of RS in the final
bread, as gelatinization will destroy their semi-crystalline granular structure. This moderate increase
will be the result of remaining ungelatinized granules in the crust, which represents a significant, but
lower portion of the bread slice. As an example, Roman, Gomez, et al. [9] observed an RS increase
from 0.26 to 5.66% in the crust with the replacement of the main starchy ingredient by native banana
starch, but no significant RS increase was observed in the crumb portion. On the contrary, native
high amylose is the only RS2 source that resists gelatinization, making this starch more suitable for
hydrothermally-processed foods. In fact, complete gelatinization of these mutant starches is only
achieved at temperatures higher than 120 ◦C [5,80,81]. In addition, once gelatinized, high amylose
starches can form high amounts of RS3 [82]. Thus, several types of resistant starch, namely, RS2, RS3,
and RS5, can coexist in the final bread.

3.3. Dispersed Starch Molecules Forming Resistant Starch upon Cooling and Storage (RS3)

After gelatinization, which results from baking, dispersed starch molecules begin to re-associate
upon cooling, forming tightly packed structures stabilized by hydrogen bonding that are more resistant
to digestion [83]. The resistance of retrograded amylose to α-amylase digestion was demonstrated
both in vitro and in vivo long ago [84], which was termed as RS3. The amount of RS3 produced



Foods 2019, 8, 267 7 of 20

from retrograded amylose is dependent on the amylose ratio and its chain length [18,85]. Similar to
RS2, the enzyme resistance of RS3 has been associated with the formation of a highly thermostable
B-type crystalline structure. Thus, the increased crystallinity is expected to result in fewer available
α-glucan chains to which α-amylase can bind and thus reduce the susceptibility of retrograded starch to
digestion [82]. Nonetheless, crystallinity itself does not fully explain the resistance of RS3, as previously
mentioned with RS2. Amorphous material in enzyme-resistant fractions has been found, confirming
that the resistance is not simply based on a specific crystalline structure that is fully undigested [86].
Cairns et al. [87] and Gidley et al. [88] suggested that the resistance to digestion is also the result of other
double helices not involved in crystals. More recently, extrusion processing of high amylose starch was
shown to result in non-crystalline dense packing of amylose chains upon cooling, which exhibited
significantly higher RS content than the cooked counterpart [82,89,90]. Furthermore, the content of RS
in extruded high amylose starch was similar to that in a granular native state [82]. We believe that
the increase in amorphous RS during extrusion could be the result of the molecular fragmentation
of amylose and amylopectin chains during extrusion, which could improve molecular mobility and
amorphous molecular packing at submicron length scale. In fact, recently, evidence of shear-induced
amylose scission during extrusion has been reported [91].

In contrast to amylose, the branched structure of amylopectin is less prone to retrograde, needing
a longer time for the formation of double helical structures [91]. Retrograded amylopectin has been
linked to the formation of slowly digestible starch (SDS), and hence to a reduction in the rate of
starch digestion [92,93]. Starch with a slow digestion rate has been proposed to partially pass to
the large intestine as RS, where it functions as a source to bacterial fermentation [84]. In this way,
although RS3 has been generally attributed to the formation of resistant crystalline structures from
amylose double helices, some old and recent evidence suggests that retrograded amylopectin should
be included as another form of RS3 [84]. In fact, Englyst and Macfarlane [94] already proposed a
further classification of RS3 into two subcategories, that is, RS3a and RS3b, comprising retrograded
amylopectin and amylose, respectively. In terms of amylopectin, slowly digestible starch structures
involving amylopectin have been attributed to the following: (1) high proportions of long chains [93,95];
(2) chains with longer average length [9,92,93]; and/or (3) lower molecular sizes through processes
such as acid-hydrolysis or high shear cooking extrusion [9,91,93]. In contrast to RS3 from amylose
retrogradation, which is thermally stable (melting of amylose-amylose double helices occurring at
~150–160 ◦C), double helices or aggregates of double helices involving amylopectin melt at significantly
lower temperature (~55 ◦C) [9,96,97] and, therefore, attention should be paid when using in breads
that will be re-heated.

3.4. Introduction of Chemical Structures (Chemically Modified Resistant Starch, RS4)

Starch resistance can also be created by the inclusion of chemical structures along starch chains.
The resistance to digestion of chemically modified resistant starch (RS4) is dependent on the type and
extent of the chemical modification, mostly consisting of dextrinization, etherification, esterification,
oxidation, and/or cross-linking [58].

