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Extracellular membrane vesicles (EMVs) are nanometer sized vesicles, including exosomes
and microvesicles capable of transferring DNAs, mRNAs, microRNAs, non-coding RNAs,
proteins, and lipids among cells without direct cell-to-cell contact, thereby representing
a novel form of intercellular communication. Many cells in the nervous system have
been shown to release EMVs, implicating their active roles in development, function, and
pathologies of this system. While substantial progress has been made in understanding
the biogenesis, biophysical properties, and involvement of EMVs in diseases, relatively less
information is known about their biological function in the normal nervous system. In addi-
tion, since EMVs are endogenous vehicles with low immunogenicity, they have also been
actively investigated for the delivery of therapeutic genes/molecules in treatment of cancer
and neurological diseases.The present review summarizes current knowledge about EMV
functions in the nervous system under both physiological and pathological conditions, as
well as emerging EMV-based therapies that could be applied to the nervous system in the
foreseeable future.
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INTRODUCTION
Ligand-receptor interaction and direct cell–cell contacts via spe-
cialized physical conduits, such as gap junctions and membrane
nanotubes, have long been considered as the predominant means
of intercellular communication (Davis and Sowinski, 2008; Good-
enough and Paul, 2009). Yet, a novel method of cell-to-cell
communication has recently emerged from groundbreaking dis-
coveries in the past few years on nucleic acid content of extra-
cellular membrane vesicles (EMVs). EMVs have been demon-
strated to facilitate horizontal transfer of mRNAs, microRNAs
(miRNAs), and proteins between cells without direct cell-to-cell
contact (Bergsmedh et al., 2001; Ratajczak et al., 2006a; Valadi
et al., 2007; Al-Nedawi et al., 2008; Skog et al., 2008; Balaj et al.,
2011; Ramachandran and Palanisamy, 2011; Turchinovich et al.,
2011; Chen et al., 2012). There are several EMV categories known
to-date, which are included under the general terms exosomes,
microvesicles (MVs), and apoptotic blebs (ABs).

Exosomes are the smallest EMVs (40–100 nm in diameter), and
homogenous in shape (cup-shaped after fixation under electron
microscopy with a buoyant density of 1.13–1.19 g/cm3 (Théry
et al., 2001; Hristov et al., 2004). Unlike other types of EMVs that
are directly shed/released from the plasma membrane, exosomes
are formed by a series of processes beginning with inward invagi-
nation of clathrin-coated microdomains on the plasma membrane
(Denzer et al., 2000). Once these vacuoles have entered the cell, the
Endosomal Sorting Complex Required for Transport (ESCRT)
facilitates the development of the invaginated vacuoles carrying
ubiquitinated cargos into early endosomes. This is followed by a
secondary invagination of vesicles (termed intraluminal vesicles,

ILVs), into the endosomes where they accumulate with subse-
quent maturation of the complex into large multivesicular bodies
(MVBs; Denzer et al., 2000). At this stage, MVBs may be trafficked
to lysosomes for degradation (“degradative MVBs”) or, instead,
fuse with the plasma membrane (“exocytic MVBs”) for the release
of ILVs into the extracellular space, where upon they are referred
to as exosomes (Mathivanan et al., 2010). A study on oligodendro-
cytes suggested that ILV release is ESCRT-independent and relies
on the distribution of sphingolipid ceramide in MVBs, which
directs the extracellular release of ILVs as exosomes (Trajkovic
et al., 2008). Additional investigations are needed to determine
if distinct MVB or ILV populations destined for degradation or
exocytic release are present, as well as whether a common exoso-
mal trafficking mechanism exists in all cell types (Mathivanan
et al., 2010). Understanding the biogenesis and trafficking of
exosomes will provide insight into how cells employ these extracel-
lular organelles for intercellular communication. In some studies,
release of exosomes appears to depend of Rab27 (Ostrowski et al.,
2010) and Rab 35 (Hsu et al., 2010), and can be blocked with an
inhibitor of neutral sphingomyelinase (Trajkovic et al., 2008). In
addition, elevated [Ca2+]i, following Ca2+ and ionophore A23187
treatment was found to induce exosome and microvesicle release
from erythrocytes (Allan et al., 1980; Salzer et al., 2002), further
supporting a role of EMVs in response to different stimuli.

Microvesicles (MVs) are irregularly shaped, larger EMVs with a
100–1,000 nm diameter (Pilzer et al., 2005; Cocucci et al., 2009). A
defined buoyant density of MVs has not yet been determined,
but it may overlap that of exosomes (Théry et al., 2009; van
Dommelen et al., 2011). In contrast to the endocytotic origin of
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exosomes, release of MVs results from outward budding at the
plasma membrane followed by fission of their connecting mem-
brane stalks (Kobayashi et al., 1984; Dolo et al., 2000; Cocucci
et al., 2007; Piccin et al., 2007). While MV biogenesis remains
to be defined, microdomains on the plasma membrane contain-
ing a high cholesterol level and signaling complexes, or lipid
rafts, have been suggested to selectively sequester lipids for MV
generation (Del Conde et al., 2005). Work by Gould and collabo-
rators indicates that MV release may be triggered by oligomer-
izing proteins on the cell surface and may share mechanistic
elements with release of enveloped viruses (Gould et al., 2003;
Shen et al., 2011). MV production is observed in a variety of
cells in a resting state, but can be significantly elevated under
various stimulations, including increased [Ca2+]i, cellular stress
(e.g., DNA damage), decreased cholesterol levels, cytokine expo-
sure, and anticancer drug treatment (Salzer et al., 2002; Shedden
et al., 2003; Yu et al., 2006; Llorente et al., 2007; Lehmann et al.,
2008; Bianco et al., 2009). Notably, even larger EMVs (1–5 µm in
diameter) are released from tumor cells, especially in response to
EGF stimulation (Di Vizio et al., 2009). Altogether, these findings
suggest an active physiological role of MVs under different cellular
conditions.

