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Abstract: Although environmental enrichment (EE) is known to reduce oxidative stress in Parkinson’s
disease (PD), the metabolic alternations for detoxifying endogenous and xenobiotic compounds
according to various brain regions are not fully elucidated yet. This study aimed to further understand
the role of EE on detoxifying enzymes, especially those participating in phase I of metabolism,
by investigating the levels of enzymes in various brain regions such as the olfactory bulb, brain stem,
frontal cortex, and striatum. Eight-month-old transgenic PD mice with the overexpression of human
A53T α-synuclein and wild-type mice were randomly allocated to either standard cage condition or
EE for 2 months. At 10 months of age, the expression of detoxifying enzymes was evaluated and
compared with wild-type of the same age raised in standard cages. EE improved neurobehavioral
outcomes such as olfactory and motor function in PD mice. EE-treated mice showed that oxidative
stress was attenuated in the olfactory bulb, brain stem, and frontal cortex. EE also reduced apoptosis
and induced cell proliferation in the subventricular zone of PD mice. The overexpression of detoxifying
enzymes was observed in the olfactory bulb and brain stem of PD mice, which was ameliorated by
EE. These findings were not apparent in the other experimental regions. These results suggest the
stage of PD pathogenesis may differ according to brain region, and that EE has a protective effect on
the PD pathogenesis by decreasing oxidative stress.
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1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s
disease, affecting about 1–2% of the population older than 60 years of age [1,2]. PD is considered an
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intrusive condition that involves multiple functional systems. It is characterized by four cardinal
motor symptoms: resting tremor, bradykinesia, rigidity, and postural instability [3]. Recently,
diverse non-motor symptoms, such as autonomic dysfunction, gastrointestinal symptoms, cognitive
dysfunction, sleep disturbance, and neuropsychiatric symptoms have been proposed as accompanying
presentations in PD [4].

Despite a wide range of studies on the pathophysiology of PD, the exact mechanisms of PD have not
yet been elucidated. Various hypotheses have been suggested, including altered metabolism [5]. Because
various endogenous and environmental toxic materials are responsible for neuronal degeneration,
detoxification is believed to represent an important defensive mechanism against PD [6,7]. Detoxifying
metabolism is largely divided into three phases: phase I modifies toxins into active metabolites
via hydrolysis, oxidation, and reduction; phase II catalyzes the products derived from phase I into
hydrophilic products with transferase enzymes; and phase III excretes the final products from cells via
various transporter systems [8].

Classically, it is thought that PD is caused by the loss of dopaminergic neurons in the substantia
nigra pars compacta, with typical motor symptoms induced by disruptions of the basal ganglia.
In more recent research studies, symptoms related to olfactory structures and the gastrointestinal
tract have been proposed as induction sites of PD [9–11]. The olfactory bulb acts as an entry site
for external materials, delivering signals from the olfactory mucosa, which is directly exposed to
the external environment, into the olfactory cortex [12]. In addition, it provides protection against
harmful substances by secreting antioxidant and detoxifying enzymes [13]. The detoxifying properties
of the olfactory bulb play an important role against various neurodegenerative diseases associated
with xenobiotics and environmental toxins [14]. Non-motor symptoms of PD, such as hyposmia,
a representative non-motor symptom of PD that develops in the premotor period, can precede the
development of typical motor symptoms by up to several decades [15].

Environmental enrichment (EE), a combination of physical, cognitive, and social interactions,
is generally accepted as a typical model of rehabilitation in animal models [16]. Functional improvements
in neurological diseases have been proven by EE in several studies [17]. Moreover, various
neurochemical and histological hypotheses have been suggested for the underlying mechanisms
of this improvement, including reduced oxidative stress, anti-neuroinflammation, neurogenesis,
synaptic plasticity, and neuroprotection via the induction of neurotrophic factors [18–21].

In a preliminary study investigating the olfactory bulb of normal adult mice, exposure to EE
for 2 months resulted in the significant up-regulation of several detoxifying enzymes of phase I and
phase II compared with the wild-type control group [13]. In another study using transgenic PD mice
that overexpress human A53T α-synuclein, however, several detoxifying enzymes were found to be
significantly increased in the olfactory bulb of PD mice compared to wild-type mice at the early stages
of the disease, which were less enhanced in the later stages. EE was found to offset this up-regulation,
resulting in the normalized levels of detoxifying enzymes [22].

