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Abstract

Background: Reduced growth during infancy is associated with adult insulin resistance. In a UK
Caucasian cohort, the CSH/.0/ microsatellite polymorphism in the growth hormone-chorionic
somatomammotropin hormone gene cluster was recently associated with increases in adult fasting
insulin of approximately 23 pmol/l for TT homozygote males compared to DIDI| or D2D2
homozygotes (P = 0.001 and 0.009; n = 206 and 92, respectively), but not for females. TT males
additionally had a 547-g lower weight at | year (n = 270; P = 0.008) than D2D2 males. We sought
to replicate these data in healthy UK Caucasian subjects. We genotyped 1396 subjects (fathers,
mothers and children) from a consecutive birth study for the CSHI.0/ marker and analysed
genotypes for association with |-year weight in boys and fasting insulin in fathers.

Results: We found no evidence for association of CSH/.0| genotype with adult male fasting insulin
concentrations (TT/DIDI| P=0.38; TT/D2D2 P = 0.18) or weight at | year in boys (TT/DIDI P =
0.76; TT/D2D2 P = 0.85). For fasting insulin, our data can exclude the previously observed effect
sizes as the 95 % confidence intervals for the differences observed in our study exclude increases
in fasting insulin of 9.0 and 12.6 pmol/l for TT relative to DID| and D2D2 homozygotes,
respectively. Whilst we have fewer data on boys' |-year weight than the original study, our data
can exclude a reduction in | -year weight greater than 557 g for TT relative to D2D2 homozygotes.

Conclusion: We have not found association of the CSHI.0/ genotype with fasting insulin or
weight at | year. We conclude that the original study is likely to have over-estimated the effect size
for fasting insulin, or that the difference in results reflects the younger age of subjects in this study
relative to those in the previous study.

Background resistance in the general population [1-5]. These include
Reduced birth weight and reduced growth in infancy are  type 2 diabetes, coronary heart disease and hypertension.
associated with adult disorders characterised by insulin  Their association with birth weight may be explained by
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programming of metabolism due to undernutrition in
utero [1], or by genetic factors: common genetic variants
which increase insulin resistance may predispose both to
low insulin-mediated growth in utero and insulin resist-
ance in adulthood [6]. It has been proposed that infant
length or weight measured up to the age of two increas-
ingly reflects the influence of the infant's own genes on
the growth trajectory since the influence of the maternal
intra-uterine environment is no longer present [7,8].
Since reduced weight in infancy is also associated with
adult insulin resistance, candidate genes with effects on
both of these traits, as well as birth weight may explain the
observed associations.

Few genes are known to influence both diabetes-related
traits and birth weight. Positive associations with both
phenotypes have been shown for the insulin gene (INS)
variable number of tandem repeats (VNTR) locus [8-10],
a microsatellite polymorphism in the insulin-like growth
factor 1 gene (IGF1) [11,12] and the glucokinase gene
GCK(-30) polymorphism [13]. There is evidence that a
single nucleotide polymorphism in complete linkage dis-
equilibrium with INS-VNTR classes I and III (rs689) is
functional [14]. Despite this, studies attempting to repli-
cate the INS-VNTR and IGF1 associations have produced
inconsistent results [15-20]. Replication of any genetic
association study is vital for determining whether the
observed association is real, since it increases the cumula-
tive sample size and helps to guard against the low a priori
odds of a variant altering a phenotype, which may hinder
any single study [21,22].