Apoptotic blebs are 50–4,000 nm in diameter with a buoyant
density of 1.16–1.28 g/cm3 (Hristov et al., 2004; Simak and Gel-
derman, 2006). Similar to MVs, ABs are also irregularly shaped,
making them difficult to discern from one another based on their
morphology. ABs, as its name suggests, are released from con-
densed and fragmented apoptotic cells during late stages of cell
death (Henson et al., 2001; Hristov et al., 2004). ABs retain DNA
fragments from the deceased cells, and can be taken up by neigh-
boring cells for horizontal gene transfer as a form of intercellular
communication (Bergsmedh et al., 2001; Holmgren, 2010).

EMV TERMINOLOGY VIS-À-VIS CELL OF ORIGIN
Most cells throughout the body, including those in the nervous sys-
tem are believed to release EMVs. Early pioneering studies named
EMVs based on their cellular origins, and to some extent their
biogenesis, such as: archaeosomes, argosomes, dexosomes, epi-
didymosomes, prostasomes, and oncosomes (Brody et al., 1983;
Quaite-Randall et al., 1995; Zitvogel et al., 1998; Greco et al.,
2001; Simpson et al., 2008; Al-Nedawi et al., 2009; Krishnan
and Sprott, 2008; Di Vizio et al., 2009). These EMVs include
ones isolated from a variety of cells/tissues in human body, i.e.,
dendritic cells (DCs), prostate gland, and cancer cells, as well
as other species such as Drosophila (Simpson et al., 2008). As
in many rapidly expanding fields in research, standardization of
nomenclature for the different categories of EMVs remains to be
resolved by an official organization, and is being undertaken by
the International Society for Extracellular Vesicles. As it stands
now, MVs/ectosomes/microparticles generally refer to extracellu-
lar vesicles released via a direct budding/shedding from the cellular
plasma membrane, whereas exosomes are those released from
MVBs following their fusion with the plasma membrane. Catego-
rizing EMVs has been intrinsically challenging due to the multiple
variable characteristics of EMVs, including: (1) cellular origin and
physiological state of cell; (2) biophysical properties and lipid com-
position; (3) nucleic acids and protein content; and (4) size. For

the purpose of this review, EMVs will be used to encompass these
extracellular vesicle types.

BIOPHYSICAL PROPERTIES AND LIPID COMPOSITION
Aside from the different biophysical properties (i.e., size, shape,
buoyant density) mentioned above for exosomes, MVs, and ABs
(Table 1), different types of EMVs also have different lipid
compositions. By using liquid chromatography and mass spec-
trometry, a variety of lipid components constituting EMVs iso-
lated from different cells have been identified, including phos-
phatidylcholine, phosphatidylethanolamine, phosphatidylserine
(PS), lyso-bisphosphatidic acid, ceramide, cholesterol, and spin-
gomyelin (Chu et al., 2005; Subra et al., 2007). The particular lipid
composition of each EMV type likely contributes to its biophysical
properties. Indeed, Parolini et al. (2009) recently reported that dif-
ferent lipid compositions, namely those containing sphingomyelin
and N -acetylneuraminyl-galactosylglucosylceramide (GM3), are
directly related to rigidity and delivery efficiency of exosomes
to other cells. In addition, the level of PS exposed on the outer
leaflet of exosomes appears to be lower than that of MVs and ABs
(Mathivanan et al., 2011). This observation may correlate with
the different biogenesis of EMV populations wherein exosomes
are of endocytic origin, and MVs and ABs are derived from out-
ward budding from the plasma membrane. PS is displayed on the
outer exosome leaflet through floppase, flippase, and scramblase
activities, and appears to mediate docking of proteins involved in
signaling and fusion to the plasma membrane (Piccin et al., 2007).
Therefore, the varying level of PS may affect communication func-
tions of EMVs. Furthermore, ongoing studies indicate that EMVs
may have a conserved glycan signature as compared to the cells
from which they derive, suggesting a role of glycosylation in EMV
protein sorting (Batista et al., 2011).

CONTENTS OF EMVs
Extracellular membrane vesicles are known to contain a broad
spectrum of proteins, including transcriptional factors, surface
receptors, and “marker” proteins, including tetraspanins (CD63,
CD81), integrins, Tsg101, Alix, heat shock protein (HSP70, 90),
and flotillin-1 (Lee et al., 2011). In addition, they contain a range of
nucleic acids including mRNAs, which can be translated in recip-
ient cells, microRNA (miRNA), and non-coding RNAs (ncRNA)
which can regulate gene/mRNA expression,as well as DNA of as yet
unvalidated function (Valadi et al., 2007; Skog et al., 2008; Guescini
et al., 2010; Balaj et al., 2011; Waldenström et al., 2012). An
interactive database will be needed to accommodate these increas-
ing findings in the field of EMVs. Efforts are indeed underway,
and a manually curated, web-based community database, Exo-
Carta, has been introduced to record exosomal proteins, RNAs,
and lipids found in different EMV studies (Mathivanan et al.,
2012). In addition, an Urinary Exosome Protein Database was
created, as its name suggests, to provide a database of identified
proteins from urinary exosomes via protein mass spectrometry
(http://dir.nhlbi.nih.gov/papers/lkem/exosome/.)

FUNCTIONS OF EMVs IN THE NERVOUS SYSTEM
Most cells in the nervous system are believed to release EMVs.
Given that EMVs are capable of transferring genetic information,
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Table 1 | Biophysical properties of extracellular vesicles.