This study aims to expand on preliminary findings of the activities of detoxifying enzymes in
various dopaminergic structures, including the brain stem, frontal cortex, and striatum, in addition to
the olfactory bulb. In particular, we focused on the phase I metabolism, an initial stage of detoxification.
The effect of EE on enzymatic activity, oxidative stress, neurogenesis, neuroprotection, and functional
ability were also investigated to determine their significance in PD rehabilitation.

2. Materials and Methods

2.1. Transgenic Mouse Model of Parkinson’s Disease

To generate wild-type and transgenic mice, we used the human α-synuclein A53T transgenic line
G2-3 (B6.Cg-Tg [Prnp-SNCA*A53T] 23 Mkle/J; Jackson Laboratories, stock no. 006823, Bar Harbor,
ME, USA). The transgenic mice used in this model were heterozygous offspring of an overexpressed
copy of the A53T mutant mice. All animals were raised in a facility accredited by the Association for
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Assessment and Accreditation of Laboratory Animal Care under alternate 12-h light and dark cycles,
with free access to food and water. The experimental procedures were approved by the Institutional
Animal Care and Use Committee (IACUC 2017-0039).

2.2. Mice Rearing and Sacrifice

EE was established by placing the mice in large cages (86 × 76 × 31 cm3) with various equipment,
such as tunnels, shelters, toys, and running wheels [16]. These objects were provided for voluntary
exercise and social interaction. Only 12 to 15 mice were reared in each EE cage. In contrast, the
control mice were housed in 27 × 22.5 × 14 cm3 standard cages (SC) without social interaction (3 to
5 mice per cage). All transgenic and wild-type mice were reared in either the EE or SC cages from
the age of 8 months to 10 months (Figure 1). The experimental groups were as follows: wild-type
mice reared in SC (WT-SC), wild-type mice reared in EE (WT-EE), transgenic mice reared in SC
(PD-SC), and transgenic mice reared in EE (PD-EE). The mice were sacrificed at 10 months of age.
For molecular study, animals were euthanized and then perfused with 1× phosphate-buffered saline
(PBS). The brains were extracted and dissected into four regions including olfactory bulb, brain stem,
frontal cortex, and striatum. For analysis of histology, animals were euthanized, perfused with 1× PBS,
and re-perfused with 4% paraformaldehyde.
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Figure 1. Experimental design. (A) Schematic timeline of the experiment in a mouse model of
Parkinson’s disease (PD). All subjects were sacrificed at the age of 10 months after different housing for
2 months. (B) Environmental enrichment (EE; 86× 76× 31 cm3) including shelters, tunnels, toys, running
wheels for voluntary exercise, and social interaction. (C) Standard cage (SC; 27 × 22.5 × 14 cm3).

2.3. RNA Extraction

The mouse brain sections including olfactory bulb, brain stem, frontal cortex, and striatum
were homogenized in Trizol Reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) using sterile
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homogenizer tips and an electrodynamic cordless motor (cat. no. 749540-0000; Kimble, Vineland, NJ,
USA). Extracted total RNA pellets were dissolved in autoclaved DEPC water. The A260:A280 ratio of
RNA samples was measured using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA,
USA). The RNA samples were aliquoted and stored at −80 ◦C until use.

2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Complementary DNA (cDNA) synthesis was performed using Prime Script Reverse Transcriptase
(TAKARA). cDNA was subjected to RT-PCR using LightCycler 480 SYBR Green master mix (Roche
Applied Science) and Gene Amp PCR system 9700 (Applied Biosystems/Life Technologies, Carlsbad,
CA, USA), according to the manufacturer’s instructions. The quantitative expression of the seven
enzymes of phase I metabolism related with detoxification, namely, cytochrome P450 family 1 subfamily
A member 2 (Cyp1a2), carbonyl reductase2 (Cbr2), crystallin lambda 1 (Cryl1), paraoxonase 1 (Pon1),
alcohol dehydrogenase 1 (Adh1), and aldehyde dehydrogenase 1A7 (Aldh1a7), was evaluated by
qRT-PCR. The primer sequences used are listed in Table 1. The thermocycler conditions were as follows:
denaturation for 5 min at 95 ◦C, followed by 40 cycles at 95 ◦C for 5 s, at 62 ◦C for 20 s, and at 75 ◦C
for 15 s. Melting curve analysis began at 95 ◦C for 15 s, followed by 1 min at 60 ◦C. The expression
level of each genes was calculated using 2–44Ct method and normalized relative to the expression of
glyceraldehyde-3-phosphate dehydrogenase (Gapdh).

