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Machine learning models in metabolomics, despite their great
prediction accuracy, are still not widely adopted owing to the

lack of an efficient explanation for their predictions. In this
study, we propose the use of the general explanation method

to explain the predictions of a machine learning model to gain

detailed insight into metabolic differences between biological
systems. The method was tested on a dataset of 1H NMR spec-

tra acquired on normal lung and mesothelial cell lines and
their tumor counterparts. Initially, the random forests and artifi-

cial neural network models were applied to the dataset, and
excellent prediction accuracy was achieved. The predictions of

the models were explained with the general explanation

method, which enabled identification of discriminating meta-
bolic concentration differences between individual cell lines

and enabled the construction of their specific metabolic con-
centration profiles. This intuitive and robust method holds

great promise for in-depth understanding of the mechanisms
that underline phenotypes as well as for biomarker discovery

in complex diseases.

Searching for metabolic biomarkers that would discriminate

sample classes (i.e. , cell types, diseases states, and drug effects)
and provide better insight into metabolic mechanisms, re-

sponse to treatment, and early diagnosis is an active area in

metabolomics research.[1–4] Identifying and quantifying low-mo-
lecular-weight metabolites in biological samples is based on a

variety of spectroscopic techniques, including NMR spectrosco-
py.[5] Finding potential biomarkers by using the metabolic NMR

fingerprints of biological samples requires rigorous data analy-

sis.[6] Prior steps consist in preprocessing of the NMR spectra
and their segmentation into small regions called bins.[7] Binned

spectral regions are viewed as a set of “features” with their re-
spective “feature values” (i.e. , integrated areas under reso-

nance signals in binned regions). A data matrix consisting of
features and their corresponding feature values for a large

number of samples represents a sophisticated and highly con-

voluted dataset. Methods such as principal component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA)

are predominantly used to analyze such datasets with the goal
to discriminate between sample classes and to uncover the

most important features.[8, 9] Remarkably, machine learning
models such as random forests (RF), artificial neural networks

(ANNs), and support vector machines achieve great prediction

accuracy, but their prediction processes are obscured and do
not reveal the feature values that are used for predictions.[10–12]

In exploring the properties of biological specimens, it is crucial
to be able to explain predictions of different machine learning

models and to extract feature values that enable the discrimi-
nation of sample classes. Some of the machine learning

models utilize model-specific explanation methods to explain

their predictions. Unfortunately, machine learning models that
have the potential to achieve the best prediction accuracy do
not enable any explanation of their predictions.[12] By using the
general explanation method (GEM),[13] predictions made by
machine learning models can be efficiently and intuitively ex-
plained.

GEM is a sensitivity analysis-based method that is used to
explain prediction models and can be applied to any type of
classification or regression model. Its advantage over existing
explanation methods is that all subsets of the input features
are perturbed, so interactions and redundancies between fea-

tures are taken into account. GEM explains the prediction of a
machine learning model as a list of contributions of individual

feature values. The importance of a given feature value for a
prediction is expressed as a “contribution value”. Feature
values with high contribution values indicate a large influence

on the model’s prediction (note that the contribution value
can be either positive, supporting the prediction, or negative).

GEM was previously tested on different machine learning
models and was compared with existing explanation methods;
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Večna pot 113, 1001 Ljubljana (Slovenia)
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it was shown that its intuitive explanation of models’ predic-
tions improved the user’s understanding of the models.[12–14]

Various immortalized cell lines are widely used as models of
more complex biological systems. Gaining insight into their

metabolic differences is essential for drug development and
for the prediction of clinical response to treatment.[15, 16] In the
current study, five cell lines that differ not only in their status
(tumor vs. normal) but also in their morphology and tissue of
origin (epithelial and fibroblast cells from lung and mesotheli-

um) were specifically selected (Table 1). The initial step in-

volved “training” the RF and ANN models on a dataset of 63
1H NMR spectra acquired on normal and tumor cell lines. In
the following steps, we set out to investigate the ability of the

GEM to uncover the most important feature values that the RF
and ANN models use for prediction with the goals of identify-

ing discriminating concentration differences of metabolites
amongst the five cell lines and constructing their specific met-

abolic concentration profiles.

Intelligent bucketing was performed in the spectral region
between d= 0.1 and 9.5 ppm on all 1H NMR spectra, which re-

duced their dimensionality to 235 binned regions, termed fea-
tures. Feature values (integrated areas of individual features)

were normalized to a “constant sum” equal to 100 and were
organized as a data matrix. To acquire features with distinct

feature values that discriminate cell lines, the dataset was ini-

tially analyzed with the RF and ANN models, which both ach-
ieved prediction accuracy of 95 % as tested with the “leave
one out” cross validation method (Tables S1 and S2 in the
Supporting Information). High prediction accuracy demon-

strates the ability of the RF and ANN models to learn success-
fully of feature values that discriminate the five cell lines. The

GEM was applied to calculate the contribution values of the in-
dividual feature values for each sample. Contribution values
were then averaged across samples from the same cell line

type to highlight the most important features (Tables S3 and
S4).

