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Abstract

Objective: A critical challenge in the treatment of biofilm infection is the capacity of biofilm-

grown bacteria to develop resistance to traditional antimicrobial therapies. The objective of this 

study was to validate the therapeutic potential of magnetic nanoparticle/alternating magnetic field 

(MNP/AMF) hyperthermia in combination with conventional antibiotics against biofilm infection.

Materials and methods: The impact of MNP/AMF hyperthermia on the viability of S. aureus 

biofilm in the absence and presence of antibiotics as well as on the bactericidal activity of 

macrophages were evaluated at varying conditions of MNPs concentration and AMF intensity 

using in vitro cell culture models.

Results: The application of MNP/AMF alone at a CEM43 thermal dose below the threshold for 

skin tissue exhibited a modest efficacy in the eradication of Staphylococcus aureus (S. aureus) 

biofilm (<1-log reduction). The treatment of antibiotics (ciprofloxacin, vancomycin) alone at a 

bactericidal concentration for planktonic S. aureus had no significant effect on the eradication of 

biofilm phase of S. aureus. However, when the biofilm was pre-exposed to mild MNP/AMF 

hyperthermia, the treatment of antibiotics could exhibit bactericidal effects against S. aureus 

biofilm, which was associated with increased uptake of antibiotics to the bacterial cells. 

Importantly, the application of MNP/AMF could promote the bactericidal activity of macrophages 

against intracellular bacteria via MNP-dependent generation of reactive oxygen species (ROS).

Conclusion: Our results validate that the application of mild MNP/AMF hyperthermia within a 

safe thermal dose threshold is synergistic with conventional antibiotics as well as aids host innate 

immune response of macrophages for the clearance of intracellular bacteria.
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Introduction

A growing body of evidence suggests that the formation of bacterial biofilm plays a 

significant role in the pathogenesis of wound chronicity [1–5]. A critical challenge in the 

treatment of biofilm infection is the capacity of biofilm bacteria to develop resistance to 

traditional antibiotics therapies. The molecular mechanisms of biofilm resistance have been 

associated with slow or incomplete penetration of antimicrobials to bacterial cells due to the 

presence of biofilm matrix [6], decreased metabolism of bacteria in the biofilm phase, and 

the induction of a biofilm-specific bacterial phenotype that results in the expression of genes 

to interfere with the actions of antimicrobial agents [7,8]. Despite the development of novel 

antimicrobial agents, the cost and complexity of treating chronic wounds associated with 

biofilm infections remain a serious challenge.

We previously developed a magnetic nanoparticle (MNP) hyperthermia platform and 

validated its capacity to target and substantially reduce the viability of bacterial pathogens 

using an in vivo mouse model of Staphylococcus aureus (S. aureus) wound infection [9]. 

The principle of this method is to induce a localized increase in temperature in bacterial cells 

by targeted activation of MNPs with an externally applied energy source of high frequency 

alternating magnetic field (AMF) [10–12]. However, the use of MNP/AMF hyperthermia 

alone is still limited due to potential thermal damage to the host tissue, since it typically 

requires the application of MNP/AMF at higher thermal doses for complete eradication of 

bacterial pathogens.

It has been shown that the application of heat shock to the biofilm phase of bacteria by 

means of uniformly increasing temperature in the culture media could significantly enhance 

the susceptibility of Staphylococcal as well as Pseudomonas aeruginosa (P. aeruginosa) 

biofilm to conventional antibiotics [13,14]. Furthermore, the application of AMF on P. 
aeruginosa biofilm formed on metallic implants rendered the bacteria more susceptible to 

antibiotics via heat-mediated removal of the biofilm extracellular polymeric substances 

(EPS) [15]. Although these studies were associated with the application of heat shock at 

high thermal doses, they validate the proof-of-principle for hyperthermia therapy in 

rendering biofilm bacteria more sensitive to conventional antibiotics. Given the promise of 

MNP/AMF hyperthermia to non-invasively generate heat shock within the bacterial cells, we 

have reasoned that a combined treatment with conventional antibiotics would overcome the 

current limitation of MNP/AMF hyperthermia for clinical translation.