Table 1. List of primers used for qRT-PCR.

Gene ID Genes Primer Sequences

13077 Cyp1a2 Forward GCTTCTCCATAGCCTCGGAC
Reverse TTAGCCACCGATTCCACCAC

12409 Cbr2
Forward CCCCCTTCCACATTCAAGCA
Reverse CTCCTCTGTGATGGTCTCGC

68631 Cryl1 Forward GATTGACGGCTTCGTCCTGA
Reverse GCATAGTCTCCAAGGGTCCG

18979 Pon1
Forward ATGACGCAGAGAATCCTCCC
Reverse TTTGTACACAGAGGCGACCG

11522 Adh1
Forward GACATAGAAGTCGCACCCCC
Reverse CCAACGCTCTCAACAATGCC

26358 Aldh1a7
Forward GGTTTAGCAGCAGGAGTCTTCA
Reverse CAGCCAAATAGCAGTTCACCC

14433 Gapdh Forward CAAGGTCATCCATGACAACTTTG
Reverse GTCCACCACCCTGTTGCTGTAG

Cyp1a2, cytochrome P450 family 1 subfamily A member 2; Cbr2, carbonyl reductase 2; Cryl1, crystallin
lambda 1; Pon1, paraoxonase 1; Adh1, alcohol dehydrogenase 1; Aldh1a7, aldehyde dehydrogenase 1A7; Gapdh,
glyceraldehyde-3-phosphate dehydrogenase.

2.5. Immunohistochemistry (IHC)

After cardiac perfusion, extracted brains were soaked in 6% sucrose for 1 day, followed by soaking
in 30% sucrose until sinking completely. The tissues were then frozen in section compound (Leica,
Wetzlar, Germany) and cryosectioned at 16 µm thickness along the sagittal or coronal plane using
cryomicrotome (Cryostat Leica 1860; Leica Biosystem, Buccinasco, MI, Italy). Immunohistochemistry
staining was performed on four sections over a range of >128 µm.

To evaluate cell proliferation, we stained the sections with Ki-67 (Leica Biosystems, Newcastle,
United Kingdom), a cell cycle-associated protein and a neurogenesis marker [23], in the subventricular
zone (SVZ), where neurogenesis is known to occur in the adult brain [24]. For the analysis of
apoptotic cells, we stained the brain sections using fluorometric terminal deoxynucleotidyl transferase
deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL; Promega, Madison, WI, USA) staining,
according to the manufacturer’s instructions. Tissue samples were mounted on glass slides with
fluorescent mounting medium containing 4′,6-diamidino-2-phenylindole (DAPI; Vectorshield, Vector,
Burlingame, CA, USA). The number of Ki-67- and TUNEL-positive cells were counted in the SVZ of
brain sections, and the stained sections were analyzed using confocal microscopy (LSM 700, Zeiss).
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2.6. Glutathione Activity Assay

The ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) is used as a marker
of oxidative stress. We measured total glutathione and GSSG using a glutathione detection kit
(ADI-900–160; Enzo Life Science, East Farmingdale, NY, USA) by measuring the absorbance of the
reaction products at 405 nm, according to the manufacturer’s instructions. The GSH was obtained by
the following formula: GSH = total glutathione − GSSG, in the kit protocols.

2.7. Neurobehavioral Tests

2.7.1. Buried Food Test

The buried food test was performed as described in previous studies [22]. Olfactory function was
evaluated using the buried food test, which was used to determine how quickly an overnight-fasted
mouse could find a small palatable food that was hidden underneath a layer of bedding (Figure 2A) [25].
The test was performed twice on mice at 8 and 10 months of age. Mice were fasted for 14-18 h the
day before testing. The mice were individually placed in a clean holding cages for 5 min, and then
transferred to the test cage for 2 min. The pellet was placed in a holding cage and randomly embedded
0.5 cm below the bedding at non-learned positions. We placed the mice in the center of the test cage
and recorded the time to find the pellet for 5 min.