Recently, Day et al. [23] reported that genetic variation in
the GH/CSH gene cluster, which includes growth hor-
mone (GHI1; chromosome 17q23), is associated with
altered 1-year weight and adult insulin resistance in UK
Caucasian males aged 59-72 years. Variation in a highly
polymorphic microsatellite marker, CSH1.01, was dichot-
omised into allele lineages based on possession of a dinu-
cleotide repeat allele (D1; D2 (subset)) or a
tetranucleotide repeat allele (T). In male subjects from
north and east Hertfordshire, TT homozygotes had a 64.6
% (22.8 pmol/l) or 66.5 % (23.2 pmol/l) higher fasting
insulin compared to D1D1 homozygotes (P = 0.001; n =
206) and D2D2 homozygotes (P = 0.009; n = 92), respec-
tively. The TT genotype was also associated with a 5.3 %
(547 g) reduction in weight at 1 year compared to the
D2D2 genotype (P = 0.008; n = 270) but this difference
was not observed when compared to the D1D1 genotype
(P =0.24; n = 593). There was no association of genotype
with birth weight, and no association with any measured
phenotype in females.

Strong linkage disequilibrium occurs across the 66.5-kb
GH/CSH gene cluster such that variation in two or more
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of the genes, inherited together, may reduce growth in
early life while predisposing to disease later in life [23].
The gene cluster is an excellent candidate region for pre-
disposing to restricted early growth and later insulin
resistance. Placental growth hormone (GH2) and chori-
onic somatomammotropin (human placental lactogen)
hormones 1 and 2 (CSH1 and CSH2), are expressed in the
placenta and are involved in regulating fetal glucose sup-
ply and growth [24,25]. GH1, through transcriptional reg-
ulation of the gene for insulin-like growth factor-1 (IGF1)
and related genes, has a critical role in the regulation of
postnatal growth [26]. Exogenous growth hormone
administration alters glucose metabolism both in vitro
and in vivo [27], whilst growth hormone deficiency and
acromegaly are characterised respectively by sensitivity
and resistance to insulin [28]. In addition, lower circulat-
ing IGF-I concentrations are associated with higher risk of
impaired glucose tolerance or type 2 diabetes [29].

We sought replication of the associations reported by Day
et al. [23]. We used healthy subjects (483 fathers, 479
mothers and 434 children) from a population-based con-
secutive birth study to assess the role of CSH1.01 variation
in measures of fetal and postnatal growth and adult insu-
lin resistance, as measured by fasting insulin concentra-
tions and Homeostasis Model Assessment of Insulin
Sensitivity (HOMA %S).

Results

CSH .01 genotype and fathers' fasting insulin

There was no association between father's D1/T or D2/T
genotype and fasting insulin (Table 1). The P values for
fathers' fasting insulin were little changed by adjustment
for age and BMI (P = 0.53 and 0.29 for the D1/T and D2/
T genotypes, respectively).

CSHI.01 genotype and children's weight at | year

There was no association between children's D1/T or D2/
T genotype and weight at 1 year (Table 1 shows results for
all children, and also separately for boys and girls). The P
values for children's 1 yr weight were little changed by
adjustment for sex (P = 0.49 and 0.66 for the D1/T and
D2/T genotypes, respectively).

CSHI1.01 genotype and other relevant phenotypes

There was also no association of D1/T or D2/T genotype
with fathers' HOMA %S, children's birth weight (all chil-
dren born at 36 weeks gestation or more, or stratified by
sex) or placental weight (gestation 36 weeks or more),
father or mother's height, father or mother's birth weight
(obtained from subjects' mothers), father's BMI, mother's
pre-pregnancy BMI, mother's age, father's age, father's
fasting triglyceride concentrations adult or children's sex
(all P > 0.05; results not shown). Oral glucose tolerance
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Table I: Phenotypes previously reported as associated with the CSHI.0] microsatellite by Day et al. [23]: Fathers' fasting insulin and
boys' | year weight (with 95% confidence limits) tabulated for CSHI.0/ allele group D1/T and D2/T genotypes

TT DT DI/DI
Fathers: fasting 54.1 51.6 55.8
insulin (pmoll/l) (46.1-63.5) (47.9-55.7) (51.4-60.7)

Children: | yr weight

9786 9992 9946
(® (9457-10115)  (9818-10167)  (9763-10129)