The objective of this study was to validate the therapeutic potential of MNP/AMF 

hyperthermia in combination with conventional antibiotics against biofilm infections. To 

address this, we have evaluated the impact of MNP/AMF hyperthermia on the elimination of 

biofilm bacteria in the absence and presence of antibiotics by using an in vitro model of S. 
aureus biofilm, a major human pathogen implicated in chronic wound infections [16]. Given 

the physiological importance of host innate immune response to bacterial infections, we 
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have also examined the effect of MNP/AMF hyperthermia on the bactericidal activity of 

macrophages. Our findings demonstrated that the application of MNP/AMF hyperthermia at 

a safe thermal dose could be successfully combined with conventional antibiotics against 

biofilm infection.

Materials and methods

Preparations of the planktonic and biofilm culture of S. aureus

S. aureus (ATCC 6538 strain) was streaked onto the tryptic soy agar (TSA) plate (Difco™, 

BD). A single colony of S. aureus was inoculated to the 5 ml of tryptic soy broth (TSB) (BD 

Bacto) and incubated overnight under aerobic conditions at 37 °C in a shaker at 180 rpm. 

For the preparation of planktonic S. aureus, the cells were pelleted by centrifugation at 3,500 

g and 4 °C for 7 min and diluted with TSB to obtain the desired concentrations of bacteria (1 

× 106–2 × 108 CFU/mL). For the culture of S. aureus biofilm, 1 × 106 CFU/mL of stationary 

growth phase S. aureus was added to the wells of a sterile polystyrene 8-well chamber slide 

or a 48-well polystyrene plate with TSB with 1% glucose (TSBG), and incubated for 48 h at 

37 °C under static conditions. This resulted in the proliferation of bacteria from 1 × 106 to 2 

× 108 CFU/mL.

Flow cytometry

Varying concentrations of MNPs (0.1–1 mg/mL, 100 nm in size, nanomag-D-SPIO, 

Micromod GmBH) were added to the wells of S. aureus biofilm and incubated for 2 h. The 

biofilm was then disrupted by placing the wells in a sonication bath (Bransonic CPX1800H) 

for 10 min. The cells were pelleted by centrifugation, suspended with phosphate-buffered 

saline (PBS), and analyzed by flow cytometry (Accuri C6, BD Biosciences). The change in 

side-scattering patterns of the bacterial cells was detected.

Atomic absorption spectroscopy (AAS) measurement for the quantification of iron levels in 
bacterial cells

The internalization of MNPs by S. aureus was assessed by quantifying iron levels in the 

bacteria using an AAS. Briefly, S. aureus (1 × 108 CFU/mL) were incubated with MNPs (1 

mg/mL) for 2 h and then pelleted by centrifugation. The pellet was washed twice with PBS 

and digested with 75% HNO3 to destroy the organics, and the metal ions in the cells were 

then converted to oxides by calcination of the sample. The metal oxides obtained were 

dissolved in aqua regia and the concentration of iron in the solution was analyzed using an 

AAS.

Determination of the susceptibility of planktonic and biofilm phase of S. aureus to 
antibiotics

The susceptibility of planktonic and biofilm phase of S. aureus to antibiotics were 

determined by using the macrodilution broth method [17]. To determine the efficacy of 

antibiotics against planktonic S. aureus, either ciprofloxacin (CIP, Sigma-Aldrich) or 

vancomycin (VAN, Sigma-Aldrich) prepared at concentrations ranging from 0.1 µg/mL to 

64 µg/mL was treated to the planktonic S. aureus (2 × 108 CFU/mL) for 18 h at 37 °C. The 

cells were then plated on TSA for bacterial CFU counting. The susceptibility of S. aureus 
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biofilm to the antibiotics was determined by treating varying concentrations of CIP or VAN 

(ranging from 0.1 µg/mL to 1,024 µg/mL) to the wells of established S. aureus biofilm for 18 

h at 37 °C. The cells were then plated on TSA for bacterial CFU counting after disrupting 

biofilm matrix by placing the wells in a sonication bath for 10 min.