Antioxidants 2020, 9, x FOR PEER REVIEW 6 of 18 

there were no baseline differences in the olfactory function between WT-SC mice and WT-EE mice, 
and between PD-SC mice and PD-EE mice at 8 months, but olfactory dysfunction was shown in PD 
mice compared to WT mice before exposure to EE. EE treatment for 2 months showed improvement 
in olfactory function in PD mice (Figure 2D). In the rotarod test, there were no differences among the 
groups at the age of 8 months; however, motor function was improved by EE in both WT and PD 
mice at the age of 9 and 10 months (Figure 2E). The hanging wire test showed that EE increased 
duration time to hang the wire in PD-EE mice compare with PD-SC mice at the age of 10 months 
(Figure 2F). These results suggested that EE treatment for 2 months improved olfactory and motor 
functions in PD mice. 

 
Figure 2. Environmental enrichment (EE) enhanced neurobehavioral functions in PD mice. (A–C) 
Representative pictures of buried food, rotarod, and hanging wire tests. (A) Buried food test for the 
evaluation of olfactory function. (B) Rotarod test for the evaluation of motor coordination and 
balance. (C) Hanging wire test for the assessment of the neuromuscular strength in the paws of mice 
and balance. (D) Buried food test result showed the latency time of finding food in PD mice at 8 
months of age showed that there were no differences between standard cage (SC) and EE conditions 
in both wild-type (WT) and PD mice. However, EE for 2 months significantly reduced the latency 
time in PD-EE mice compared with PD-SC mice (WT-SC, n = 6; WT-EE, n = 5; PD-SC, n = 8; PD-EE, n 
= 8). (E) In the rotarod test, at 8 months of age, no significant differences were observed among the 
groups. However, at 9 and 10 months of age, a better outcome was obtained in the WT-EE and PD-
EE mice compared to the WT-SC and PD-SC mice (WT-SC, n = 6; WT-EE, n = 5; PD-SC, n = 6; PD-EE, 
n = 5). * p < 0.05; *** p < 0.001; one-way ANOVA followed by post-hoc comparison. (F) Hanging wire 
tests evaluated at 10 months of age showed similar results. The PD-EE mice showed improved motor 
function compared with the PD-SC mice (n = 5, each). *** p < 0.001; Student’s t-test. 

3.2. EE Attenuated Oxidative Stress in Olfactory Bulb, Brain Stem, and Frontal Cortex but not in the 
Striatum of PD Mice 

The GSH/GSSG ratio is inversely correlated with oxidative stress and was found to be 
significantly lower in the PD-SC mice than the WT mice in the olfactory bulb. In the brain stem and 
frontal cortex, the ratio was lower in the PD-SC mice compared to both WT and PD-EE. However, 
difference in GSH/GSSG ratio was not observed in the striatum among the groups (Figure 3). These 
data indicated that EE attenuated oxidative stress in the olfactory bulb, brain stem, and frontal cortex, 
but not in the striatum of PD mice. 

Figure 2. Environmental enrichment (EE) enhanced neurobehavioral functions in PD mice. (A–C)
Representative pictures of buried food, rotarod, and hanging wire tests. (A) Buried food test for the
evaluation of olfactory function. (B) Rotarod test for the evaluation of motor coordination and balance.
(C) Hanging wire test for the assessment of the neuromuscular strength in the paws of mice and balance.
(D) Buried food test result showed the latency time of finding food in PD mice at 8 months of age
showed that there were no differences between standard cage (SC) and EE conditions in both wild-type
(WT) and PD mice. However, EE for 2 months significantly reduced the latency time in PD-EE mice
compared with PD-SC mice (WT-SC, n = 6; WT-EE, n = 5; PD-SC, n = 8; PD-EE, n = 8). (E) In the
rotarod test, at 8 months of age, no significant differences were observed among the groups. However,
at 9 and 10 months of age, a better outcome was obtained in the WT-EE and PD-EE mice compared
to the WT-SC and PD-SC mice (WT-SC, n = 6; WT-EE, n = 5; PD-SC, n = 6; PD-EE, n = 5). * p < 0.05;
*** p < 0.001; one-way ANOVA followed by post-hoc comparison. (F) Hanging wire tests evaluated at
10 months of age showed similar results. The PD-EE mice showed improved motor function compared
with the PD-SC mice (n = 5, each). *** p < 0.001; Student’s t-test.
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2.7.2. Rotarod Test

The rotarod (no. 47600; UGO Basile, Comerio, VA, Italy) test was used to evaluate the motor
coordination and balance of the experimental mice using accelerating (4–40 rpm) speed paradigms.
After the placing mice on the rotating rods, we measured the time taken for the mice to fall from the
rods for 300 s (Figure 2B).