Exosomes MVs ABs

Size (diameter) 40–100 nm 100–1,000 nm 50–4,000 nm

Buoyant density 1.13–1.19 g/cm3 Not defined 1.16–1.28 g/cm3

Lipid composition Low PS exposed on the outer leaflet High PS exposed on the outer leaflet High PS exposed on the outer leaflet

Lyso-bisphosphatidic acid Cholesterol

Cholesterol

Ceramide

Reference Vidal et al. (1989), Heijnen et al. (1999), Subra

et al. (2007), Trajkovic et al. (2008)

Scott et al. (1984), Zwaal et al. (1992),

Bucki et al. (1998),
Stuart et al. (1998)

ABs, apoptotic blebs; PS, phosphatidylserine; MVs, microvesicles adapted from Subra et al. (2007), Mathivanan et al. (2010).

proteins, and lipids without direct cell-to-cell contact, researchers
are focusing on the potential role of EMVs during development
of the nervous system and as part of neural functions, as well as
in disease. In this review, we will cover some of the recent findings
on both the physiologic and pathophysiologic roles of EMVs in
the nervous system, as well as the emergence of EMV-mediated
therapies which may be applicable for treatment of neurological
diseases in the foreseeable future. Recent reviews by Frühbeis et al.
and Bellingham also provide extended updates into EMVs’ partici-
pation in neuron-glia communication and neurodegenerative dis-
eases, respectively (Bellingham et al., 2012; Frühbeis et al., 2012).

NORMAL FUNCTIONS
A number of studies have implicated EMVs in neuronal develop-
ment, synaptic activity, protective mechanisms, and nerve regen-
eration with various reports indicating EMV release by neural
stem/progenitor cells (Marzesco et al., 2005), neurons (Fauré et al.,
2006), astrocytes (Taylor et al., 2007), microglia (Potolicchio et al.,
2005), and oligodendrocytes (Krämer-Albers et al., 2007) in the
brain and Schwann cells in the peripheral nervous system (Court
et al., 2008).

Development
In the developing mouse brain during early neurogenesis there is
a peak (E10.5–E13.5) of EMV release into the ventricular fluid in
the neural tube of small (50–80 nm) and large (600 nm) vesicles
which are positive for the stem cell marker, prominin-1 (CD133),
although their function is not known (Marzesco et al., 2005).
Other studies suggest that these EMVs may be involved in trans-
fer of mRNAs encoding pluripotent transcription factors which
can reprogram phenotypes of other cells (Ratajczak et al., 2006a).
EMVs have the capacity to participate in the spatial and temporal
gradients critical in development. Consistent with this role, non-
neuronal floor plate cells in the ventral midline of mouse embryos
are able to transfer β-galactosidase to neighboring axons, suggest-
ing EMV transfer as an aspect of axonal path finding (Campbell
and Peterson, 1993; Figure 1A). In a temporal patterning motif,
oligodendrocytes appear to release EMVs as a means of auto-
inhibiting myelination until appropriate signals are released from
neurons during development, indicating that neuronal maturation
is complete (Bakhti et al., 2011). Then as myelination commences
EMVs are released from oligodendrocytes in a ceramide-triggered

cascade that may be critical for transfer of the major myelin
protein, proteolipoprotein (Trajkovic et al., 2008). EMVs may
also participate in the genetic changes in the genome (genomic
plasticity) of embryonic cells by supporting novel retrotranspo-
son integrations. Both neural progenitor cells in normal embryos
(Coufal et al., 2009) and brain tumor cells (Balaj et al., 2011) have
high levels of retrotransposon expression, indicating a broadly
transcriptionally active genome with the potential for retrotrans-
poson integration events creating novel genotype/phenotypes. At
least in the case of tumors, these EMVs have high levels of retro-
transposon sequences and reverse transcriptase which may allow
cell-to-cell transfer of this genomic plasticity leading to changes in
gene expression, with pro-proliferative events being selected for.

Several studies in Drosophila have begun to tease out the role
of EMVs in different developmental processes. EMV-like vesicles,
termed argosomes (Greco et al., 2001) are used to transport a
morphogenic Wnt signaling protein along spatial and temporal
gradients in wing development, and may also carry Hedgehog,
Notch, decapentaplegic (dpp), and Wingless (Wg) signaling pro-
teins involved in setting up developmental gradients in other
tissues (for review see Cadigan, 2002; Lakkaraju and Rodriguez-
Boulan, 2008). Recently, EMVs were found to be involved in
transfer of Wnt-1/Wg at the neuromuscular junction in Drosophila
both during development and in mature neurons (Korkut et al.,
2009). In this case, a multipass transmembrane protein, Evi, assists
in presynaptic trafficking of Wnt-1/Wg into vesicles within the
synaptic cleft, as well as in subsequent interactions of this signal-
ing ligand with its receptor in postsynaptic cells. When Evi was
rendered non-functioning in evi mutant Drosophila model, Wnt
signaling across synapses is disrupted (Korkut et al., 2009).

Synaptic activity
In pioneering studies, Fauré et al. (2006) showed that undifferen-
tiated cortical neurons in culture released EMVs containing L1, a
neuronal cell adhesion protein, and GluR2/3 subunits of glutamate
AMPA receptors, with release of EMVs being stimulated by depo-
larization, thus suggesting a role in synaptic function. Subsequent
studies confirmed this phenomenon in fully differentiated cortical
neurons in culture, and in addition showed that release was stimu-
lated by a calcium ionophore, as well as by an antagonist of GABAA

receptors, both of which result in increased spontaneous neuronal
activity (Lachenal et al., 2011). Further, EMVs were found to
incorporate the neuronal specific heavy chain of tetanus toxin
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FIGURE 1 | Extracellular membrane vesicles-mediated mechanisms in
neurons. (A) A gradient of EMVs in the developing nervous system can serve
as a directional guide to axonal growth. (B) EMVs released from presynaptic
nerve terminals and taken up by their postsynaptic partners can carry

informational content which can modulate the strength of synaptic activity.
(C) Regeneration of peripheral nerves in enhanced by the EMV transfer of
ribosomes and mRNA directly from surrounding Schwann cells into the
injured nerve to promote protein synthesis.

and reasoned that the presence of GluR2 subunits in EMVs and
increased release associated with depolarization could modulate
synaptic activity (Smalheiser, 2007; Figure 1B).