Girls: |1 yr weight (g) 9087 9610 9633
(8638-9536)  (9375-9846)  (9388-9877)

Boys: | yr weight (g)

10401 10344 10242
(9969-10834) (10112-10575) (9998-10487)

N P TIT D2/T D2/D2 N P
472 0375 54.1 48.1 579 196 0.183
(45.9-63.7)  (42.9-540)  (48.3-69.3)

366 0.554 9786 9914 10057 164 0.572
(9461-10112) (9670-10157) (9669—10445)

176  0.092 9087 9541 9688 75 0.164
(8648-9526)  (9216-9867) (9117-10259)

190 0.758 89 0.851

10401 10252 10297
(9984-10819) (9937-10567) (9829-10764)

Fasting insulin and weight measures are unadjusted mean (95 % confidence limits). Fasting insulin values were log-transformed before analysis. P

values are for one-way ANOVA.

test and blood pressure data were not available for these
subjects.

Discussion

Common variants in the GH-CSH cluster are excellent
candidates for contributing to common variation in fetal/
infant growth and adult insulin resistance. The placen-
tally-expressed CSH1, CSH2 and GH2 genes have key
roles in the regulation of fetal glucose supply and growth
[24,25], while GH1 has a critical role in postnatal growth
and glucose metabolism [26-29]. A previous study
reported that a microsatellite polymorphism in this clus-
ter, CSH1.01, was associated with reduced weight at 1 year
and increased fasting insulin concentrations in adult UK
Caucasian males [23]. We have examined this polymor-
phism in an independent UK Caucasian study and found
no evidence of association with either phenotype.

Our study included over twice as many adult male sub-
jects for the fasting insulin analysis as the previous study
[23]. This gave us more statistical power to detect an effect
of genotype. Whereas Day et al. [23] showed that fasting
insulin concentrations of TT carriers were 22.8 pmol/l
higher than those of D1D1 carriers and 23.2 pmol/l
higher than those of D2D2 carriers (P = 0.009 and 0.008,
respectively), we found no evidence of a difference and
the 95 % confidence limits for the differences observed in
our study exclude increases in fasting insulin above 9.0
and 12.6 pmol/l for TT relative to D1D1 and D2D2
homozygotes respectively. Using unlogged fasting insulin
data, we obtained a more conservative estimate, but still
are able to exclude increases in fasting insulin above 15.4
and 17.8 pmol/l for TT relative to D1D1 and D2D2
homozygotes, respectively. Our data suggest that the ini-
tial finding may have been a false-positive result or an
over-estimation of the effect size. Both of these are a com-
mon problem for genetic association studies [30]. Further
large-scale studies involving thousands, or tens of thou-
sands of subjects will be required to investigate the possi-
bility of smaller effect sizes. Another factor which may

account for the differing result is that adult males in our
study were younger (median age 33 years) than those in
the previous study (age range 59-72 years). It is possible
that the relationship between genotype and fasting insu-
lin is modified by age. Some studies have reported gene-
age interactions after results across all ages showed a weak
association, for example the recent study of the relation-
ship between the Leu262Val variant in the PSARL gene
and plasma insulin in human subjects [31]. As with sim-
ple gene-phenotype associations, these interactions
require replication. To investigate this possibility further,
it will be necessary to carry out large-scale studies of
CSH1.01 and fasting insulin in individuals spanning a
wide range of ages.

We found no evidence of an association of CSH1.01 gen-
otype with weight at 1 year. This contrasts with the results
of Day et al. [23], who reported a 547 g reduction in
weight at 1 year (P = 0.008; n = 270) for TT compared to
D2D2 males. Our data show a non-significant trend of 1-
year weight values across the D1/T genotypes, in the
opposite direction to that observed in the original study.
Whilst we had reduced power to detect differences in
weight at 1 year, the 95 % confidence limits for the differ-
ence observed in our study (-557 g, +767 g) exclude reduc-
tions in 1-year weight greater than 557 g for TT relative to
D2D2 homozygote males. Whilst our data on female
weight at 1 year are suggestive of an association of the
same magnitude and direction as was seen for D2/T males
in the original study, we acknowledge our reduced statis-
tical power and conclude that further well-powered stud-
ies will be needed to confirm the role of this variant in
fetal and infant growth.

