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Purpose: An increasing proportion of the aging population has led to a rapid increase in the number of elderly patients with ulcerative
colitis (UC). However, the molecular mechanisms by which aging causes UC remain unclear. In this study, we explored the role of
aging-related genes (ARGs) in UC pathogenesis and diagnosis prediction.

Methods: Gene expression data were obtained from four independent datasets (GSE75214, GSE87466, GSE94648, and GSE169568)
in the GEO database, and ARGs were derived from multiple public databases. After identifying UC-related ARGs, consistent
clustering was performed to screen aging-related molecular subtypes, followed by the exploration of differences in the immune
microenvironment and pathways between distinct subtypes. Next, core module genes were screened using WGCNA and then the hub
genes were characterized using LASSO and random forest methods. Besides, the associations between hub genes, immune cells, and
key pathways were explored. Finally, the expression levels of key genes were determined in a dextran sulfate sodium (DSS)-induced
UC mouse model by qRT-PCR.

Results: UC samples were classified into two subtypes (1 and 2), which displayed significant differences in the immune landscape and
JAK/STAT signaling pathways. A series of machine learning algorithms was used to screen two feature genes (ETS1 and IL7R) to
establish the diagnostic model, which exhibited satisfactory diagnostic efficiency. In addition, these hub genes were closely associated
with the infiltration of specific immune cells (such as neutrophils, memory B cells, and M2 macrophages) as well as with the JAK/
STAT pathway. Later, experimental validation confirmed that ETS1 expression was markedly increased in a mouse model of UC.
Conclusion: Overall, aging, immune dysregulation, and UC process are closely associated. The identified feature genes, particularly
ETS1, could serve as novel diagnostic biomarkers for UC. These findings have the potential to enhance the understanding of the age-
related mechanisms of UC.
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Introduction
Ulcerative colitis (UC) is a persistent and recurrent inflammatory bowel disease (IBD) in which lesions initiate in the rectum
and subsequently spread to the colonic mucosa.' It has become a global public health problem that seriously affects patients’
quality of life.> As the population ages and the prevalence of IBD increases, the number of older patients with UC is on the
rise.” Approximately 10%-30% of the UC population is reported to be over 60 years of age, including patients with a long-term
course and those with older-onset cases (age at diagnosis > 60 years).* The clinical management of elderly UC patients is
complex, and treatment with surgery or immunomodulators may result in a higher risk of infection and malignancy than in
younger adults.’ Despite the high safety profile of new biologic therapies, such as vedolizumab,® clinically available agents for
elderly UC patients are still lacking. Hence, an understanding of the pathogenesis of aging-related UC could help to explore
new protective drugs, aiming to reduce the impact of this disease on global public health.

Aging is a complex biological phenomenon that involves the progressive loss of the physiological functions of
multiple organs.” With increasing age, significant structural and functional changes occur in intestinal stem cells,
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intestinal mucosa, and intestinal microenvironment.®'® These cumulative changes cause dysregulation of the intestinal
immune system, promoting an increase in the number of immune cells, leading to low levels of chronic inflammation."
This persistent inflammation subsequently disrupts the homeostasis of the mucosal microenvironment, which impairs the
function of the intestinal epithelium, ultimately contributing to the susceptibility of older adults to gastrointestinal
disorders such as UC.'? Aging-related genes (ARGs) exert critical roles in the onset and regulation of age.'
Currently, the identification of the key signature of ARGs has been reported to have predictive value in the diagnosis
and therapeutic response of gastrointestinal tumors, such as colorectal and gastric cancer.'*'> However, the exact
mechanisms by which aging causes UC have not been explored. Thus, identifying the key ARGs and molecular processes
involved in UC may provide a theoretical basis for the diagnosis and prevention of aging-related UC.

In this study, we combined UC gene expression profiles and aging-related databases to determine key ARGs in UC
using machine learning algorithms and animal experiments. In addition, a growing body of literature suggests that the
JAK/STAT signaling pathway contributes to aging-related systemic inflammation, and its inhibitors are expected to
attenuate aging-associated dysfunction.'® Therefore, we elucidated the association between biomarkers and the JAK/
STAT pathway using GSVA. We also revealed the immune mechanisms of UC by immune infiltration analysis. This
study was designed to provide insights into the links between aging, immune landscape, and UC.