For the RF model, features were considered important if
their average contribution values were higher than 0.02 for all

cell lines. In the case of the ANN model, the average contribu-

tion values of the features that were considered important
were higher than 0.02 for the A549 cell line, 0.03 for the WI-38

cell line, 0.05 for the MeT-5A and MSTO-211H cell lines, and
0.04 for the NCI-H2052 cell line. Using both models, 25 impor-

tant features were identified and are shown in the 1H NMR

spectrum of one of the WI-38 samples as an example

(Figure 1).

The RF and ANN models each found 15 important features,
of which features 35, 70, 78, 82, and 101 were important to

both (Figure 2). For the RF model, the A549 cell line exhibited
seven important features, whereas the WI-38 cell line exhibited

four, the MeT-5A cell line exhibited three, the NCI-H2052 cell

Table 1. Overview of cell lines.

A549 WI-38 MeT-5A MSTO-211H NCI-H2052

cell type epithelial fibroblast epithelial fibroblast epithelial
disease carcinoma normal normal mesothelioma mesothelioma
no. of
samples

23 23 8 4 5

sample
nos.

1–23 24–46 47–54 55–58 59–63

Figure 1. Representative 1H NMR spectrum of the WI-38 cell line sample
(index 32). Orange bars represent 25 important features with the highest
average contributions indicated with numbers at the top of the spectrum.

Figure 2. Average contribution values, calculated by the GEM, of important
features for the A) RF and B) ANN models for all cell line types (indicated on
top). Average contribution values are presented numerically at the top of
the bars.
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line exhibited two, and the MSTO-211H cell line exhibited one
important feature (Figure 2 A). Of the 15 features, 13 were spe-

cific for individual cell lines. Feature 70 was common to the
normal WI-38 and MeT-5A cell lines, and interestingly, its aver-

age contribution value was higher for the WI-38 cell line than
for the MeT-5A cell line (Figure 2 A). Feature 82 was common

to the normal MeT-5A cell line and to the tumor MSTO-211H
cell line and exhibited comparable average contribution values

(Figure 2 A). For the ANN model, the A549 and WI-38 cell lines

exhibited four important features, whereas MeT-5A, NCI-H2052,
and MSTO-211H each exhibited three important features (Fig-

ure 2 B). Of the 15 features, 13 were specific for individual cell
lines, whereas features 66 and 73 were common to the tumor

A549 cell line and the normal WI-38 cell line (Figure 2 B).
Features with the highest average contribution values for

the RF model exhibited distinct feature values that discriminat-

ed respective cell lines (Figure 3). The feature values of feature
35 were the highest for the A549 cell line. On the other hand,

for the A549 cell line, the feature values of features 228 and
232 were the lowest (Figure 3). Noteworthy, the feature values
of the above features clearly discriminated the A549 cell line
from the other cell lines. The feature values of features 36, 78,

204 and 210 were less distinct, as some of them overlapped

with the feature values of the other cell lines.
In the case of the WI-38 cell line, the feature values

of feature 70 were distinctly higher than those of the other
cell lines, which thus enabled clear discrimination. However,

some feature values of features 71, 99, and 100 for the WI-38
cell line overlapped with the feature values of the other

cell lines, which made discrimination less straightforward

(Figure 3).
We observed that the feature values of features 70, 82, and

101 for the Met-5A cell line were passage number dependent.
For example, samples 53 and 54, collected from the same pas-

sage, exhibited distinct feature values in feature 82 and over-
lapped in feature 101. On the other hand, samples 49, 50, 51,

and 52, collected from the same passage, exhibited distinct

feature values in feature 101 and overlapped in feature 82
(Figure 3). However, a combination of features 70, 82, and 101,

which the RF model utilizes to make predictions, unambigu-
ously discriminated the Met-5A cell line from the other cell

lines.
The tumor NCI-H2052 cell line could be discriminated from

the other cell lines by the fact that the feature values of fea-

tures 85 and 86 were clearly higher for the NCI-H2052 cell line
than for the other cell lines (Figure 3). Three out of four MSTO-

211H cell line samples collected from the same passage exhib-
ited feature values of feature 82 that were clearly higher than

those of the other cell lines. Sample 55 collected from a differ-
ent passage exhibited a lower feature value than the other

three MSTO-211H cell line samples (Figure 3) and was the only

sample wrongly predicted by the RF model in the studied da-
taset.