Injury and regeneration
In general, studies to-date indicate that EMVs primarily serve
a protective role in the nervous system. For example, oligoden-
drocytes release exosomes containing myelin and stress-protective
proteins, which serve in the trophic support of neurons (Krämer-
Albers et al., 2007). Although synapsin I is usually thought of as
a neuronal specific protein associated with synaptic vesicles, it is
also produced in lower amounts by astrocytes and released from
them within EMVs in response to stress conditions (Wang et al.,
2011). These glia-derived EMVs promote neurite outgrowth and
increase neuron survival through association between synapsin I
and oligomannosidic glycans in response to depolarization and
toxic insults to neurons. Brain injury leads to accumulation of
toxic proteins in neurons with survival promoted by expression of
Ndfip1, an interacting protein with Nedd4 ubiquitin ligases which
mediate protein degradation (Sang et al., 2006). Both Ndfip1 and
Nedd4 proteins are found in EMVs released by neurons and are
hypothesized to serve as a means of rapid removal of toxic proteins
after injury (Putz et al., 2008). In a case where EMVs can cause
damage to nervous tissue, during brain injury increase in extracel-
lular ATP leads to release of EMVs from microglia and astrocytes
through a sphingomyelinase-dependent process (Bianco et al.,
2009). These EMVs contain and release IL-1β, a cytokine which

inducing inflammatory responses that are damaging to brain
tissue.

In a variation on the EMV release mechanism, Schwann cells
surrounding a degenerating or damaged peripheral nerve, translo-
cate vesicles surrounded by two membranes containing polyribo-
somes into the axon where the contents are released (Court et al.,
2008; Twiss and Fainzilber, 2009; Figure 1C). This serves as a
means of delivering mRNA and ribosomes to injured neurons
to promote local protein synthesis needed for regeneration, with
recent studies in vivo showing that labeled ribosomes in the nerve
are derived from Schwann cells (Court et al., 2011).

PATHOLOGY
Neurodegeneration
Extracellular membrane vesicles have been implicated in the
spread of toxic proteins within the nervous system in a number of
neurodegenerative diseases, including transmissible spongiform
encephalopathies, Alzheimer’s disease (AD), Parkinson’s disease
(PD), tauopathies, and amyotrophic lateral sclerosis (ALS; for
review seeVingtdeux et al., 2007;Vella et al., 2008; Guest et al., 2011;
Frühbeis et al., 2012). In all these diseases mutated or “misfolded”
proteins serve as templates for formation of protein oligomers that
accumulate and interfere with neuronal function, eventually lead-
ing to cell death. Possibly in an attempt to rid themselves of these
proteins, neurons process them through the endosomal pathway
leading either to degradation in lysosomes or to incorporation
into MVBs, with the latter serving as a release hatch into the
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extracellular space within EMVs. In early studies of the role of
EMVs in this process, two groups described the incorporation
of both the normal prion protein (PrP) and the misfolded patho-
genic prion protein (PrPsc) into EMVs (Ecroyd et al., 2004; Fevrier
et al., 2004; Février et al., 2005). Further studies showed that EMV-
associated PrPsc was transmitted to normal cells with initiation of
prion propagation involving PrP in those cells (Vella et al., 2007).
This concept of the tendency of some proteins to seed their own
aggregation with “infectious” delivery via EMVs has been impli-
cated in a number of neurodegenerative diseases. Interestingly, in
many of these diseases there is a spatiotemporal propagation of the
pathology suggesting cell-to-cell spread (Guest et al., 2011), which
for non-secreted proteins could be mediated by EMV transfer or
nanotubes (Rustom et al., 2004; Gousset and Zurzolo, 2009).

Alzheimer’s disease
The concept of EMV-mediated transfer of aggregation-prone pro-
teins has been the most studied for the amyloid-β (Aβ) peptide
associated with AD. Although the neuropathologic plaques char-
acteristic of the disease are extracellular, it is currently believed
that the plaques may represent a “disposal dump” and it is really
the soluble oligomeric fibrils of the Aβ peptide which are neuro-
toxic (Lublin and Gandy, 2010), as they can serve as a “seeding”
center for AD pathology in naive mice (Eisele et al., 2010). These
peptides are generated when the amyloid precursor protein is pro-
teolytically processed at the plasma membrane with peptides being
re-taken up into endosomes where they can enter MVBs and be
released from the cell in EMVs (Rajendran et al., 2006). The pos-
sibility that Aβ EMVs can serve as infectious agents is supported
by orally transmitted amyloid A1 (AA) amyloidosis among chee-
tahs (Zhang et al., 2008) with EMVs present in saliva and fecal
matter – although, to-date, the role of EMVs in either disease
process has not been confirmed. EMVs can also serve as a means
of degradation of toxic Aβ when taken up by microglia, but when
that clearance pathway is overwhelmed pathologic accumulation
of Aβ neurons commences (Yuyama et al., 2012).

Other neurodegenerative conditions
In other neurodegenerative diseases, proteins capable of seeding
pathology have also been found in EMVs and shown to have spa-
tiotemporal spread within the nervous system. These include the
microtubule-associated tau protein which aggregates in a num-
ber of dementia states (Saman et al., 2012), the mutant SOD1
protein underlying some familial forms of ALS (Gomes et al.,
2007) and α-synuclein which plays a central role in PD pathogen-
esis (Emmanouilidou et al., 2010). Studies in PD mouse models
show that grafted cells containing aggregated alpha α-synuclein
can transfer this aggregate to host cells in the brain (Hansen et al.,
2011). These aggregates appear to be passed between cells through
the extracellular space as independent entities or via EMVs or nan-
otubes (Hansen and Li,2012) with the relative contribution of each
of these pathways in the brain still undetermined. It remains an
intriguing possibility that EMVs can act as “infectious” agents to
spread toxic oligomerizing proteins not only within an individual,
but between individuals through fluid contacts, as in amyloidosis
in cheetahs (Zhang et al., 2008).