Materials and Methods

Data Acquisition

Microarray data of four datasets were acquired from the GEO database (http://www.ncbi.nlm.nih.gov/geo/), including
GSE75214,"7 GSE87466,'® GSE94648," and GSE169568.>° GSE75214 (GPL6244 platform, containing 74 UC and 11
normal samples) and GSE87466 (GPL13158 platform, containing 87 UC and 21 normal samples) were used as the
training sets to identify molecular subtypes and diagnostic biomarkers. GSE94648 (GPL19109 platform, including 25
UC and 22 normal samples) and GSE169568 (GPL10558 platform, including 58 UC and 30 normal samples) were used
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as validation sets to confirm the diagnostic value of biomarkers. To eliminate the batch effect between different datasets,
the sva function in R was used to merge data from GSE75214 and GSE87466.
ARGs were collected from the CellAge (https://genomics.senescence.info/cells/), GenAge (http://genomics.senes

cence.info/genes), and Aging Atlas (https:/bigd.big.ac.cn/aging/index) databases. After integration, 1205 genes were

screened for further analysis. In addition, UC-related genes were extracted from three databases (GeneCards [https://
www.genecards.org/], DisGeNET [https://disgenet.cn/], and CTD [https://ctdbase.org/]) and ultimately 1025 genes were
obtained after integration.

Screening of Differentially Expressed ARGs (DE-ARGs) in UC

Based on the training set data, differential expression analysis of UC and normal samples was conducted using R package
limma. Differentially expressed genes (DEGs) were selected using P < 0.05 and |log,FC|> 0.5 as screening criteria,
followed by visualization of the volcano plot and heatmap drawn by R package ggplot2. Next, the overlapping genes
associated with ARGs, DEGs, and UC were identified by using R package UpSetR, which were considered as DE-ARGs.

Gene Set Variation Analysis (GSVA)

GAVA is a nonparametric, unsupervised method that can be used to assess changes in the activity of gene sets from
different samples.”’ The JAK/STAT signaling pathway is involved in the regulation of inflammatory responses and has
been proven to be a valuable target for UC treatment.”* Here, we observed the enrichment levels of this pathway in
normal and UC samples. Briefly, the gene set of the JAK/STAT signaling pathway was downloaded from the MSigDB
database (http://www.broadinstitute.org/gsea/msigdb/index.jsp), and enrichment analysis was performed using the

R package GSVA to calculate the score of the pathway in the samples. Afterward, the difference in GSVA scores
between the two groups were compared using the #-test.

Immune Infiltration Assessment

UC-associated inflammatory responses are thought to be caused by immune dysregulation, but this is not yet fully
understood. CIBERSORT is a computational method for the quantification of cellular components from large tissue gene
expression profiles obtained by RNA sequencing.®> Hence, we applied the CIBERSORT tool to estimate the proportion
of 22 immune cell types in samples from the training set. In addition, under the threshold of P < 0.05, differences in the
abundance of immune cell infiltration between the UC and normal groups were observed.

ARGs-Associated Subtypes Analysis

Identification of intrinsic subgroups with common biological characteristics is achieved by using the
“ConsensusClusterPlus” package in R.** To explore the potential subtypes of patients with AA, we employed the
ConsensusClusterPlus software to perform cluster analysis of DE-ARGs. The number of clusters k was set from 2 to
10, and the optimal subtypes were recognized based on the cumulative distribution function (CDF). The characteristics of
immune infiltration and the JAK/STAT pathway between different subtypes were further analyzed, followed by
a comparison of the differences between subtypes using a t-test. DEGs in different subtypes were identified using the
R package limma with a threshold of P < 0.05 and |log,FC| > 0.5.

WGCNA

WGCNA can be used to identify highly cooperative gene expression matrices and reveal core genes associated with
specific phenotypes such as disease states, providing clues for disease mechanism studies.*” In this study, a scale-free co-
expression network was constructed using the R package “WGCNA” based on the gene expression profiles in the merged
dataset (GSE75214 and GSE87466). First, the optimal soft-threshold power was determined based on the scale-free
topology criterion and the weighted adjacency matrix was constructed. Subsequently, the matrix was transformed into the
topological overlay matrix, and then the modules were constructed based on the hierarchical clustering and dynamic tree-
cutting function. The minimum number of genes in each module was set to 25 and the modules were merged with
a height cut of 0.4. Afterwards, the correlation between each module and clinical features was calculated, and significant
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modules related to ARGs were screened with a threshold of [R| > 0.5 and P < 0.05. Finally, Characteristic genes in core
modules were extracted and then intersected with DE-ARGs and DEGs. Shared genes were served as candidate genes for
next analysis.