Features with the highest average contribution values for
the ANN model also exhibited distinct feature values that

discriminated the respective cell lines (Figure 4). The feature
values of feature 35 were distinctly higher for the A549 cell

line than for the other cell lines. The feature values of features
66, 73, and 78 for the A549 cell line were less distinct, as some

of them overlapped with the feature values of the other cell
lines (Figure 4).

The feature values of feature 70 were distinctly higher in the
case of the WI-38 cell line than for the other cell lines, whereas

Figure 3. Feature values of the 15 important features for the RF model for
all samples. Cell line types are indicated at the top. Plots for features 82 and
101 contain sample indexes indicated with numbers. *** p<0.001, one-way
ANOVA.
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some of the feature values of features 66, 73, and 77 over-

lapped with the feature values of the other cell lines (Figure 4).
The feature values of features 101, 112, and 113 for the Met-

5A cell line overlapped with the feature values of the other cell
lines. However, a combination of features 101, 112, and 113

was able to discriminate the Met-5A cell line from the other
cell lines (Figure 4).

Clearly higher feature values of features 98, 102, and 103 un-
ambiguously discriminated the tumor NCI-H2052 cell line from

the other cell lines (Figure 4).
All four MSTO-211H cell line samples exhibited clearly higher

feature values of features 64 and 91 than the A549, WI-38 and
Met-5A cell lines. The feature values of feature 82 for three out
of the four MSTO-211H cell line samples collected from the
same passage were clearly higher than the feature values of
the other cell lines (Figure 4).

The results of the GEM show that there are differences and
similarities in interpretations of the dataset by the RF and ANN

models. In the case of the A549 cell line, feature 35 exhibits a
high average contribution value for both models, whereas fea-
tures 228 and 232 exhibit high average contribution values
only for the RF model. All three features unambiguously dis-

criminate the A549 cell line from the other cell lines. Interest-
ingly, features 228 and 232 are not amongst the important fea-
tures for the ANN model. For the WI-38 cell line predictions,

feature 70 exhibits a high average contribution value for both
models. However, features 66, 73, and 78 exhibit high average

contribution values for the ANN model, and features 71, 99,
and 100 exhibit high average contribution values for the RF

model. Interestingly, only feature 70 unambiguously discrimi-

nates the WI-38 cell line from the other cell lines and is impor-
tant to both models. In the case of the Met-5A cell line, feature

101 exhibits a high average contribution value for both
models, whereas features 82 and 70 exhibit high average con-

tribution values for the RF model, and features 112 and 113 ex-
hibit high average contribution values for the ANN model. The

feature values of features 85, 86, 98, 102, and 103 all unambig-

uously discriminate the NCI-H2052 cell line from the other cell
lines; however, only features 85 and 86 are important for the

RF model, whereas only features 98, 102, and 103 are impor-
tant for the ANN model. In the case of the MSTO-211H cell

line, feature 82 exhibits a high average contribution value for
both models. Moreover, features 64 and 91 exhibit high aver-

age contribution values only for the ANN model.

The features with the highest average contribution values
for the RF and ANN models exhibit meaningful feature value

differences that discriminate the five cell lines. Their respective
signals in the NMR spectra were assigned and used to identify

valine (features 35, 36, and 71), isoleucine (feature 35), gluta-
mic acid (features 66 and 73), aminoadipic acid (features 70

and 71), glutathione (features 77 and 78), asparagine (features

85 and 86), creatine (feature 91), proline (feature 100), uridine
diphosphate glucose (UDPG, features 101,103, 112, and 113),

myoinositol (feature 103), choline (feature 103), aspartic acid
(features 112 and 113), and NAD (features 204, 210, 228, and

232) with the use of 2D 13C HSQC, 13C HMBC, and TOCSY spec-
tra (Figures S1–S13).

Once the metabolites corresponding to important features

were identified, the metabolite concentration profiles specific
for the individual cell lines, as learned by the RF and ANN

models, could be constructed (Figure 5). Such specific meta-
bolic concentration profiles of the individual cell lines enabled

their further detailed analysis. For example, the tumor cell line
A549 was discriminated from the other cell lines by the in-

Figure 4. Feature values of 15 important features for the ANN model for all
samples. Cell line types are indicated at the top. *** p<0.001, one-way
ANOVA.
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creased concentration of valine, isoleucine, and glutathione

and decreased concentration of NAD and glutamic acid
(Figure 5). Valine and isoleucine are together with leucine col-

lectively known as the branched-chain amino acids (BCAAs),

whereas NAD is one of the five coenzymes involved in the for-
mation of branched-chain a-keto acids (BCKAs). The metabolic

concentration profile of the A549 cell line is in accordance
with the current understanding of the metabolism of the non-

small lung carcinoma (NSCLC) cells, for which overexpression
of branched-chain aminotransferase 1 (BCAT1) results in in-

creased intracellular concentrations of BCAAs through the ami-

nation of BCKAs.[17–19] In support, both glutamic acid and gluta-
thione have active roles in the proliferation processes of the

A549 cell line, and an increased concentration of glutathione
has also been observed in tumor A549 cells.[20, 21] Additionally,

the specific metabolic concentration profiles of the cell lines
that were ascertained with the use of the GEM additionally re-
vealed metabolites whose roles in cell metabolism are not yet

understood fully (Figure 5). An example is the identification of
an increased concentration of aminoadipic acid in the normal
WI38 cell line, which has not been described in the literature
so far.