The mechanisms responsible for the enzymatic resistance of RS4 have been revised elsewhere [98].
It is originated principally by two different mechanisms: (1) the introduction of bulky functional
groups (e.g., oxidation, etherification, or esterification with hydroxypropyl, acetyl, and octenyl succinic
anhydride groups, among others) and (2) starch cross-linking (typically with phosphate groups).
In the former category, large and bulky side functional groups are added by substitution along the
α-1,4 D-glucan chains to hinder the enzymatic attack, which also makes adjacent glycosidic bonds
inaccessible to the enzymes. As for the latter, the presence of cross-linked starch chains (reaction with
two or more hydroxyl groups) inhibits granular swelling, preserves granular integrity (preventing
enzyme access), and creates steric hindrance, making amylase unable to properly bind to starch.
Furthermore, some of the abovementioned chemical modifications can bring about RS ingredients
with up to 68–79% RS. Nonetheless, these chemical methods are characterized by long reaction times



Foods 2019, 8, 267 8 of 20

(up to 24 h) and environmental concerns (use of excess reagents that need to be properly removed
and disposed of). Therefore, this type of modification seems less appropriate nowadays in view
of the current health and wellness megatrends, which are orientated to clean and natural (free of
chemicals) labels.

RS4 from different starch sources are a widely commercialized RS ingredient, although little
information exists from the manufacturer about the nature and level of these modifications.
Multinational companies providing RS4 from potato, tapioca, wheat, and/or high-amylose maize
include Ingredion [99], Roquette [100], MGP Ingredients [101], and Cargill [102]. Ingredion provides
RS4 from high-amylose maize starch and potato starch known as Versafibe 2470 and 1490, respectively.
Roquette offers a line of modified starches under the name “CLEARGUM” comprising acetylated,
diphosphate, and octenyl succinic anhydride (OSA) starches. MGP ingredients offers a phosphorylated
cross-linked starch under Fibersym brand name. Cargill also offers a range of stabilized RS4 starches
(C PolarTex, C StabiTex, C Tex), subjected to different chemical modifications (hydroxypropylated,
acetylated, phosphorylated starch, and so on). Several research works have focused on the influence of
these chemically modified RS starches in RS content, glycemic index, and quality of breads [103–111].
Chemically modified starches preserve their RS property during conventional food hydrothermal
processing and, therefore, can significantly increase the RS content in bread. Nonetheless, based on
consumers’ demands for clean labeled products, these investigations will not be discussed in the
present review.

3.5. Lipid Complexed Resistant Starch (RS5)

Amylose can form inclusion complexes with lipids, and these complexes have been shown to
be more resistant to digestion [112]. Amylose–lipid complexes naturally exist in some starch sources
(principally high amylose starches) [113]. Nonetheless, they can also be formed upon hydrothermal
treatments, such as baking, in the presence of exogenous or endogenous lipids (monoglycerides,
fatty acids, lysophospholipids, and surfactants) [114]. The stability and resistance to digestion is also
dependent on the type of lipid (i.e., carbon unit length and unsaturation) complexed [114–116].

Two forms of complexes can be distinguished depending on their thermostability: Type I
amylose–lipid complexes that melt at about 95–105 ◦C (less ordered structures), and Type II (V-type
crystalline structures) melting at about 110–120 ◦C [117,118].

Although there are no commercially available sources of RS5 in the market, amylose–lipid
complexes can also reform upon baking, provided there are lipids in the formula. In this regard, most
gluten-free breads, which are mostly made with maize starch and rice flour, incorporate some source
of lipid/fat in the formula, to enhance the crumb softness and juiciness, as it tends to be excessively
dry [119]. Meanwhile, wheat flour lipids represent 2.0% to 2.5% of the flour and exogenous lipids are
often added to reduce hardness or staling [120]. Therefore, the presence of a certain amount of RS5 in
breads is expected.

It is worth noting the ~50% reduction of postprandial blood glucose and insulin levels of breads
containing 60% (flour basis) of a developed RS5 containing ingredient compared with the control white
bread [121]. These authors produced an ingredient containing both RS3 and RS5 by debranching high
amylose VII maize starch with isoamylase followed by complexation with palmitic acid. Interestingly,
they showed that the debranching treatment increased the amount of linear chains, which could either
retrograde or form complex with lipids more effectively (RS: 52.7%) than the native high-amylose
starch molecules (RS: 35.4%) upon baking.