Screening of UC-Related Feature Genes

Compared to traditional statistical methods, machine learning can better mine high-dimensional, complex structures, and
basic medical data to screen for variables that serve important roles in categories.® Based on the candidate genes, two
machine learning algorithms (LASSO and Random Forest) were employed to collectively identify the UC-related feature
genes. LASSO is a valuable choice for various data analyses, owing to its advantages in dimensionality reduction, model
interpretability, and feature variable selection.?” In this study, the glmnet package was employed for the LASSO analysis.
Meanwhile, random forest can quantitatively describe the contribution value of features to classification, and it is widely
used in the analysis of various feature selections.”® Therefore, we used the R package randomForest for random forest
analysis to filter out unimportant genes. The intersection of genes in the two machine learning algorithms was considered
the feature genes for UC. In addition, based on these genes, a UC prediction model was established using a logistic
regression algorithm. Its predictive effect was evaluated using the ROC curve in the training and validation sets via
pROC package.*’

Animal Experiments

The UC animal model was established as previously described.*® First, eight-week-old C57BL/6 male mice (from
Medical School Experimental Animal Center of Yangzhou University) were acclimatized for 7 days in a pathogen-
specific animal facility with a controlled environment of 40%-70% relative humidity, 18-26°C, and 12/12-h light/dark
cycle. Subsequently, based on the method described in the previous article,*® mice were administered 3% dextran sodium
sulfate (DSS, MeilunBio, 9011-18-1) solution (3 g DSS powder dissolved in 100 mL of sterile distilled water) for 7 days
to induce colitis. Mice in the control group drank equal amounts of water throughout the experiment. Each group
consisted of six animals. During this period, body weight, fecal occult blood, and stool consistency of mice were
recorded daily. The sum of the three indicators was defined as the Disease Activity Index (DAI), which was calculated
based on grading criteria to assess the severity of intestinal inflammation.?' The specific scoring rules are as follows: (i)
body weight loss: 0 point = none, 1 point = 1-5%, 2 points = 5-10%, 3 points = 10-15%, 4 points = over 15%; (ii) fecal
occult blood: 0 point = no blood, 2 points = visual pellet bleeding, 4 points = severe bloody stool and blood around the
anus; (iii) stool consistency, 0 point = normal, 2 points = dilute stool, 4 points = diarrhea. Mice were euthanized on day 8
and colon tissues were collected for further study. All experiments adhered to guidelines approved by the Ethical Review
Committee for Animal Experiments of Yangzhou University (202411028).

Assessment of Colon Macroscopic Damage Index (CMDI)

We first evaluated histological changes in the colon by measuring its length. In addition, the colon was dissected longitudinally
along the mesenteric side on ice and changes in the morphology of the colon were observed visually. The CMDI was used to
reflect the severity of ulcer formation and inflammation, and its scoring rules are calculated according to the previous research.*>
The specific scoring rules are as follows: 0 point = no damage, 1 point = mild congestion and edema, smooth surface, without
erosion or ulceration, 2 points = hyperemia edema, mucosal roughness, granulation, erosions or intestinal adhesion, 3 points =
severe surface congestion and edema, necrosis, ulcer formation, intestinal wall thickening or surface necrosis, inflammatory
polyps, 4 points = severe congestion and edema, mucosal necrosis and ulcer formation, total intestinal wall necrosis, toxic
megacolon death.

Detection of Key Genes by qRT-PCR

gRT-PCR experiments were conducted as previously described.”® Total RNA was isolated from the colon tissues using an
RNAsimple kit (TITANGEN, DP419). Reverse transcription and amplification reactions were conducted using the FastKing RT
kit (TTANGEN, KR118-02) and Taq Pro Universal SYBR qPCR Master Mix (Vazyme, Q712-02) kit, according to the
manufacturer’s protocol. Finally, the relative expression of each gene was normalized to that of GAPDH, and relative expression
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levels were calculated using the 27*““* method. The primer sequences used in this study were as follows: Ets-1 (127 bp) forward,
5’-CCAGTCATCCTTCAACAGCC-3’ and reverse, 5~ AGCACCGTCACGCACATAGT-3’; IL-7R (126 bp) forward, 5’-
GCGGACGATCACTCCTTCTG-3’ and reverse, 5>~ AGCCCCACATATTTGAAATTCCA-3’; GAPDH (211 bp) forward, 5’-
TGGATTTGGACGCATTGGTC-3’ and reverse, 5’-TTTGCACTGGTACGTGTTGAT-3".