Measurements of temperature increase (ΔT) during the exposure of MNP/AMF 
hyperthermia

The procedure for the application of MNP/AMF hyperthermia to the biofilm was performed 

as described in our previous study [9]. In brief, varying concentrations of MNPs ranging 

from 1 to 3 mg/mL were added to the wells of S. aureus biofilm pre-formed on a polystyrene 

8-well chamber slide and incubated for 2 h. For the application of AMF, the chamber slide 

was inserted in a water-cooled magnetic coil and an AMF was applied for 6 min at varying 

field strengths of 18, 24, and 30 kA/m at a frequency of 2.1 MHz. The real-time monitoring 

of temperature in the culture solution during the AMF exposure was performed using a fiber 

optic temperature probe (Neoptix) placed in the solution.

Determination of cumulative equivalent minutes at 43 °C (CEM43)

The CEM43 was calculated from equation as described [18], CEM43 = ∑ ti ×R(43−T), where 

T is the average temperature during i-th time interval ti (min), and R is a constant equal to 

0.25 for T < 43 °C and 0.5 for T > 43 °C. The average temperature T was determined by a 

plot of ΔT vs time measured during the application of MNP/AMF hyperthermia.

S. aureus biofilm viability assay using SYTO 9-propidium iodide (PI) staining

A SYTO9-PI biofilm viability kit (FilmTracer™ LIVE/DEAD, Thermo Fisher Sientific) was 

used to assess the effect of MNP/AMF hyperthermia on the viability of S. aureus biofilm. In 

brief, 200 µL of fluorescent staining solution made of SYTO9 and PI mixture was added to 

the MNP/AMF-treated S. aureus biofilm on an 8-well chamber slide. The biofilms were 

incubated for 20 min in the dark at room temperature, fixed with 200 µL of neutral buffered 

formalin after washing out the staining solution, and then imaged under an Olympus IX81 

fluorescence microscope. The live bacteria (SYTO9) were seen with a 490 nm excitation and 

535 nm emission filter and dead bacteria (PI) were seen with a 490 nm excitation, 635 nm 

emission filter.

Antibiotic susceptibility of S. aureus biofilm in the presence of MNP/AMF hyperthermia

The S. aureus biofilm pre-formed on an 8 well-chamber slide was incubated with MNPs (1–

3 mg/mL) for 2 h at 37 °C and then applied with an AMF for 6 min at varying field strengths 

(18, 24, and 30 kA/m). Following the application of MNP/AMF, the biofilms were treated 

with CIP or VAN at a concentration of 16 µg/mL for 18 h at 37 °C and then bacterial CFUs 

were counted as described above.

Penetration of antibiotics through biofilms

The penetration of antibiotics through the biofilms was determined according to the method 

described previously [19]. Briefly, S. aureus biofilm were grown on 6 mm polycarbonate 

membrane overnight and a 6 mm nitrocellulose membrane (pore size of 0.4 µm) was placed 

Alumutairi et al. Page 4

Int J Hyperthermia. Author manuscript; available in PMC 2020 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on the surface of biofilm. In a separate group of biofilms, the polycarbonate membrane with 

S. aureus biofilm was applied with MNP/AMF at 2 mg/mL of MNPs and 30 kA/m of AMF 

for 6 min and then nitrocellulose membrane was placed on the surface of biofilm. Then, an 

antibiotic disk with CIP at concentrations of 16, 32, 64, or 128 µg/mL was placed on the top 

of the membrane-bound biofilm with or without MNP/AMF treatment. The biofilms were 

transferred to the TSA plate inoculated with planktonic phase of S. aureus. The TSA plate 

was incubated overnight at 37 °C and the diameter of the zone of growth inhibition were 

measured.

Quantification of antibiotic uptake by planktonic and biofilm S. aureus

The uptake of antibiotics by bacterial cells was evaluated using Bodipy-FL-vancomycin (FL-

VAN, Invitrogen), fluorophore conjugated vancomycin. For this, either planktonic or biofilm 

phase S. aureus was treated with FL-VAN at a sub-lethal dose of 0.1 µg/mL for a given 

duration, at which the viability of S. aureus was not altered. The antibiotic uptake was 

quantified by detecting fluorescence emitted from FL-VAN at 510 nm using a 

spectrophotometer (SpectraMax® M4 Multi-Mode Microplate Reader, Molecular Devices). 

To assess the effect of MNP/AMF hyperthermia on the uptake of antibiotics by biofilm 

bacteria, S. aureus biofilm was pretreated with MNPs (1 and 2 mg/mL) for 2 h and then 

applied with an AMF for 6 min at 30 kA/m. Cells were then incubated with 0.1 µg/mL FL-

VAN for between 1 and 24 h and the fluorescence from FL-VAN was measured. The extent 

of antibiotic uptake was expressed after normalizing the fluorescence intensity with respect 

to the number of viable bacteria in the well.