Other disease states
Roles are emerging for EMVs in a number of neurologic disease
states. They are capable of transmitting death signals, for example,
incorporation of caspase-1 into EMVs produced by monocytes
and with transfer to surrounding cells can be the “kiss of death”
(Sakar et al., 2009). Apoptotic bodies which form during cell death
are also caspase-containing EMVs that can deliver contents to
other cells (Simpson et al., 2008). EMVs have also been impli-
cated in autoimmune diseases, such as multiple sclerosis, with
those derived from DCs leading to activation of inflammatory
NF-κB in microglia and recruitment of major histocompatibility
complex (MHC) class II for presentation of self-antigens (Teo and
Wong, 2010). In contrast, EMVs can also be protective, with those
shed from endothelial cells and astrocytes containing nucleoside
triphosphate diphosphohydrolases which can degrade toxic levels
of ATP released during breach of the blood brain barrier (BBB)
in ischemia (Ceruti et al., 2011). As an apparently common form
of intercellular communication, EMVs are undoubtedly a critical
player in many different events in the nervous system – provid-
ing protection from neurodegeneration, as well as propagation of
toxic influences.

TUMORS
Early on investigators noticed that glioblastoma (GBM) cells were
covered with “microparticles” (EMVs; Tani et al., 1978). During
transformation and progression to malignancy brain tumor cells
appear to increase the number and types of EMVs released, as for
example when EMV content is compared in conditioned media
from GBM cells with normal cells in culture (Balaj et al., 2011).
EMVs are believed to be used by tumor cells to modify normal cells
in their vicinity so as to promote tumor growth, with most studies
carried out in non-nervous system tumors. Pro-active mechanisms
include suppression of immune responses to the tumor, open-
ing up of the extracellular space to facilitate tumor cell invasion,
stimulation of angiogenesis and modulation of cellular pheno-
types (for review see Ichim et al., 2008; Al-Nedawi et al., 2009;
Muralidharan-Chari et al., 2010). In addition to proteins within
EMVs which modulate these responses, EMVs from GBM cells (as
well as other tumor cell types) are also enriched in RNAs associated
with proliferation, invasion and immune repression (Skog et al.,
2008). Other tumor-related aspects of EMVs include their abil-
ity to expel chemotherapeutic drugs from tumor cells (Shedden
et al., 2003) and to carry tissue factor leading to hypercoagulation
in cancer patients (Zwicker et al., 2009). It seems likely that most
of these tumor-enhancing functions of EMVs are associated with
tumors of the nervous system as in tumors in other tissues.

Immune responses
There is an extensive literature on the role of EMVs both in sup-
pression and enhancement of immune responses in cancer, most
of which have been studied in peripheral tumors. In general, EMVs
released by tumor cells serve to suppress the immune response to
tumor antigens, including acting as decoys in the tumor environs,
switching off T cell responses, eliminating antitumor effector cells,
and preventing differentiation of immature DCs into antigen-
presenting cells (for review see Taylor and Gerçel-Taylor, 2005;
Iero et al., 2008; Théry et al., 2009).
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Angiogenesis and invasion
Extracellular membrane vesicles from GBM cells in culture pro-
mote angiogenesis of human brain microvascular endothelial cells,
which is mediated in part by their relatively high concentrations
of angiogenic factors – VEGF, IL-8, TIMP-1, IL-6, and angio-
genin as compared to the tumor cells of origin (Skog et al.,
2008; Graner et al., 2009). Another EMV protein in this angio-
genic cascade includes delta-like 4 Zigand (D114), a recently
identified partner for the Notch receptor, that inhibits Notch sig-
naling thereby increasing vessel density and branching in glioma
xenograft tumors in vivo (Sheldon et al., 2010). Other components
of EMVs which promote angiogenesis include sphingomyelin
(Kim et al., 2002) and CD147/extracellular matrix metallopro-
tease inducer (EMMPRIN; Millimaggi et al., 2007). In addition,
the acidic environment of the tumor can cause lysis of EMVs and
release of vesicular proteins, such asVEGF (Taraboletti et al., 2006).
Several studies using other tumor cell types have also indicated
possible transfer of functional miRNAs via EMVs (e.g., Collino
et al., 2010; Kosaka et al., 2010; Zhang et al., 2010; Mittelbrunn
et al., 2011; Yang et al., 2011). miRNA-296 is known to be elevated
in brain microvascular endothelial cells as part of an angiogenic
response to the presence of glioma cells (Würdinger et al., 2008)
and this miRNA is contained in GBM EMVs (J. Skog, unpublished
data), so it seems likely that glioma EMVs may contribute to ele-
vated miRNA-296 in endothelial cells. Tumor-derived EMVs also
express matrix metalloproteinases (MMPs) and an extracellular
MMP inducer on their surface to degrade the extracellular matrix
and thereby facilitate invasion of tumor cells into surrounding
normal brain tissue (e.g., Castellana et al., 2009).

Phenotypic modification
Extracellular membrane vesicles released by brain tumors alter the
phenotype of surrounding cells, presumably through a complex
of factors including transcriptional regulators (both proteins and
ncRNA), miRNAs, mRNAs, and surface receptors (for review see
van der Vos et al., 2011). An early example of this was the demon-
stration that glioma cells expressing the mutant epidermal growth
factor receptor variant III (EGFRvIII) on their plasma membrane
pass this onto the membrane of EMVs from where is incorporated
into recipient cell membranes, leading to an increased transfor-
mative phenotype of the recipient cells (Al-Nedawi et al., 2008).
Parallel studies showed that the mRNA for EGFRvIII is also present
in EMVs from mutant-positive tumor cells and can be detected in
serum EMVs from patients who harbor the corresponding muta-
tion in their tumors, thereby providing a biomarker for genetic
status of the tumors (Skog et al., 2008). Others have shown that
oligodendroglioma cells send out EMVs containing the apoptotic
protein, TRAIL, which leads to death of normal astrocytes and
neurons (Lo Cicero et al., 2011).