2.7.3. Hanging Wire Test

The hanging wire test evaluated the neuromuscular strength of the paws of the experimental mice.
To this end, mice were suspended on a horizontal rod (5 × 5 mm area, 35 cm long, between two 50-cm
high poles), and the suspension latencies were measured for 5 min (Figure 2C) [26].

2.8. Statistical Evaluation

Statistical analyses were performed using Statistical Package for Social Sciences software version
25.0 (IBM Corporation, Armonk, NY, USA). The variables of behavioral assessments were compared
between groups by a Student’s t-test. For comparison among three experimental groups in molecular
and histological assessments, we used one-way analysis of variance (ANOVA) with least significant
difference (LSD) for post-hoc comparison.

3. Results

3.1. EE-Treated PD Mice Had Improved Neurobehavioral Outcomes

At the age of 8 months and before EE intervention, we performed the neurobehavioral assessment
of the experimental mice using buried food and rotarod tests. In the buried food test, there were no
baseline differences in the olfactory function between WT-SC mice and WT-EE mice, and between
PD-SC mice and PD-EE mice at 8 months, but olfactory dysfunction was shown in PD mice compared
to WT mice before exposure to EE. EE treatment for 2 months showed improvement in olfactory
function in PD mice (Figure 2D). In the rotarod test, there were no differences among the groups at the
age of 8 months; however, motor function was improved by EE in both WT and PD mice at the age of 9
and 10 months (Figure 2E). The hanging wire test showed that EE increased duration time to hang
the wire in PD-EE mice compare with PD-SC mice at the age of 10 months (Figure 2F). These results
suggested that EE treatment for 2 months improved olfactory and motor functions in PD mice.

3.2. EE Attenuated Oxidative Stress in Olfactory Bulb, Brain Stem, and Frontal Cortex but not in the Striatum
of PD Mice

The GSH/GSSG ratio is inversely correlated with oxidative stress and was found to be significantly
lower in the PD-SC mice than the WT mice in the olfactory bulb. In the brain stem and frontal cortex,
the ratio was lower in the PD-SC mice compared to both WT and PD-EE. However, difference in
GSH/GSSG ratio was not observed in the striatum among the groups (Figure 3). These data indicated
that EE attenuated oxidative stress in the olfactory bulb, brain stem, and frontal cortex, but not in the
striatum of PD mice.

3.3. Apototic Cell Death Was Decreased, and Cell Proliferation Was Preserved by EE in the SVZ

The concentration of TUNEL-positive cells was significantly lower in the PD-EE mice than
the PD-SC mice. No significant differences between the WT and PD-SC mice and between the WT
and PD-EE mice were observed (Figure 4). Moreover, the concentration of Ki-67-positive cells was
significantly lower in the PD-SC mice. EE was found to ameliorate this deterioration (Figure 5). Taken
together, we found that EE had neuroprotective effects through decrease of apoptosis and preservation
of cell proliferation in the SVZ of PD mouse brain.
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Figure 3. EE attenuated oxidative stress in the brain regions, except for the striatum. (A) The glutathione
(GSH)/oxidized glutathione (GSSG) ratio was lower in the PD-SC mice than the WT mice in the olfactory
bulb. (B) GSH/GSSG was lower in the PD-SC compared to the WT and PD-EE in the brain stem.
(C) GSH/GSSG was lower in the PD-SC compared to the WT and PD-EE in the frontal cortex (D) In the
striatum, no significant difference in GSH/GSSG ratio was observed among the experimental group
(n = 3, each). These results suggested that EE attenuated oxidative stress in the olfactory bulb, brain
stem, and frontal cortex, but not in the striatum of PD mice. * p < 0.05; *** p < 0.001; one-way ANOVA
followed by post-hoc comparison.