4. Effects of RS in Physicochemical Characteristics of the Breads

Although bread-making varies widely around the world, the four basic ingredients are flour/starch
(normally from cereals and tubers), water, yeast, and salt. Processing conditions include kneading,
proofing, and baking. Inclusion of RS ingredients in the formula is usually given by replacement levels
of the starchy material by the RS ingredient. Most investigations approached the RS enrichment of
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breads using commercial RS2 and RS3 ingredients, but only some studies included the RS content in
the final product. This is critical as baking will critically alter the type and amount of RS. For this
reason, in Table 2, only those studies in which RS was assessed in the final product were included.

High amylose starches, usually from maize, in both granular (RS2) and retrograded (RS3) form,
are among the most used commercial RS ingredients in bread-making. They are widely available from
many companies including Ingredion, Roquette, Cerestar, and SunOpta Ingredients. Tapioca rich in
retrograded amylose (RS3) has also been investigated, which can be purchased from Cargill. RS2 from
green banana starch or flour has also been evaluated in bread. The demand for banana starch/flour
(RS2) is on the rise, and companies like Chiquita (Costa Rica), Livekuna (Canada), International
Agriculture Group (United States), and Natural Evolution (Australia) commercialize a wide range
of banana starch/flour ingredients with elevated RS content (~40–50%). On the one hand, it must
be brought into attention that, converse to RS2 from high-amylose maize and RS3, RS2 from green
bananas is not heat-stable and will not resist baking, that is, there will be a significant fraction of
RS that will be lost during baking [9,122]. It is noteworthy that banana RS2 decreases with ripening
owing to its conversion into reducing sugars by endogenous α-amylase [123]. This enzyme has been
reported to present an optimal activity between 8 ◦C and 38 ◦C, starting to be denatured at 38 ◦C
and being fully denatured after 5 min at 100 ◦C [124]. Therefore, the drying step will be critical for
its inactivation and the preservation of RS2 in banana flours. Specifically, Pico et al. [125] showed
how oven-dried banana flours at 40 ◦C for 24 h exhibited an insoluble dietary fiber content of 26.8%,
which was significantly lower than the same flours obtained through freeze-drying (43.3%). On the
other hand, albeit banana RS is lost during baking, banana starch has been reported to have a suitable
molecular structure to result in structurally-driven slowly digestible starch in bread crumb after baking
through retrogradation [9], part of which could reach the colon as RS3 (RS3b). This occurrence has
been reported to improve through shear-induced fragmentation of amylopectin molecules through
high shear extrusion [91], which was attributed by the authors to smaller amylopectin fragments being
more mobile and more prone to interact through retrogradation.

The targeted amount of RS ingredient during formulation depends on the starch being used and
the desired RS level in the bread. Normally, percentages of replacement have been reported within
5–30%, which resulted in breads with final RS content being dependent on the method of analysis.
The RS content in both ingredients and breads was, in some cases, quantified by the AOAC Method
2002.02 and modifications of the Englyst procedure. However, AOAC official methods 985.29 and
991.43 were also used, which can lead to underestimations of the RS content (Section 2). Therefore,
it is unfortunate that the RS content of different RS ingredients and breads is not comparable nor
harmonized. It is expected that the CODEX definition of dietary fiber [126], and its adaptation by many
worldwide authorities, brings about a unique method of analysis whose adoption enables harmonized
information about the RS content in different commercial RS ingredients and RS-containing foods. This
would also answer existing uncertainties in the association of RS consumption through breads with
positive health outcomes. It is very important to mention that the clear majority of studies did not
report information about the day RS was analyzed (i.e. time after baking), which masks information
about the structural basis of the RS in breads, especially of those containing RS3, which increases over
time through retrogradation [48,93,127–129]. Another masking factor is the fact that the nature of the
sample for RS analysis is unknown and not reported in most studies, that is, whether crumb, crust, or
the whole slice was analyzed (Table 2). This is particularly important considering the differences in the
degree of gelatinization between crumb and crust (Figure 2) [6].