Data Statistics

All bioinformatic analyses were implemented using R software (version 4.2.2). Logistic regression analysis was used to
determine the diagnostic classification model, followed by evaluation of its predictive performance by plotting ROC
curve and calculating the area under the curve. Correlations between biomarkers and immune or the JAK/STAT pathway
were assessed by Pearson method. Besides, each experiment was repeated at least three times. All experimental data were
expressed as mean =+ standard deviation (SD) and were statistically analyzed/visualized by GraphPad Prism (version 8.0).
The differences between the two groups were compared using Student’s #-test (normally distributed data) or Kruskal—
Wallis test (non-normally distributed data). P < 0.05 was considered statistically significant.

Results
Identification of DEGs in UC Vs Normal Samples

After removing the batch effect, the samples in the two datasets were uniformly dispersed, indicating that reliable results
were obtained (Figure 1A). In total, 1025 shared UC-related genes were identified in the three databases (Figure 1B). In
addition, Limma was used to characterize DEGs in UC versus normal samples, and 2786 DEGs were screened, with 1624
up-regulated and 1162 down-regulated genes (Figure 1C). The top 30 DEGs (sorted by |log,FC|) are displayed in
a heatmap (Figure 1D). Subsequently, to explore the significance of aging in UC pathology, we performed Venn analysis
to integrate DEGs, UC, and ARGs, and finally determined 95 DE ARGs for further analyses (Figure 1E). In addition,
GSVA revealed abnormal activation of the JAK/STAT signaling pathway in UC samples (P < 0.0001, Figure 1F). The
JAK/STAT signaling pathway plays a crucial role in the regulation of immune and inflammatory responses.®* The latest
study has identified unique inflammation-associated cell state in the epithelium of UC patients, mainly attributed to JAK/
STAT pathway activation. This is consistent with our findings.

Analysis of Immune Cell Infiltration in UC and Normal Samples

Considering that UC is characterized by immune disorders, we employed the CIBERSORT algorithm to analyze 22 cell
types in samples from the training set. As shown in Figure 2A, plasma cells, M2 macrophages, and resting mast cells
accounted for a higher proportion of infiltration in normal and UC samples. Notably, UC and normal samples had
distinctly different immune profiles. Fourteen different immune cell types were observed in both the groups (Figure 2B).
For example, compared to normal controls, the abundance levels of memory B cells, M1 macrophages, and activated
dendritic cells in UC samples were clearly increased, whereas the levels of M2 macrophages and resting mast cells were
decreased. The level of these cell infiltrations has been confirmed to be significantly different between UC patients and
normal individuals.*

Screening of Two Aging-Related Subtypes in UC

To comprehensively understand the expression patterns of ARGs in UC, we used a consensus clustering algorithm based
on the expression of 95 DE-ARGs. The CDF curves showed that the curves had a lower slope when k = 2, indicating that
the clustering results were reliable (Figure 3A). Thus, the entire cohort was classified into two aging-related subtypes
(Figure 3B). PCA further confirmed that the two subtypes could be clearly distinguished (Figure 3C). Next, to investigate
the role of ARGs in the immune microenvironment, the infiltration levels of immune cells in the two subtypes were
analyzed using the CIBERSORT algorithm. As expected, two subtypes displayed different patterns of immune infiltra-
tion. We also observed that plasma cells and M2 macrophages were predominant in both subtypes (Figure 3D). Eleven
immune cells exhibited significantly different abundance levels between subtypes 1 and 2 (Figure 3E). Among them,
subtype 1 had elevated levels of plasma cells, CD8 T cells, M2 macrophages, and resting mast cells, whereas subtype
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Figure | Identification of DE-ARGs in UC and normal samples. (A) PCA plot shows the distribution patterns of the samples in the two datasets (GSE75214 and GSE87466)
after removing the batch effect. (B) Venn diagram shows UC-related genes from three databases (GeneCards, CTD, and DisGeNET). (C) Volcano plot of DEGs between UC
and normal samples. Blue node represents down-regulated gene, red node represents up-regulated gene, and gray node represents no significant differences. (D) Heatmap
displays the top 30 DEGs ranked by |log,FC]| value. (E) Venn diagram of DE-ARGs intersected by UC, DEGs, and ARGs. (F) Boxplot of GSVA score for the JAK/STAT
signaling pathway in normal and UC groups. JAK/STAT signaling pathway is significantly activated in the UC samples. **** P < 0.0001.