Genotypic modification
Interestingly, a number of tumors release retroviral-like particles
contained within the EMV pool that contain the RNA from human
endogenous retroviral (HERV) sequences and reverse transcrip-
tase (Lavie et al., 2005; Contreras-Galindo et al., 2008; Balaj et al.,
2011), and may thus mediate abortive infections which disrupt the
recipient cell genome. GBM and medulloblastoma brain tumor

cells have been found to harbor high levels of HERV RNAs, as
well as reverse transcriptase activity (Balaj et al., 2011). It seems
likely that a component of increased EMV production by these
tumor cells comprises retroviral-like particles, which though non-
replicative may still have the capacity to “infect” other cells and
integrate into the recipient cell genome, thereby causing poten-
tial mutagenesis and oncogene activation. Further, HERVs encode
fusogenic proteins which may increase the ability of tumor-derived
EMVs to fuse with and enter recipient cells (Duelli and Lazebnik,
2007).

Other studies have shown that during tumor cell death, ABs
which fractionate with EMVs, contain oncogene DNA for H-ras
and c-Myc which are taken up by other cells (Holmgren et al.,
1999; Bergsmedh et al., 2001). Even non-dying tumors cells with
amplified c-Myc release this DNA into EMVs (Balaj et al., 2011).
It remains to be determined if these EMV-transferred oncogenes
can be integrated into the genome of recipient cells.

VIRUSES
Three viruses associated with disruption of brain functions have
been found to use EMVs to promote infection and avoid immune
rejection by the host, as well as in some cases to confer resistance to
infection (for review see Meckes and Raab-Traub, 2011; Wurdinger
et al., 2012). These three viruses are – herpes simplex virus type
1 (HSV-1), which in immune compromised patients can cause
viral encephalitis (Steiner, 2011); the tumorigenic herpes virus,
Epstein–Barr virus (EBV), which can cause central nervous system
(CNS) lymphomas (Gerstner and Batchelor, 2010); and human
immunodeficiency virus (HIV), which can lead to neurocogni-
tive deficits, dementia, and premature brain aging (Gannon et al.,
2011).

Herpes simplex virus type 1
Early during HSV-1 replicative infection/activation, prior to pro-
duction of infectious virions, EMVs are released from infected cells
and serve to prime surrounding cells for productive infection and
to reduce immune rejection of the virus (McLauchlan et al., 1992).
These EMVs contain viral tegument proteins, some of which serve
as immediate early transcription factors to “jump start” secondary
infection (Dargan and Subak-Sharpe, 1997). A viral glycoprotein
contained in the EMVs, glycoprotein B (gB) also acts on MHCII
molecules to prevent presentation of viral peptide antigens to the
immune system (Temme et al., 2010).

Epstein–Barr virus-infected cells also use EMVs to reduce the
immune response through incorporation of immune suppres-
sive proteins, LMP1 (Flanagan et al., 2003), and galectin-9 (Klibi
et al., 2009). In addition, EBV transfers viral miRNAs via EMVs
to repress translation of cell proteins which promote resistance to
infection (Pegtel et al., 2010; Meckes et al., 2010). EMVs produced
by different cell types may have different effects, for example those
released by B cells containing glycoprotein 350 can block EBV
infection of other cells (Vallhov et al., 2011).

Human immunodeficiency virus retroviral particles bud from
the plasma membrane in a similar manner to MVs (Gould et al.,
2003; Jouvenet et al., 2011). EMVs released from cells harbor-
ing HIV can confer increased infectivity to other cells through
transfer of CCR5 co-receptors (Mack et al., 2000) and CXCR4, a
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chemokine receptor that interacts with CD4 on the cell surface
to facilitate HIV entry (Rozmyslowicz et al., 2003). EMVs derived
from infected cells also contain the HIV protein, Nef, which can
induce apoptosis of CD4+ cells (Lenassi et al., 2010), thus sup-
pressing the immune response. In a bit of a turnaround these
EMVs from HIV infected cells also contain an anti-viral cytidine
deaminase which can inhibit viral replication (Khatua et al., 2009).

EMVs AS THERAPEUTIC DELIVERY VEHICLES
Before the recent landmark discoveries of EMVs as a new conduit
for cell-to-cell genetic communication (Ratajczak et al., 2006b;
Valadi et al., 2007; Ramachandran and Palanisamy, 2011; Turchi-
novich et al., 2011; Chen et al., 2012), the artificial counterpart
of EMVs, liposomes, had been well studied as a nanodelivery sys-
tem over past decades. Liposomes are spherical vesicles composed
of one or multiple natural and/or synthetic lipid bilayers with an
aqueous core and a diameter ranging from 50 nm to 5 µm. By tak-
ing advantage of these structural properties, liposomes have been
investigated as a means to“load and deliver” pharmaceutical drugs
and peptides (reviewed in Malam et al., 2009). However, a major
conundrum in liposome-mediated delivery lies in its biocompat-
ibility and biodegradability properties, such that ideal liposomes
should evade detection by the immune system and have a longer

half-life in the circulation for therapeutic cargo delivery (reviewed
in Immordino et al., 2006). While remarkable advances have been
made in reducing immunogenicity of liposomes, described as
“stealth liposomes” and in increasing their half-life in the circula-
tion by coating them with poly-(ethylene glycol, PEG; Allen et al.,
1989, 1991), researchers continue to seek endogenous nanodeliv-
ery systems to overcome the obstacles faced by artificial vesicles.
With emerging understanding of their biological functions, EMVs
have been suggested as an ideal candidate to fulfill this role as
“physiologic liposomes.”

Investigators have made significant progress in the use of EMVs
for therapy by taking advantage of their low immunogenicity and
unique delivering capability (Zhang et al., 2007; Sun et al., 2009;
Alvarez-Erviti et al., 2011; Zhuang et al., 2011; Bolukbasi et al.,
2012). By genetic engineering of EMV producer cells or direct
modification of EMVs, they can be used to transport therapeutic
molecules and agents via insertion into the lipid bilayer and/or
loading into their aqueous core (Figure 2). Analogous to lipo-
somes, EMVs also serve as an excellent means of protection of
“therapeutic cargoes” wherein packaged mRNA, small interfer-
ing RNAs (siRNA), proteins, and drugs are better preserved from
degradation when compared to their unshielded counterparts.
Using these advantages, EMV-mediated therapy is being actively

FIGURE 2 | Extracellular membrane vesicles-based therapies. (A) EMV
immunotherapy. EMVs containing tumor-antigen within and/or on the
membrane surface are isolated from different sources and introduced in vivo
to elicit targeted immune responses. (B) EMV RNAi therapy. EMVs derived
from immature dendritic cells (DCs) expressing Rabies glycoprotein-Lamp2b

fusion protein were electroporated with siRNAs for targeting against neurons,
microglia, and oligodendrocytes for subsequent gene silencing (Alvarez-Erviti
et al., 2011). (C) EMV drug therapy. Therapeutic compounds can be packaged
into/onto EMVs isolated from donor cells to minimize degradation and
increase delivery to intended sites.
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studied in three main fields: immunotherapy, RNA-interference
(RNAi) and drug delivery.