The incorporation of RS ingredients into bread formula also brings about differences in the
physicochemical and organoleptic properties of the bread (Table 2). The flavor, mouth-feel, appearance,
and texture are examples of important quality factors to bear in mind for good consumers’ acceptance.
As reported in Table 2, formulation of breads with increasing levels of RS2 and RS3 sources, in general,
has detrimental effect on volume, hardness, cohesiveness, and crust color. On the basis of Table 2,
approximately a 20% replacement of wheat flour by RS ingredients seems to be adequate to keep
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bread final quality, although lower specific volume and harder and/or less cohesive crumbs were
generally observed. Paler crusts are visible in some studies owing to the whitish color of starch
and the reduction in protein content available for Maillard reaction, while the color of the crumb
seems less affected. Meanwhile, the incorporation of banana flour led to both darker crumb and
crust [9]. Differences in crumb cell size distribution and decreased gluten network formation have also
been reported [127,130–132] On the other hand, consumers’ perception generally reflected similar or
unaffected sensory evaluation, which may be because of the bland flavor of most RS sources. In this
regard, Almeida et al. [133] studied the effects of adding different dietary fiber sources and concluded
that RS2 (high amylose maize) was a more “inert” fiber source in relation to bread quality characteristics.
RS2 was found to have lower water holding capacity than other dietary fibers, and thus less impact on
dough rheology, resulting in breads with superior quality [134].

In addition, other than the nature of RS ingredients, processing conditions may also influence
the formation of RS in bread. Baking under low-temperature and a long-time period significantly
resulted in higher amounts of RS in bread than in those baked under higher-temperature and shorter
time [48,49,135,136]. Similarly, higher addition of water in the formula has also been reported to
increase RS in the bread. The higher the water content in the dough, the more starch can be gelatinized,
resulting in increased starch retrogradation (RS3) during cooling of gelatinized starch [136]. RS3 in
wheat bread has been reported to be greater for refrigeration than ambient or frozen temperatures [129],
so for certain starches, refrigeration temperatures may boost their RS property in breads.

In some studies, the amount of water added to each formulation was adjusted based on the water
binding capacity of starches as determined by farinographic analysis or elastic modulus [127,130,131,137–139].
In general, these RS rich ingredients have higher water absorption capacity than wheat flour or
gluten-free flours used for bread making, especially if RS3, in non-granular form, is used [130,139].
Therefore, if water content is not properly adjusted, especially in gluten-containing breads, higher water
absorption by RS ingredients in the dough can result in detriment of the gluten network [131,140]. Low
water availability causes non-optimal repartition of water among dough components and may lead to
final breads with detrimental quality characteristics in terms of specific volume, textural attributes,
and appearance [141]. It is important to highlight that despite water adjustment in the formula, the
specific volume always decreased when high levels of RS ingredients were added into the formulation
of gluten-containing breads. This could be explained by the extent of gluten protein dilution [142]
and a hindrance effect on the gluten network development by the non-gelatinized high maize starch
granules [130]. Conversely, in gluten-free breads, no differences or even an improvement in bread
volume with RS inclusion were observed in some studies [9,136,143].
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Table 2. In vitro studies on commercially available RS2 and RS3 sources as ingredients to increase RS content in wheat- and gluten-free breads.

Ingredient RS Content Type of Bread Substitution
Level (%) Evaluation Day RS Content In vitro RS

Method Effects on Bread Quality Refs.

HA maize starch,
Hi-Maize 260,

Ingredion

60% IDF
Manufacturer
(58.4% TDF)

Wheat flour
(4.5% TDF)

0
10
20
30

n.a.
crumb

6.6% bb, db
9.5% bb, db

17.0% bb, db
26.6% bb, db

AOAC 985.29

Increased hardness
Decreased cohesiveness and resilience

Decreased volume with 30% level
Lighter crust

Decreased number of cells in the crumb
Decreased Cinf and estimated GI
Increased consumer acceptability

(20% level)

[130]

HA maize starch,
Hi-Maize 260,

Ingredion

60% RS
Manufacturer Wheat flour

0
10
15
20

2 h,
Lyophilized

crumb

1.2% n.a.
3.9% n.a.
5.9% n.a.

11.1% n.a.