Cytotoxicity of MNP/AMF on RAW 264.7 macrophages

RAW 264.7 cells (ATCC, Manassas, VA) were cultured in complete DMEM, and 

supplemented with glutamine (2 mM), penicillin (100 U/ml), streptomycin sulfate (100 mg/

ml), and 10% fetal bovine serum (FBS). Cells (40,000 cells per well) were then seeded into 

each well of a 96-well plate for 24 h. To determine the cytotoxicity of MNP/AMF 

hyperthermia on RAW 264.7 cells, varying concentrations (0–3 mg/mL) of MNPs were 

treated to the wells with RAW 264.7 cells for 2 h. Then, the cells were applied with an AMF 

for 6 min at a field strength of 30 kA/m. To determine cytotoxicity, 10 µL of MTT solution 

(Trevigen) was added to each well of the microtiter plate for an additional 2 h and 

absorbance values were measured at 570 nm using a spectrophotometer.

Antibiotic protection assay for assessing the bactericidal activity of macrophages

To assess the effect of MNP/AMF on the bactericidal activity of macrophages against 

intracellular bacteria, RAW 264.7 cells were seeded in a 96-well plate at a density of 70,000 

cells per well for 24 h. Then, cells were pretreated with MNPs (1 and 2 mg/mL) for 2 h, and 

applied with an AMF for 6 min at a field strength of 30 kA/m. The cells were then incubated 

with planktonic S. aureus at a 1:10 multiplicity of infection at 37 °C for 1 h and washed with 

PBS to remove non-adherent bacteria. The cells were treated with a serum-free Dulbecco’s 

Modified Eagle’s Medium (DMEM) with 25 µg/mL gentamicin (Sigma-Aldrich) for 18 h in 

order to kill and remove the extracellular bacteria and then lysed with PBS containing 0.1% 

Triton X-100 at room temperature for 10 min. The cell lysates were serially diluted with 

sterile PBS and 50 µL of each dilution was plated on triplicate tryptic soy agar plates. The 
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plates were incubated overnight at 37 °C. The number of surviving bacteria within RAW 

264.7 cells was determined by CFU counting.

Measurement of the levels of intracellular reactive oxygen species (ROS) in RAW 264.7 
macrophages

The level of intracellular ROS was quantified using 5-(and-6)-carboxy-2′,7′-
dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA, Thermo Fisher Scientific). To 

assess the effect of MNP/AMF hyperthermia on reactive oxygen species (ROS) generation 

in macrophages, RAW 264.7 cells were seeded at a density of 40,000 cells per well in a 96-

well plate and incubated with MNPs (0–2 mg/mL) for 2 h, followed by treatment with an 

AMF at 30 kA/m for 6 min. The cells were incubated with Dulbecco’s PBS (DPBS) 

containing 25 µM carboxy-H2DCFDA for 30 min at 37 °C for the detection of ROS. 

Following the incubation, RAW 264.7 cells were washed twice to remove excessive 

fluorescent dye, and the fluorescence intensity was quantified using a spectrophotometer.

Statistical analysis

Data analysis was performed using an Origin 2015 software (Origin Lab). A two-tailed 

unpaired t-test was used to determine statistical significance between two groups. Statistical 

tests among multiple groups were analyzed using one-way ANOVA followed by Turkey’s 

posttest for secondary analysis for comparison. For all analyses, p-values of less than .05 

was considered to be statistically significant. Data were presented as mean ± standard error 

(SE).