This study focused on one variant within the GH-CSH
gene cluster. Whilst we have not captured fully the com-
mon variation in this candidate region, we have examined
a polymorphism previously associated with fasting insu-
lin in males with a large effect size, but found no evidence
for this in our larger sample.
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Conclusion

Replication of genetic association data in independent
studies is vital for determining whether an initially
observed association is a consistent finding. We have
found no evidence that the CSH1.01 microsatellite poly-
morphism is associated with adult male fasting insulin in
this larger replication study. We conclude that the result of
the initial association study [23] is either a false positive,
an over-estimation of the effect size for this phenotype, or
a reflection of substantial heterogeneity between the two
samples as a result of age differences. Further large-scale
studies which capture more of the variation in the GH-
CSH region will clarify its potential role in influencing
fetal and infant growth and adult insulin resistance.

Methods

Subjects

Subjects were UK Caucasian fathers (n = 483), mothers (n
= 479) and children (n = 434) from the Exeter Family
Study of Childhood Health [32]. The clinical characteris-
tics of subjects are shown in Table 2. All recruited subjects
gave their informed consent. The study was approved by
local research ethics committee and the protocol con-
forms to the ethical guidelines of the World Medical Asso-
ciation Declaration of Helsinki.

Genotyping and quality control

Genomic DNA was isolated from leukocytes using stand-
ard techniques. The CSH1.01 microsatellite polymor-
phism was amplified by PCR using the following primers:
forward 5'-GTT TAC TGC ACT CCA GCC TCG GAG-3';
reverse 5'-ACA AAA GTC CIT TCT CCA GAG CA-3'. A 5'-
GTTT "PIGtail" was added to the forward primer to reduce
the occurrence of non-templated A-addition. The forward
primer was also labelled with the FAM fluorochrome. The

Table 2: Clinical characteristics of subjects
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PCR was performed in a final volume of 10 ul containing
16 ng genomic DNA, 2.5 pmol each primer, 2.25 mmol/]
MgCl,, 0.25 mmol/] each of deoxy-ATP, -CIP, -GTP and -
TTP and 0.25 units Amplitag Gold DNA polymerase
(Applied Biosystems, Warrington, UK). The reaction
started with 12 min denaturation at 94 °C, followed by 12
cycles of denaturation at 94°C for 30 s, annealing at 54°C
for 30 s and extension at 72°C for 1 min. For 23 more
cycles, the denaturation temperature was lowered to
89°C. The PCR was completed by a final extension at
72°C for 10 min. Products were separated on a standard
polyacrylamide sequencing gel using the ABI377 autose-
quencer and analysed using GENESCAN and GENOTY-
PER software (Applied Biosystems). Control samples of
known genotype were used in each PCR and every poly-
acrylamide gel to monitor genotyping consistency. These
initially included samples genotyped in the previous
study [23] for comparison. Negative controls (H,0) were
also included to monitor potential contamination. The
overall genotyping assay success rate was 83 %. Genotypes
were in Hardy-Weinberg Equilibrium (P = 0.98 and 0.66
for D1/T and D2/T genotypes respectively). Genotyping
accuracy, as determined from the genotype concordance
between duplicate samples (11 % of total) was 99 %.
Families showing Mendelian inconsistencies were
excluded from analyses. Allele frequency distributions
were similar in our study to that of Day et al. with a T
allele frequency of 0.35, similar to the previously-reported
figure of 0.34 [23].