EMVs in cancer immunotherapy
Immunotherapy represents one of the most investigated aspects
in EMV-mediated therapy. In immunotherapy, an ideal cancer
vaccine serves as an antigen-presenting medium to prime the
immune system to recognize tumor-specific antigens, thereby elic-
iting immune responses against the tumor cells while leaving
normal cells unharmed (Trumpfheller et al., 2012). A study by
Raposo et al. (1996) first showed B lymphocyte-secreted EMVs
contained MHC class II by immunoelectron microscopy and could
induce MHC class II-dependent CD4+ T cell responses in vitro.
Since DCs are the most potent antigen-presenting cells in the
adaptive immune system, numerous studies ensued focusing pri-
marily on the immuno-modulating effect of EMVs on DCs in
search of more effective cancer vaccines (see review in Tan et al.,
2010). Briefly, researchers have used EMVs isolated from various
sources to pulse DCs with antigens (André et al., 2004; Chaput
et al., 2004; Cho et al., 2005; Hao et al., 2007; Taïeb et al., 2006;
Bai et al., 2007; Beauvillain et al., 2007; Guo et al., 2008; Tem-
chura et al., 2008; Viaud et al., 2009; Bu et al., 2011) in order
to activate immune cells (i.e., T lymphocytes and natural killer
cells) against tumor cells, including those in the ascitic fluid of
cancer patients (André et al., 2002), and wild-type or engineered
cancer cells in vitro (Wolfers et al., 2001; Hegmans et al., 2005;
Chen et al., 2006; Yang et al., 2007; Xiu et al., 2007; Ristorcelli
et al., 2008, 2009; Cho et al., 2009; Xie et al., 2010; Rountree et al.,
2011; Zeelenberg et al., 2011). Furthermore, Viaud et al. (2011)
recently reported that highly immunogenic, clinical grade EMVs
isolated from interferon-γ treated monocyte-derived DCs express
CD40, CD80, CD86, and ICAM-1 on their membranes and can
prime CD8+ T cells in a peptide-dependent manner (i.e., MART1,
melanoma antigen recognized by T cells) both in vitro and in vivo.

Despite the recent progress made in developing EMVs as vac-
cines against different types of cancer, a brain cancer-specific
EMV vaccine has not yet been reported. This is not surprising
since the CNS is considered an immune-privileged site as it lacks
a lymphatic system, has low numbers of circulating T lympho-
cytes, and possesses a BBB consisting of endothelial cells joined
by tight junctions, which restricts passage of larger molecules and
cells. In addition, high grade gliomas induce immunosuppres-
sion in patients, constituting a further challenge to CNS tumor
immunotherapy (Bodmer et al., 1989; Misra et al., 2003; Fecci
et al., 2006; Avril et al., 2010; Gustafson et al., 2010). To counter
this phenomenon, active immunotherapy using autologous DCs
pulsed with autologous tumor antigens, as well as GBM-specific
antigens including EGFRvIII peptides have been shown to pro-
long survival in some patients with primary or recurrent GBMs
(reviewed in Thomas et al., 2012). Given that EMVs are capable of
ferrying antigens that can subsequently pulse DCs, they may serve
as a means to administer active immunotherapy against brain
cancers. Notably, a recent paper by Alvarez-Erviti et al. (2011)
reported brain-targeting EMVs, which cross the BBB following
systemic injection into mice with EMVs derived from syngeneic
DCs engineered to express a targeting ligand (Alvarez-Erviti et al.,
2011; discussed below in EMVs in RNAi therapy). Altogether, these

encouraging findings warrant future investigation to examine if
EMVs can be employed as an effective CNS cancer vaccine vehicle,
thus overcoming immune-privileged properties of the CNS.

EMVs in RNAi therapy
RNA-interference therapies have been actively investigated in
the past few decades to target various human diseases, includ-
ing genetic disorders, HIV infection, and cancers (Burnett and
Rossi, 2012). While RNA-based therapies can involve the use of
ribozymes, aptamers, and siRNAs, this section will focus on the
emerging application of EMVs as a delivery vehicle for therapeutic
siRNAs.

Small interfering RNAs are short (∼21–23 nt), single-stranded
RNA molecules that target mRNAs with perfect or near-perfect
Watson–Crick base-pairing to initiate posttranscriptional gene
silencing. In brief, siRNAs can be produced from exogenously
introduced double-stranded RNAs (dsRNAs) or short hairpin
RNAs (shRNAs) expressed in cells. Upon binding to a pre-RNA-
Induced Silencing Complex (RISC) containing Dicer and TAR
RNA-binding protein, dsRNAs and shRNAs are processed into
siRNAs (passenger or guide) and loaded into RISC complex for
mRNA targeting via Watson–Crick based-pairing by the guide
strand (Bernstein et al., 2001; Martinez et al., 2002). Argonaute
2 (AGO2), an endonuclease, of the RISC complex then cleaves the
target mRNA to inhibit gene expression (Matranga et al., 2005;
Rand et al., 2005). Importantly, since the guide strand remains
protected from degradation within the RISC complex, it can be
used repeatedly to degrade other targeted mRNAs (Matranga et al.,
2005; Rand et al., 2005). With these properties, siRNA has been
considered as an ideal candidate for RNAi therapy (Burnett and
Rossi, 2012).