Abbreviations: DE-ARGs, differentially expressed aging-related genes; UC, ulcerative colitis; PCA, Principal component analysis; DEGs, differentially expressed genes;

ARGs, aging-related genes.

2 had elevated levels of memory B cells, activated dendritic cells, and neutrophils. In addition, GSVA revealed
a significant enrichment of the JAK/STAT signaling pathway in subtype 2 (Figure 3F). Furthermore, differential
expression analysis identified 1443 DEGs (606 up-regulated and 837 down-regulated) in subtypes 1 and 2. The volcano
plot shows the distribution of all DEGs and the heatmap displays the top 30 DEGs (Figure 3G and H).

Identification of Key Modules Through WGCNA

We used WGCNA to identify core modules associated with these subtypes. When the soft threshold was 6, the biological
network reached scale-free and the connectivity tended to be smooth; thus, it served as the optimal threshold (Figure 4A).
A cluster tree diagram of all the samples is shown in Figure 4B. Thirteen clusters related to subtypes were detected, with
the blue and magenta modules having the strongest association with molecular subtypes (Figure 4C). Blue indicates
a negative correlation with subtype 1 (r =—0.7, P = 3e-25), while magenta indicates a positive correlation with subtype 1
(r=0.6, P =7e-17). Afterward, The Venn diagram revealed 54 overlapping genes in WGCNA, DEGs in subtypes, and
DE-ARGs that were used for subsequent exploration (Figure 4D).

Screening for Diagnostic Biomarkers in UC

With the help of two machine learning algorithms, the characteristic genes in UC were identified. LASSO analysis
determined nine key variables, and the gene contraction tended to be stable (Figure SA and B). The random forest model
screened 21 genes, corresponding to the highest accuracy rate (Figure 5C). Figure 5D shows the ranking of important
gene contributions in the random forest model based on the MeanDecreaseGini. Seven shared biomarkers (CD34,
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CXCLI, ETSI1, ILIRN, IL7R, TIMP1, and VCAM1) were identified by integrating these two algorithms (Figure 5E).
With the development of complex biological models, the effectiveness of a single biomarker for clinical diagnosis has

gradually become limited. Therefore, we established a multivariate logistic regression model based on these seven

biomarkers. The model combining the two variables (ETS1 and IL7R) exhibited satisfactory accuracy and was superior
to the other combinations. In the training, GSE169568 validation, and GSE94648 validation sets, the AUC values were
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Figure 3 Screening for aging-related subtypes through consensus clustering analysis. (A) CDF curves of consensus scores for k = 2—10. When k = 2, the slope of CDF curve
is the lowest, indicating that the clustering results are reliable. (B) Heatmap of consensus clustering for k = 2. (C) PCA plot supports the classification of UC samples into
two separate subtypes. (D) Bar plot shows the infiltration levels of 22 cells in subtype | and subtype 2. (E) Comparisons of 22 immune cells infiltration levels between
subtype | and subtype 2. (F) Boxplot of GSVA score for the JAK/STAT signaling pathway in two subtypes. JAK/STAT signaling pathway is significantly activated in the subtype
2 samples. (G) Volcano plot of DEGs between subtype | and subtype 2. Red dots represent up-regulated genes, blue dots represent down-regulated genes, and gray dots
represent no significant differences. (H) Heatmap displays the top 30 DEGs in subtype | vs subtype 2. Ns, no significant; ** P < 0.01; *** P < 0.001; *** P < 0.0001.
Abbreviation: CDF, Cumulative distribution function.

0.96, 0.817, and 0.882, respectively (Figure 5F and G). An AUC of between 0.8 and 1.0 is considered excellent for the
overall diagnostic accuracy of the test.’® Hence, the model was reliable and accurate for UC diagnosis.