The benefits of analyzing the dataset with different machine
learning models are especially evident for the A549 and NCI-

H2052 cell lines. In the case of the A549 cell line, the RF and

ANN models uncovered increased concentrations of valine, iso-
leucine, and glutathione. However, an increased concentration

of NAD was uncovered only by the RF model, and a decreased
concentration of glutamic acid was uncovered only by the

ANN model. In the case of the NCI-H2052 cell line, an increased
concentration of asparagine was uncovered by the RF model,

and increased concentrations of myoinositol and choline were

uncovered only by the ANN model. The above results demon-
strate that the RF and ANN models individually provide unique

and crucial information about concentration differences that
discriminate cell lines and that only the combined information

from both models enables construction of specific metabolic
concentration profiles for individual cell lines in a thorough

manner (Figure 5). As the GEM can be easily applied to any
machine learning model and explain its predictions, analyzing

biological datasets with different machine learning models
may be advantageous.

To compare the GEM approach, our dataset of 63 1H NMR
spectra acquired on normal and tumor cell lines was also ana-

lyzed with the PCA and PLS-DA methods, which are frequently
used in metabolomics studies. PCA was unable to uncover
clusters that could separate cell lines. Instead, it showed that

samples predominantly clustered according to their “passage
number”; this indicated that most of the variability in the me-

tabolite concentrations arose from the degree of subculturing
(Tables S5–S9 and Figure S14 A). Next, the dataset was analyzed

with the PLS-DA method, which showed good separation of
the NCI-H2052 cell line, three MSTO-211H cell lines, and most

of the A549 cell lines but failed to separate the WI-38 and Met-
5A cell lines (Figure S15 A). Features 44, 48, 73, 95, 103, and
109 were the most “influential” features towards the separation
of the cell lines in the PLS-DA scores plot (Figure S15 B). Analy-
sis of their feature values (Figure S16) revealed that only fea-

ture 103 had distinctly higher feature values for the NCI-H2052
cell line, which enabled its discrimination from the other cell

lines. The feature values of the remaining “influential” features

overlapped amongst cell lines, which made their discrimination
less straightforward. Features 35, 70, 85, 86, 98,102, 228, and

232 uncovered by the GEM for the RF and ANN models that
unambiguously discriminated cell lines were overlooked by

both the PCA and PLS-DA methods.
Furthermore, the intrinsic stability of the GEM for the RF

model[22] was evaluated and compared with the RF model’s

specific explanation methods, mean decrease accuracy (MDA)
and mean decrease Gini (MDG) (Table S10). The average Spear-

man coefficient for MDA was very weak for the MeT-5A and
MSTO-211H cell lines and weak for the A549, WI-38, and NCI-

H2052 cell lines, whereas MDG exhibited weak average Spear-
man coefficients for all cell lines. The average Spearman coeffi-

cient for the GEM was strong for the A549, WI-38, and NCI-

H2052 cell lines and moderate for the MeT-5A and MSTO-211H
cell lines. These results demonstrate that the intrinsic stability

of the GEM is much higher than that of MDA and MDG. Conse-
quently, the calculations of the feature contributions in repeat-
ed runs are consistent with the GEM. The important features
that are found by GEM are thus more accurate and reliable

than these found by MDA or MDG.
In conclusion, we have demonstrated that by using the GEM

to explain the predictions of the RF and ANN models on a
dataset of 1H NMR spectra, concentration differences between
the metabolites were identified that discriminated individual

normal and tumor cell-line types. We believe that uncovering
such intricate metabolic differences, not only between cell

lines but also between other biological systems, is key for

accurate diagnosis, efficient drug development, and overall
understanding of the mechanisms that underlie phenotypes.

Moreover, promising advances in spectroscopic techniques
and machine learning models affirm that the GEM can become

an indispensable tool for metabolic phenotyping, biomarker
discovery, and drug target detection of complex diseases.

Figure 5. Changes in concentrations of the metabolites that discriminate cell
lines according to the RF and ANN models. Upward-pointing arrows indicate
an increased concentration of a metabolite, whereas downward-pointing
arrows indicate a decreased concentration. Blue line around lungs repre-
sents mesothelium, and the cyan part on the right lung represents pleural
infusion.
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