3.4. Expression of Detoxifying Enzymes Was Normalized in The Brain of EE-treated PD Mice

In the olfactory bulb of the PD-SC mice, the expression of the all examined enzymes were
up-regulated compared to the WT mice. Except for Adh1, the expression of enzymes was significantly
lowered by EE. The levels of Cbr2, Cryl1, and Aldh1a7 in the PD-EE mice reached to those of the WT;
on the other hand, the level of Cyp1a2 of the PD-EE did not reach to that of the WT. In the brain stem,
all examined enzymes were up-regulated in the PD-SC and lowered by EE to the levels of the WT mice.
In the frontal cortex, the levels of Cyp1a2 and Cbr2 were significantly higher in the PD-SC compared to
both WT and PD-EE. The other enzymes were not found to be different expressions among the groups.
Lastly, in the striatum of the WT mice, Pon1 and Adh1 were expressed more highly than in both PD-SC
and PD-EE. The level of Cryl1 was higher in the PD-SC compared to the WT. Moreover, Cbr2 was
expressed higher in the PD-EE compared to both WT and PD-SC (Figure 6). These results indicated
that the expression of detoxifying enzymes associated with phase I of the metabolizing process was
altered by EE in the brain regions.
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bulb and brain stem, we observed significant overexpression of all examined enzymes in the PD-SC,
and EE significantly offset these up-regulation, except Adh1 in the olfactory bulb (n = 3–4). (C,D) These
tendencies were not apparent in the frontal cortex and striatum. In the frontal cortex, the levels of only
Cyp1a2 and Cbr2 were higher in the PD-SC compared both WT and PD-EE. Moreover, in the striatum,
several enzymes such as Pon1 and Adh1, were overexpressed in the WT compared to the other groups
(n = 3–4). * p < 0.05, ** p < 0.01, *** p < 0.001; one-way ANOVA followed by post-hoc comparison.
Cyp1a2, cytochrome P450 family 1 subfamily A member 2; Cbr2, carbonyl reductase2; Cryl1, crystallin
lambda 1; Pon1, paraoxonase 1; Adh1, alcohol dehydrogenase 1; Aldh1a7, aldehyde dehydrogenase 1A7.

4. Discussion

Both clinical and experimental evidence of the impact of physical exercise on PD are increasing,
whereby exercise has been found to induce various neuroprotection mechanisms [27,28]. Physical
activity not only improves motor function, but also enhances non-motor symptoms and cognitive
function in PD [29,30]. Evidence is increasingly recommending the rehabilitation for PD patients as a
complementary and indispensable treatment, not merely as an ancillary modality to pharmacological
and surgical treatments [31]. Exercise induces neuroplasticity, although the exact mechanism still
needs to be clarified. The best-known effect of exercise on brain plasticity is via neurotrophic factors.
Various endogenous neurotrophins, such as brain-derived neurotrophic factor, glial cell line-derived
neurotrophic factor, insulin-like growth factor-1, and vascular endothelial growth factor are upregulated
by exercise [32]. These substances prolong the survival of dopaminergic neurons and increase dopamine
levels by stabilizing the intracellular concentration of calcium, reducing oxidative stress, suppressing
neuroinflammation, inducing mitochondrial function, and consequently promoting neurogenesis [28].
Moreover, in human studies, increases in the binding potential of dopamine receptors and structural
changes via the rehabilitation have been observed in PD patients [33–35]. Already, many studies have
revealed the effects of EE, a representative rehabilitation model in animal study, on neuroprotection
via various mechanisms such as cell proliferation, inhibition of apoptosis, and antioxidation [20,36–40],
which were also apparent in our study.

In addition, numerous pieces of evidence have demonstrated that precursor cell proliferation was
impaired by the onset of PD [41], and that apoptosis was induced by exposure to toxic compounds in
PD [42–45]. Other previous studies suggested that EE inhibits apoptosis, enhances neuroprotection
in the brain of rodent PD models [39,46], and improves neurobehavioral functions in brain disorders
including PD [13,47]. It has been suggested that EE can also be the key to provide for the stimulation
of various brain regions [13,48–50]. Therefore, the inhibition of apoptosis through protecting cell
proliferation of neurogenesis area is a promising therapeutic strategy in the various brain regions of
PD. Indeed, we found that EE induced functional improvement in olfactory and motor functions of PD
mice, the increase of cell proliferation, and the decrease apoptotic cells in the brain of PD mice.