Classification of CSH1.01 alleles and statistical analyses

Alleles were dichotomized into D1/T or D2/T allele cate-
gories in exactly the same way as for the study by Day et al.
[23]: alleles 271-311 nt were classified as T; alleles less
than 271 nt were classified as D1; alleles 251, 255, 259,

Exeter Family Study Subjects

Fathers Mothers Children
n 483 479 434
Male (%) - - 51.6
Birth weight for children born >36 weeks gestation (g) 3500 (3175-3780)
Weight at | year (g) - - 9854 (9146-10730)*
Age (years) 33 (29-36) 31 (27-34) -

BMI (kg/m2)

Height (cm)

Reported birth weight (g)
Fasting blood glucose (mmol/I)
Fasting insulin (pmol/l)

262 (24.0-28.7)
178.0 (173.5-182.4)
3402 (3005-3770)
47 (4.4-5.0)
49.0 (37.0-78.1)

23.1 (21.2-25.4)*
164.9 (160.7-169.2)
3289 (3005-3629)
43 (4.1-4.6)t
59.2 (43.4-85.0)t

Continuous data are given as median (interquartile range). Subjects successfully genotyped for the CSH1.0| microsatellite are included.

*Pre-pregnancy BMI.
TMeasurements taken at 28 weeks gestation.
¥Data on weight at | year were available for 366 children.
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263 and 267 nt were excluded from the D1 group to
define the D2 group. Decisions relating to placement of
the D1/T boundary and exclusion of alleles to create the
D2 allele group were informed by comparison of our
allele frequency distribution with that reported by Day et
al. [23]. The CSH1.01 allele frequency distribution is
shown in Figure 1.

We used Chi-squared tests to assess whether the genotypes
of parents were in Hardy-Weinberg Equilibrium. We used
General Linear Models in SPSS v.11.5 for Windows to test
for association between D1/T or D2/T genotype and
selected phenotypes of fathers, mothers or children: fast-
ing insulin and HOMA %S (fathers only: mothers were
pregnant (28 weeks gestation) at the time of data collec-
tion); height (mothers and fathers); placental weight; 1-
year weight and birth weight (children). Analyses were
performed both on uncorrected data and on data cor-
rected for age and BMI (fasting insulin), sex and gestation
(birth weight; placental weight) and sex (1 year weight).
The 95 % confidence limits for the differences in fasting
insulin observed in our study (TT relative to D1D1 and
D2D2 homozygotes) were calculated using the antilog

12.0%
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transformation and converting from the ratios obtained
[33]

We had > 92 % power to detect the differences in adult
male fasting insulin observed in the previously published
study, i.e. increases of 22.8 pmol/l for TT relative to D1D1
homozygotes, and 23.2 pmol/l for TT relative to D2D2
homozygotes [23]. We had 80 % power to detect increases
in adult male fasting insulin of 13.6 pmol/l for TT relative
to D1D1 homozygotes, and of 18.9 pmol/I for T relative
to D2D2 homozygotes (P < 0.05 for difference in same
direction as original study, assuming T allele frequency of
0.35). We had 80 % power to detect decreases in boys'
weight at 1 year of 830 g for TT relative to D2D2 homozy-
gotes (P value < 0.05; same direction as original study).
We had reduced power (50 %) to detect the decrease of
547 g originally observed [23].

Abbreviations

BMI, body mass index; CSH1, chorionic somatomammo-
tropin hormone 1; CSH2, chorionic somatomammotro-
pin hormone 2; GH1, growth hormone; GH2, placental
growth hormone; GH-CSH, growth hormone-chorionic
somatomammotropin hormone gene cluster; HOMA %S,
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Figure |

CSHI.01 allele frequency distribution (Exeter Family Study parents; N = 1924 alleles). Alleles marked by arrows
were excluded from the DI allele category to form the D2 category.
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Homeostasis Model Assessment of Insulin Sensitivity;
IGF1, insulin-like growth factor 1; INS-VNTR, insulin gene
variable number of tandem repeats; PCR, polymerase
chain reaction.
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