Goni et al. [40]

Decreased volume
Increased hardness with 15% level

Lighter crust
Staling dependent on the level of

replacement

[142]

HA, Amylo-maize
starch N-400,

Roquette

40% TDF
Manufacturer

GF flour mix
(maize starch,

rice flour,
tapioca starch)

0
20—RS2

20—RS3 a

n.a.
bread

1.2% bb, db
4.4% bb, db

7.6–9.2% bb, db

Englyst et al.
[31]

Reduced in vitro glycemic index
(RS3 > RS2) [137]

HA maize starch,
Hi-Maize 260,

Ingredion

56% TDF
Manufacturer

Yellow maize
flour

0
20 n.a. 4.3% bb, db

12.0% bb, db
Modified

AOAC 2002.02

Specific volume and texture were not
modified

Decreased cell density
Similar sensory evaluation

SDS fraction was also increased
eGI decreased from 85 to 71

[143]

HA maize starch,
Hi-Maize 260,

Ingredion

56% TDF
Manufacturer

White maize
flour

0
20 n.a. 5.5% bb, db

11.3% bb, db
Modified

AOAC 2002.02

Specific volume and texture were not
modified

Same cell density
Similar sensory evaluation

SDS fraction was also increased
eGI decreased from 83 to 72

[143]

HA maize starch,
Eurylon, Roquette 83.2% RS2 Wheat flour

(14.1% RS)
0

20 b

24 h/7 days,
Lyophilized

crumb

0.0%/4.4% bb, db
7.7%/10.2% bb, db

Modified
Englyst et al.

[31]

Decreased specific volume
Decreased hardness

No sensory differences
[127]

Extruded
retrograded HA

maize starch,
EURESTA, Cerestar

29.5% RS3 Wheat flour
(14.1% RS)

0
20 b

24 h/7 days,
Lyophilized

crumb

0.0%/4.4% bb, db
8.4%/11.0% bb, db

Modified
Englyst et al.

[31]

Decreased specific volume
Decreased hardness

No sensory differences
[127]

HA maize starch,
HylonVII,
Ingredion

53% RS2 Wheat flour

0
10
20
30

24 h,
Lyophilized

crumb

1.2% bb, db
4.1% bb, db
8.1% bb, db

10.1% bb, db

AOAC 2002.02
Decreased volume for 30% level
Increased hardness for 30% level

Paler crust color for 20% and 30% levels
[139]
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Table 2. Cont.

Ingredient RS Content Type of Bread Substitution
Level (%) Evaluation Day RS Content In vitro RS

Method Effects on Bread Quality Refs.

HA maize starch,
Novelose330,

Ingredion
46.5% RS3 Wheat flour

0
10
20
30

24 h,
Lyophilized

crumb

1.2% bb, db
4.7% bb, db
9.7% bb, db

12.7% bb, db

AOAC 2002.02
Decreased volume 20% and 30% levels

Increased hardness for 20% and 30% levels
Paler crust color for 30%

[139]

HA maize starch
CrystaLean,

SunOpta
ingredients

45% RS3 Wheat flour

0
10
20
30

24 h,
Lyophilized

crumb

1.2% bb, db
4.4% bb, db
8.3% bb, db

12.4% bb, db

AOAC 2002.02
Decreased volume for 30% level

Increased hardness for 30%
Paler crust color above 30%

[139]

HA maize starch,
Hi-Maize 260,

Ingredion

RS > 60%
Manufacturer

Maize starch
Potato starch

(4:1) c

0
10
15
20

n.a.

2.1% bb
3.9% bb
4.7% bb
5.0% bb

AOAC 991.43
Decreased volume

Similar initial hardness (20% level)
Reduced hardening (48 h)

[138]

Tapioca starch,
ActiStar 11700,

Cargill

RS3 > 50%
Manufacturer

Maize starch:
Potato starch

(4:1 mixture) d

0
10
15
20

n.a.

2.1% bb
2.5% bb
2.8% bb
3.0% bb

AOAC 991.43
Decreased volume

Reduced initial hardness (20% level)
Reduced hardening (48 h)

[138]

HA wheat flour,
Okumoto Flour

milling
6.7% TDF Wheat flour

(3.4% TDF)

0
10
30
50

2h

0.9% bb, db
1.6% bb, db
2.6% bb, db
3.0% bb, db

AOAC 985.29 e

Decreased volume
Increased hardness

Similar staling (hardness) for 30 and 50%
levels

Higher staling for 10% level
Increasing RS with storage and

substitution

[132]

Green banana
starch, Natural

Evolution
42.2% RS2

Maize starch
(0.8% RS):

Rice flour (0.1%
RS)

(1:1 mixture)

0
20—Native

20—Extruded f

24 h,
Crumb and

crust

1.5% cb – 0.3% ct, db
1.7% cb –5.7% ct, db
1.9% cb –0.7% ct, db

AOAC 2002.02

Darker bread color
Improved volume, reduced hardness, and

improved sensory acceptance (native
banana)