Various xenobiotic and environmental toxins are associated with the pathogenesis of PD, including
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP); 6-hydroxydopamine (6-OHDA); pesticides;
solvents; metals; and endogenous toxins, including 4-phenylpyridine, N-methyl nicotinamide,
and N-methyl-(R)-salsolinol [51–57]. As such, the altered capacity for detoxification is a potential risk
factor for PD.
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Because CYP enzymes are responsible for the metabolism of a huge range of endogenous and
xenobiotic compounds, they are widely associated not only with the drug metabolism, but also the
pathogenesis of various diseases, including metabolic diseases, cardiovascular diseases, malignancies,
and neuroinflammatory diseases [58–61]. Owing to the active function of CYP enzymes in neuronal
tissues, their roles in various brain disorders are becoming increasingly evident [62]. CYP1A2 exerts
detoxification properties against xenobiotics, in particular MPTP, a well-known toxic material that
has been found to induce PD in both animals and humans [63–65]. Caffeine consumption has been
reported to provide neuroprotection against PD in epidemiological and meta-analysis studies [66,67].
Surprisingly, cigarette smoking is also known to lower the risk of PD [68,69]. It is thought that the
induction of CYP1A2 via caffeine and cigarettes occurs as a mechanism of neuroprotection against the
pathogenesis of PD [70,71].

Carbonyl compounds are formed during the peroxidation of lipids and lipoproteins, as well
as food poisoning, and are frequently found in various endogenous and xenobiotic compounds.
Because reactive carbonyl groups modify proteins and DNA, they are closely associated with various
neurodegenerative diseases [72–75]. Dicarbonyl compounds, which have dual carbonyl groups, are
also generated by various oxidative processes, such as oxidative glycation, sugar autoxidation, and lipid
peroxidation. The advanced glycation end (AGE) products, derived from modification of proteins
by carbonyl and dicarbonyl compounds, induce the release of cytokines, free radicals, and the direct
modification of the extracellular matrix and hormonal actions, as well as protein aggregation by
oxidative stress. Therefore, AGE products are known to exert a wide range of pathological properties in
various diseases, including connective tissue disease, end-stage renal disease, and neurodegenerative
diseases [76,77]. CBR detoxifies reactive aldehyde, as one of carbonyls derived from lipid peroxidation,
and is responsible for neuronal survival and protection against oxidative stress [73]. Because CRYL1
also catalyzes the detoxification of α-dicarbonyls [77], both enzymes may be associated with the
pathogenesis of PD. We think that the extraordinary response of CBR in the striatum in our study,
which shows significant overexpression in the PD-EE compared to both WT and PD-SC mice, should
be elucidated via further experiment.

PON1 catalyzes the hydrolysis of oxons, which are toxic metabolites of organophosphates [78].
It exerts neuroprotective action in addition to the detoxification of pesticides, including antioxidation,
anti-inflammation, and protection against cardiovascular diseases via an inverse correlation with
atherosclerosis [78–80]. As a result, the mutated PON1 is known as a risk to PD pathogenesis [80–82].

Aldehydes, a type of carbonyl compound, exist ubiquitously in all body tissues. Because
they are a very reactive species, various enzymes, such as CYP, aldo-ketoreductases, ADH,
short-chain dehydrogenases/reductases, and ALDH, are involved in the metabolism of aldehydes [83].
Aldehydes are catalyzed to the corresponding carboxylic acids via ALDH (as a group of nicotinamide
adenine dinucleotide phosphate [NAD(P)]+-dependent enzymes). ADH and ALDH are involved in
neuroprotection and antioxidation via the metabolism of vitamin A (retinol) into retinoic acid, the
most active form of retinoids. Retinoic acid participates in neuronal differentiation and neural tube
patterning via signaling pathways that regulate the gene expression of retinol-binding proteins [84,85].
The dopaminergic system of the central nervous system (CNS) is a target of retinoic acid [86].
The ALDH1A7 gene is expressed in mice, but not in humans, and shares identical residues of 84%
and 91% similarity with ALDH1A1 in humans and mice, respectively [87]. ALDH1A1 degrades
dopamine-3,4-dihydroxyphenylacetaldehyde (DOPAL) into 3,4-dihydrophenylacetic acid (DOPAC),
blocking the α-synuclein-related cytotoxicity of DOPAL [88].