Results

The MNP/AMF hyperthermia-induced increase of CEM43 was dependent on MNPs 
concentration and AMF intensity

The threshold for thermal damage to human tissue in response to various hyperthermia 

treatments has been assessed by determining CEM43, an accepted metric for thermal dose 

assessment in a variety of human tissues [20,21]. In view of this, we first sought to 

determine the range of MNP/AMF parameters (MNPs concentration and AMF field 

intensity) that can be potentially applied for skin tissue within the safety margin for thermal 

dose. This was performed by correlating MNP/AMF-induced thermal doses with the values 

of CEM43 in the in vitro cell culture setting. For this, varying combinations of MNPs 

concentration (1–3 mg/mL) and AMF strength (18–30 kA/m) were applied to the culture of 

S. aureus biofilm and the change in ambient temperature (ΔT) in the media of S. aureus 
biofilm was measured (Figure 1(A)). It was previously shown that MNPs dose of up to 3 

mg/mL had no direct cytotoxic effect on mammalian cells [22] and thus the maximum dose 

of MNPs used in this study was limited to 3 mg/mL as a threshold concentration nontoxic to 

the host cells. The change in temperature within the wells of S. aureus biofilm during 

MNP/AMF application was strongly dependent on the concentration of MNPs as well as 

intensity of AMF applied (Figure 1(B)). The application of AMF at a field strength of 18 

kA/m resulted in ΔT of 5 °C at 1 mg/mL MNP for the given exposure time of 6 min and the 

ΔT further increased with increasing AMF intensity and MNPs concentration, achieving a 

ΔT of 19 °C at the 3 mg/mL-MNPs and 30 kA/m-AMF.
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We next sought to correlate our measured values of ΔT induced by MNP/AMF hyperthermia 

with CEM43 for varying conditions of MNPs dose and AMF intensity. The estimated values 

of CEM43 were ranged from 1 min for 1 mg/mL of MNPs at 18 kA/m of AMF to as high as 

7,500 min for 3 mg/mL of MNP at 30 kA/m of AMF (Figure 1(C)). Considering the CEM43 

of 41 min as a threshold of the safe thermal dose for the application of hyperthermia to skin 

tissue [20], treatment conditions of MNP/AMF at up to 2 mg/mL-MNPs and 24 kA/m-AMF 

(equivalent to CEM43 of 34 min) or up to 1 mg/mL MNPs and 30 kA/m-AMF (equivalent to 

CEM43 of 5.7 min) were determined to be an acceptable range of thermal dose.

MNP/AMF hyperthermia alone reduced the viability of S. aureus biofilm via manners 
dependent on MNP concentration and AMF intensity

Different bacterial strains have a varying degree of susceptibility to heat shock [23]. Thus, 

we first tested the thermo-susceptibility of S. aureus strain used in this study using a 

thermobiogram assay [24]. Our result shows that the bacterial strain is thermo-susceptible 

for both planktonic and biofilm phases, but somewhat less sensitive in biofilm phase than 

planktonic one (Supplementary Figure S1). Since metal oxide nanoparticles including iron 

oxide nanoparticles are capable of exhibiting antimicrobial effects by triggering an oxidative 

stress to the bacterial cells [25], we next assessed the effect of MNPs alone on the viability 

of S. aureus biofilm. The incubation of MNPs to the culture of S. aureus biofilm for 2 h at 3 

mg/mL concentration reduced the CFU of S. aureus biofilm slightly by 35% (p < .05) in the 

absence of AMF, while MNPs at either 1 or 2 mg/mL concentration had no effect on their 

viability (p > .05) (Supplementary Figure S2).

We next examined whether treatment of MNP/AMF hyperthermia with a safe thermal dose 

for MNP dosing and AMF strength was sufficient enough to eliminate bacterial biofilm. The 

application of MNP/AMF hyperthermia at the high thermal dose of 3 mg/mL-MNP and 30 

kA/m-AMF (equivalent to CEM43 of 7,500 min) eradicated ~99% (2-log reduction) of S. 
aureus in the biofilm (Figure 2(A)). However, its efficacy become modest (<1-log reduction) 

when MNP/AMF was applied at below the CEM43 threshold thermal dose for skin tissue. 

For example, the application of MNP/AMF to S. aureus biofilm for 6 min at 1 mg/mL-MNP 

and 30 kA/m-AMF or at 2 mg/mL-MNP and 24 kA/m-AMF, which were deemed to be 

within the safe threshold of CEM43 for skin tissue, resulted in the reduction of bacterial 

CFUs by 88% and 65%, respectively. This was further confirmed by fluorescence images of 

live and dead staining of biofilms (Figure 2(B)). Our subsequent assay by flow cytometry 

revealed the presence of MNPs internalized by bacterial cells, as evidenced by increased 

side scattering patterns with increasing doses of MNPs (Figure 2(C)). The internalization of 

MNPs by S. aureus was further confirmed by the increased levels of iron in the bacterial 

cells, as quantified by AAS (Figure 2(D)). The application of direct heat shock to the S. 
aureus biofilm at a ΔT of 13 °C for 6 min exposure had no effect on the viability of S. aureus 
biofilm (Supplementary Figure S3), whereas a MNP/AMF-induced heat shock at 2 mg/mL-

MNP and 30 kA/m-AMF, resulting in an increase of ΔT similar to the direct heat shock, 

significantly decreased the CFU number of biofilm bacteria (>1-log reduction, Figure 2(A)). 