Correlation Analysis of Two Diagnostic Genes and Biological Characteristics

We further observed the link between the genes in the model and differential immune cells or JAK/STAT signaling
pathway activity. Results showed that ETS1 and IL7R were positively correlated with activated dendritic cells,
neutrophils, activated memory CD4 T cells, memory B cells, and M0 macrophages (red line indicates positive correla-
tion), but negatively associated with resting mast cells, M2 macrophages, and CD8 T cells (blue line indicates negative
correlation; Figure 6A). In addition, increased expression of the two diagnostic genes significantly promoted the activity
of the JAK/STAT signaling pathway (R = 0.75 for ETS1, R = 0.76 for IL7R; P < 005; Figure 6B and C). Taken together,
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these two biomarkers may play a role in UC pathogenesis by modulating immune cell infiltration and regulating the JAK/
STAT signaling pathway, thereby affecting the inflammatory response in the colon.*’

Confirmation of Hub Gene Expression Levels in the Experimental Colitis

To confirm the results of the bioinformatic analysis, we established a DSS-induced UC model in mice. Compared to the
control group, the body weight of mice in the model group decreased significantly with increasing treatment time
(Figure 7A). During this period, the DAI scores of mice in the model group were consistently elevated (Figure 7B). We
also observed that the mice administered DSS solution began to show characteristics such as depression, dark fur, and
persistent diarrhea on day 4. In addition, bleeding and soft stools were observed around the anus of model mice on day 7
(Figure 7C). Further evaluation showed that the colon length of mice in the model group was obviously shortened and the
intestinal mucosa exhibited erosion, congestion, and edema (Figure 7D and E). Meanwhile, the CMDI score of mice in
the model group was significantly higher than that of mice in the control group (Figure 7E). These changes intuitively
indicated the development of UC in mice, demonstrating that the UC model was successfully constructed.”® The
expression levels of these two genes were determined by qRT-PCR. The results showed that the mRNA level of ETS1
was markedly increased in the model group than in the control group. Although IL-7R expression tended to decline in the
model group, it was not significantly associated with UC occurrence (Figure 7F).
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Discussion
UC is often refractory, mainly due to the lack of specific drugs and treatments.>* Moreover, the clinical manifestations of

UC are diverse and easily misdiagnosed, and a low diagnostic rate causes a delay in the initial remission of the disease;
therefore, early detection remains a daunting task.*® Therefore, discovery of specific biomarkers that can accurately
identify UC is a promising research direction. Currently, the aging population poses unique challenges in the clinical
management of UC.*! Although age is an important factor in UC pathology,** a diagnostic model of UC based on ARGs
has not yet been developed. In this study, two aging-related subtypes were screened. Seven candidate biomarkers were
screened through WGCNA and ARG-based machine learning algorithms. Logistic regression ultimately determined that
the model established using the two genes (ETS1 and IL7R) had an accurate predictive value for UC diagnosis. In
addition, we observed a direct association between ETS1 and IL7R, immune cell infiltration, and JAK/STAT pathway.
Further experiments confirmed that ETS1 was highly expressed in UC mice. These findings may provide novel insights

into the treatment of elderly UC patients.
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ETS1 belongs to the ETS family of transcription factors and exerts multiple effects on aging, inflammation, and cancer
development.**** Clinical studies have found that inflammatory cytokines such as TNF-a and IL-1p induce the expression and
nuclear translocation of epithelial-specific ETS1, thereby promoting apoptosis of colon cells and triggering the development
of colon cancer.*’ Similarly, under the stimulation of chronic inflammation, upregulation of ETS1 expression in UC causes
apoptosis in small intestinal epithelial cells, which disrupts intestinal epithelial homeostasis and drives UC progression.*® We
also observed that ETS1 was overexpressed in UC samples. The protein encoded by IL7R is a receptor for interleukin 7 and
has been found to play a harmful role in immune cell-mediated IBD.*” Dysregulation of the IL7R pathway in patients with
severe IBD has been shown to facilitate the maintenance of chronic inflammation, and IL7R signaling pathway-related gene
signatures are predictive biomarkers in patients with refractory UC.****° In addition, blockade of IL7R is effective in restoring
intestinal homeostasis, showing therapeutic potential in preclinical animals and in vitro IBD models.>® Inhibition of IL7R
signaling can also exert a therapeutic effect on UC by regulating the homeostasis of effector memory Th7 cells.”' These
evidences further support the critical role of ETS1 and IL7R in the pathogenesis and treatment of UC. However, the specific
mechanism of action needs to be further explored.