In our preliminary study [22], we chose to examine the olfactory bulb as an induction site of PD.
We expanded the interested areas related to other dopaminergic structures, including the brain stem,
frontal cortex, and striatum. The activity of detoxifying enzymes was found to be higher in the PD-SC
mice and ameliorated by EE in the olfactory bulb and brain stem. On the other hand, these findings
were not significantly apparent in the striatum. These results suggest that the activity of detoxifying
enzymes vary according to brain region.
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It is necessary to consider the characteristics of the olfactory bulb to determine why the results
vary among the different regions. The olfactory bulb acts as an inflow route of exogenous compounds
due to its direct exposure to the external environment, and directly relays biological information to the
CNS [12,89]. The olfactory bulb secretes antioxidants and detoxifying enzymes to provide protection
against harmful substances [8].

Vulnerability against oxidative stress differs across brain region. High utilization of oxygen and
enriched content of polyunsaturated lipids make the central nervous system more vulnerable to
oxidative stress compared to other tissues [73]. Within the brain, the resilience against oxidative stress
varies by region [90], with the substantia nigra (SN) being more vulnerable to oxidative stress compared
to the other brain regions [91]. Cardoso et al. [92,93] reported differences in the response of the SN
and striatum to oxidative stress using sequential studies on rats. Restricting the dietary provision
of essential fatty acids, which is crucial for regulating oxidative stress, cell signaling, and apoptosis,
research found that lipid peroxidation increased in the SN but not the striatum in young animals
(30–42 days old). The activity of superoxide dismutase (SOD) increased in the striatum, while that
of catalase decreased in the SN, indicating that the SN was more vulnerable to oxidative stress than
the striatum [92]. In a followed subsequent study using older animals (90–110 days old), resilience of
the striatum against oxidative stress was found to decrease with age on the basis of the findings of
increased lipid peroxidation in both the SN and striatum and decreased SOD activity in the striatum [93].
The striatum is thought to have a different defensive mechanism against dopaminergic cell loss than
other regions of the CNS [90]. Therefore, the olfactory bulb has a high burden and dependence on
detoxifying enzymes.

In the same course of the disease, and even in the same subject, the disease stages of PD differ
among the brain regions. Generally, the olfactory system and lower brain system are affected first.
Then, the pathogenesis propagates to other sites, reaching the neocortex last [9]. Thus, we expect
that the oxidative stress burden will vary depending on the brain site. In our results, the levels of
detoxifying enzymes associated with phase I of the metabolizing process were differently altered by
EE in the brain regions of PD mice. These results suggest that the expression pattern for effect of EE on
the enzymes is differently altered depending on the brain regions.

The significance of this research is that EE can regulate to the activity of enzymes participating in
the detoxification metabolism in terms of neuroprotection. Normalized levels of detoxifying enzymes
as a result of EE suggest that voluntary exercise can reduce the metabolic burden of detoxification,
including neuroprotection.

In this study, we provided evidence that EE has neurobehavioral improvement effects, reducing the
GSH/GSSG ratio that is decreased when the cells are in oxidative stress. We also showed neuroprotective
effects such as apoptosis and the protection of cell proliferation, as well as the alternation of detoxifying
enzymes by EE in the brain. Taken together, EE reduces oxidative stress and apoptosis, and induces the
protection of cell proliferation, eventually normalizing the expression of detoxifying enzymes which
metabolize toxic molecules.

5. Conclusions

In a PD mouse model, the activity of detoxifying enzymes increased in the olfactory bulb and
brain stem during the early stage of disease, and this event was stabilized by EE. However, in the
other dopaminergic structures, namely, the striatum, the enzymatic activity was not consistent to the
responses in the olfactory bulb and brain stem. Thus, the strategy for treating the pathogenesis of
PD may vary from region to region in the brain. Enzymatic activity and motor functions, as well as
olfactory function, were improved by EE. Our results indicate that rehabilitation has a protective effect
against neuronal deterioration in PD and subsequently decreases detoxifying burden.
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