Increased SDS fraction in crumb with
native and extruded banana

[9]

Green plantain
flour, Chiquita 50.1% RS2

Rice flour: GF
wheat starch
(1:1 mixture)

0
35 24 h 1.1% bb, db

2.3% bb, db AOAC 2002.02

Improved volume but increased firmness
Darker bread crumb
Lighter bread crust

Optimization of water content, baking
time and temperature for 30%

replacement to maximize RS (3%)

[136]

SDS = slowly digestible starch; AOAC = Association of Official Analytical Chemists; IDF = insoluble dietary fiber; TDF = total dietary fiber; GI = glycemic index; GF = gluten-free;
n.a. = not available; HA = high amylose; bb = bread basis; cb = crumb basis; ct = crust basis; db = dry basis. a RS3 was prepared with RS from HA maize starch (Amylomaize, N400)
subjected to debranching and/or three autoclaving-cooling cycles. b Wheat flour (24%) was replaced by 20% of RS2 or RS3 source and 4% gluten. c Maize starch was replaced by HA maize
starch. Water level was not modified in the formula. d Potato starch was replaced by tapioca starch. Water level was increased in the formula. e TDF and RS in breads after baking and
during storage were determined using the total dietary fiber assay kit. The RS in bread was calculated as the amount of non-digestible carbohydrate minus DF that already existed in the
flours. f Banana starch (Native RS2) was extruded under high-shear extrusion to obtain pregelatinized starch (RS3).
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5. Current Legislation of RS Ingredients and Products in the Food Industry

RS generally meets the criteria to be defined as “dietary fiber” by the comprehensive dietary fiber
definition adopted by the CODEX Alimentarius Commission [126]. However, isolated or synthetic RS
ingredients require the American Food and Drug Administration (FDA) [144] or European Union (EU)
approval [145] after assessments of scientific evidence relating RS to physiological benefits. Under that
proposed outline, “isolated” (pure RS2) or “synthetic” (RS3, RS4 and RS5) RS sources would remain
outside this definition. Nonetheless, in June 2018, the FDA [144] released a review of the scientific
evidence on the physiological effects of certain non-digestible carbohydrates, which decided to include
isolated RS2 ingredients, such as raw green banana, potato, and high amylose starches, in the definition
of dietary fiber. According to this categorization, in Europe (2 kcal/g), Australia (2 kcal/g), and USA
(0 kcal/g), RS has a lower energy value compared with other non-fiber carbohydrates (4 kcal/g) [23,146].
The European Commission [147] also allows manufactures to voluntarily claim foods as a “source of
fiber” if it contains at least 3 g of fiber per 100 g, and as “high in fiber” if it contains at least 6 g of fiber
per 100 g.

Current regulations also identify the potential physiological benefits of RS. The European Food
and Safety Authority (EFSA) approved the health claim, “Replacing digestible starch with resistant
starch induces a lower blood glucose rise after a meal”. However, this claim can be only used when
the final RS content in the food is at least 14% of the total starch [148]. On the other hand, from
2016, the FDA [144] has allowed manufacturers to use the claim related to high amylose maize RS,
“High-amylose maize resistant starch, a type of fiber, may reduce the risk of type 2 diabetes, although
FDA has concluded that there is limited scientific evidence for this claim”. So far, to the best of our
knowledge, there is no other RS source with an authorized health claim in the United States.

6. Conclusions

The development of breads rich in RS and acceptable quality attributes could have a positive
impact on the modulation of the glycemic response, the control of body weight, and the improvement
of bowel health of bread consumers. The growing evidence of the positive health outcomes attributed
to RS is leading to the apparition of novel RS ingredients in the market for bread-making, whose
incorporation may seem the most logical and easy strategy to increase the RS content in breads.
However, it must be noted that not all RS ingredients preserve the RS property during baking. It is
thus paramount to understand the structural basis for their resistance to digestion and hydrothermal
processing, which is often disregarded. This review concludes that high amylose starches, both native
(RS2) and processed (RS3), are the most suitable RS ingredients for bread making in terms of RS
preservation during baking and a lower detrimental impact on bread texture. However, their level of
inclusion must be carefully selected. Another issue that this review addresses is the lack of harmony
in RS values, which is the result of using different in vitro methods, some of which do not account
for all types of RS structures. This outlook is changing though, as AOAC Method 2002.02 or any
of its extensions, such as AOAC Methods 2009.01/2011.25, are adopted by many researchers from
different nationalities.
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