However, aside from its off-target effects, one of the major chal-
lenges confronted by siRNA therapy lies in its delivery formulation
in vivo. siRNAs can be immunogenic and are inherently prone
to degradation due to ribonucleases present in the extracellular
space, serum and cells (Whitehead et al., 2011). While strategies
such as chemical modification of siRNAs to counter degradation
have been developed to minimize these drawbacks, a vehicle to
deliver and shelter siRNAs from external environments, as well
as to mediate targeting to specific cells has long been sought-
after (Castanotto and Rossi, 2009). Vehicles such as liposomes and
nanoparticles have been recruited to serve these functions but are
faced by immunogenicity issues (see EMVs as therapeutic delivery
vehicles) and difficulty in transversing the BBB in the CNS, making
siRNA delivery to the brain particularly difficult (Shim and Kwon,
2010; see EMVs in cancer immunotherapy).

Extracellular membrane vesicles, on the other hand, have been
shown to preserve mRNAs and miRNAs within their “aqueous”
proteinaceous core even under external RNase treatment, and
subsequently to deliver functional RNAs to recipient cells (Valadi
et al., 2007; Skog et al., 2008; Zomer et al., 2010; Mathivanan et al.,
2011). Remarkably, Alvarez-Erviti et al. (2011) recently reported
an exciting strategy targeting EMVs to the brain via systemic
injection in mice. By fusing neuron-targeting rabies viral glyco-
protein (RVG) peptides to the N-terminus of Lamp2b, a murine
exosomal membrane protein, and expressing it in immature DC
derived from mouse bone marrow, this team successfully isolated
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brain-targeting EMVs (Alvarez-Erviti et al., 2011). The EMVs
were loaded with siRNAs by electroporation which targeted either
GAPDH or BACE1 mRNAs, the latter being a therapeutic target
in AD. These EMVs were injected intravenously into syngeneic
mice, resulting in a significant knock-down of expression of the
targeted mRNAs in the brain when compared to other body tis-
sues (Alvarez-Erviti et al., 2011). Furthermore, two studies have
recently described a “zipcode”-like sequence in the 3′ untranslated
region (3′UTR) of enriched mRNAs in EMVs derived from human
primary GBM and melanoma cells (Batagov et al., 2011; Bolukbasi
et al., 2012). This suggests that mRNAs, and perhaps therapeutic
siRNAs, can be specifically targeted for EMV packaging in cells.
While more studies are required to address the use of EMVs in
clinical trials, these novel findings shed light on the promising
potential of EMV-mediated RNAi therapy.

EMVs in drug therapy
Like other therapeutic strategies, in vivo delivery of conventional
therapeutic drugs has also faced similar challenges, including tar-
geted delivery to tissues/cells, poor drug stability and rapid meta-
bolic degradation. To explore EMV’s potential as a drug delivery
vehicle, Sun et al. (2009) first reported successful loading of cur-
cumin, a polyphenol anti-inflammatory compound, into EMVs
(“exosomal curcumin”). “Exosomal curcumin” exhibited higher
solubility and bioavailability than curcumin alone, and “exoso-
mal curcumin” significantly decreased lipopolysaccharide (LPS)-
induced inflammatory activity both in vitro and in vivo more effec-
tively than curcumin itself. It is worth noting, however, that unlike
“typical exosomes” which band between 30 and 45% sucrose after
gradient density centrifugation, “exosomal curcumin” banded
between 45 and 60% sucrose (Sun et al., 2009), suggesting that
“exosomal curcumin” may comprise a subpopulation of EMVs
and/or the added molecular weight from curcumin loads. Follow-
ing these encouraging findings, the same group reported successful
delivery of “exosomal curcumin” and “exosomal JSI124,” a signal
transducer and activator of transcription 3 (Stat3) inhibitor, to
the rodent brain via intranasal injection, thereby bypassing the
BBB (Zhuang et al., 2011). Remarkably, EMV-mediated delivery
of curcumin significantly suppressed LPS-induced inflammation,
as well as myelin oligodendrocyte glycoprotein-induced exper-
imental autoimmune encephalomyelitis (Zhuang et al., 2011),
an animal model for human CNS demyelinating diseases such

as multiple sclerosis and acute disseminated encephalomyelitis
(Miller and Karpus, 2007). Additionally, “exosomal JSI124” deliv-
ered via intranasal administration suppressed GL26 glioma growth
in the brain (Zhuang et al., 2011). Although the authors reported
no apparent toxicity or aberrant behavior in the animals during
and after treatment, more detailed studies are required to estab-
lish the safety parameters of intranasal administration of EMVs,
such as dosage and potential immunogenicity. Encouraging find-
ings from these studies support a new means for drug delivery and
warrant upcoming investigations to test EMV packaging of other
therapeutic compounds, EMV immunogenicity, as well as route of
delivery across the BBB for future clinical considerations.

CONCLUSION
With the emergence of EMVs as a de novo extracellular organelle
for cell-to-cell communication, researchers have gathered and
studied the role of EMVs under both physiological and patho-
logical conditions, as well as their applications for therapies. In the
present review, we have focused on recent discoveries of EMVs’
involvement in the nervous system and EMV-mediated thera-
pies developed to-date. While an impressive number of exciting
findings have been made in the past few years, many questions
still remain to be answered with respect to different aspects of
EMV biology. Due to the different cellular origins and biogenesis
of EMVs, standardized nomenclature and isolation protocols for
EMVs need to be established by the research community for bet-
ter advancement of ongoing EMV research. Meanwhile, although a
majority of the studies to-date has focused on their involvement in
diseases, relatively few have reported on EMV’s physiological role
during development and adult functions in the nervous system.
Understanding EMVs’ half-life, circulation, and release of cargoes
in vivo will also be needed to illuminate this intricate intercellular
communication system within the body. Altogether, future inves-
tigations and exciting findings in EMVs should further reveal how
multiple cellular populations communicate and interact, as well as
how EMVs can be employed in therapies.
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