In immunomodulation, we found that the two diagnostic biomarkers were positively associated with neutrophils and
memory B cells while negatively associated with M2 macrophages. In UC pathology, neutrophils release large amounts of
reactive oxygen species by infiltrating the colonic mucosa, which directly leads to tissue damage, aggravates intestinal
inflammation, and promotes impaired intestinal barrier defense by generating neutrophil extracellular traps (NETs).”*>
Mechanistically, upon stimulation of inflammatory gut chemokines such as CXCL8, CXCR1/2 expressing neutrophils are
recruited to the gut and activate the release of NETSs, thereby promoting downstream pathways of epithelial injury and
amplifying the inflammatory response.”® Hence, UC is generally accompanied by higher neutrophil recruitment, consistent
with our findings. Dysregulation of memory B cells is associated with pathogenesis of several inflammatory diseases in
humans. In the pathogenesis of UC in animals or patients, the number of (CD27+) (CD19+) (IgG+) memory B cells in the
peripheral blood is distinctly reduced, and astragalus polysaccharide treatment can improve UC by restoring the balance of
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memory B cells.”>® However, in this study, the abundance of memory B cells increased in UC samples, which is inconsistent
with previous findings. This may be due to the fact that memory B cells are phenotypically diverse, with functional
differences.’” Future characterization of memory B cell subtypes in UC, using single-cell sequencing, will explain our
findings. M2 macrophages contribute to the maintenance of intestinal homeostasis and exhibit anti-inflammatory properties.>
The decrease in M2 macrophages in UC patients causes the release of pro-inflammatory molecules, leading to the disruption of
tight junction proteins and exacerbating of disease progression.’® Besides, decreased M2 macrophages can impede mucosal
healing in UC.”® Taken together, we speculate that ARGs may promote UC by regulating homeostasis between the
inflammatory environment and immune cells; however, the specific mechanism needs to be further explored.

We also observed a positive correlation between ETS1 and IL7R, and the JAK/STAT pathway. This pathway is
involved in a variety of cellular processes such as cell division/death and immune regulation, and its overactivation has
been associated with inflammatory diseases.’” Previous study has indicated that blocking JAK mediated inflammatory
pathways can alter the innate and adaptive immune responses involved in IBD, thereby reducing chronic gastrointestinal
inflammation.®' JAK/STAT is an important pathway in the aging process and serves as a predictive biomarker of frailty (a
syndrome in older people).®® Targeting this pathway is expected to be an alternative approach for ameliorating age-
related dysfunction.'® Taken together, these findings suggest the possibility of targeting this pathway as a therapeutic
option for age-related UC.
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For the first time, we constructed a novel UC prediction model based on ARGs and explored their characteristic genes
and immune landscapes. Although we utilized a large sample dataset and animal experiments to improve the reliability of
our results, it is important to acknowledge that this study had some limitations. First, there is a lack of clinical
information for the sample in the GEO database; therefore, direct clinical evidence of the potential effects of age on
UC is unavailable. We only performed a simple expression validation in a mouse model, and the detailed mechanisms of
how ETS1 or IL7R affect immune response and inflammation, leading to UC pathological processes, are unclear. Further
experimental studies are required to improve the credibility of our results.

Conclusion

In this study, the important role of aging in UC was confirmed by integrating bioinformatics analysis, machine learning
algorithms, and in vivo experimental validation. Two age-related molecular subtypes with different immune infiltration
patterns were identified in UC. DEGs between two subtypes might affect the immune microenvironment of UC by regulating
the JAK/STAT signaling pathway. Notably, two machine learning methods and logistic regression screened two key ARGs
(EST1 and IL7R) to establish a diagnostic model for accurate prediction of the risk of UC occurrence. We found complex
interactions between the two biomarkers and multiple immune cells, including neutrophils, memory B cells, and M2
macrophages. Besides, two genes were positively associated with the JAK/STAT signaling pathway. Afterwards, preliminary
experiments revealed that ETS1 was significantly up-regulated in DSS-induced UC mice. Overall, these findings provide

important information for the development and application of anti-aging target drugs in UC therapy.
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