Taken together, our results suggest that the heat shock generated by MNPs in the bacterial 

cell contributed to a decrease in bacterial cell viability following the exposure of MNP/AMF.
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Mild MNP/AMF hyperthermia synergistically enhanced the antibiotic susceptibility of S. 
aureus biofilm by facilitating the uptake of antibiotics

By observing the modest efficacy of MNP/AMF hyperthermia in killing biofilm bacteria 

when applied below the threshold of a safe thermal dose, we next examined whether a 

combined application of MNP/AMF hyperthermia with antibiotics would enhance anti-

biofilm efficacy. The susceptibility of planktonic and biofilm phase S. aureus, formed by the 

same number of bacterial cells (2 × 108 CFU/mL), to antibiotics CIP or VAN was evaluated 

first. The treatment of CIP or VAN at a dose of 16 µg/mL exhibited bactericidal effects 

against planktonic S. aureus, as observed by reduction in the viability of the bacteria by 5-

log and 3-log, respectively (Figure 3(A)). However, the treatment of CIP or VAN at the same 

dose of 16 µg/mL had no effect on the viability of S. aureus in the biofilm phase. The 

viability of S. aureus biofilm decreased by 1-log at 128 µg/mL without further reduction up 

to 1,024 µg/mL for CIP, and by only 1-log at 1,024 µg/mL for VAN (Figure 3(A)). The 

application of MNP/AMF at 2 mg/mL-MNP and 30 kA/m-AMF for 6 min, followed by the 

exposure of either CIP or VAN at 16 µg/mL resulted in a 2-log reduction of S. aureus 
biofilm, while the application of MNP/AMF alone resulted in less than 1-log reduction in 

biofilm cell viability (Figure 3(B,C)). Since the therapeutic efficacy of combined treatment 

is greater than the sum of the efficacy of their individual treatments, our results suggest that 

the application of mild MNP/AMF hyperthermia could provide a synergistic effect when 

combined with a clinically relevant dose of conventional antibiotics.

Our subsequent experiments for testing antibiotic uptake using FL-VAN revealed that the 

synergistic effect between mild MNP/AMF hyperthermia and antibiotics was associated 

with an increased uptake of antibiotics by bacterial cells in the biofilm. The uptake of FL-

VAN by S. aureus in the biofilm phase was significantly attenuated compared to the 

planktonic S. aureus (Figure 4(A)). The application of mild MNP/AMF (at 1 mg/mL of 

MNP and 30 kA/m of AMF) significantly increased the uptake of FL-VAN (Figure 4(B)). It 

has been suggested that the presence of EPS or extracellular DNA in the biofilm may result 

in reduced exposure of biofilm bacteria to antibiotics by physically restricting their 

penetration through the biofilms or acting as an absorbent or reactant of antibiotics [26,27]. 

Additionally, it was previously shown that nanoparticle-induced hyperthermia could enhance 

the transport of the antibiotics by dispersing the biofilm matrix [28]. However, our results 

from antibiotic penetration assay using a disk diffusion method demonstrated that the 

diffusion of CIP through the S. aureus biofilm was not significantly altered by the 

application of MNP/AMF hyperthermia (p > .05), as quantified by the diameter of the zone 

of growth inhibition (Figure 4(C)). Taken together, our results suggest that the diminished 

susceptibility of S. aureus biofilm to antibiotics might be due to an attenuated uptake of 

antibiotics by biofilm bacteria, which could be reversed by MNP/AMF hyperthermia-

induced heat shock.

Mild MNP/AMF hyperthermia augmented the bactericidal activity of macrophages against 
intracellular S. aureus

In response to tissue injury and infection, the innate immune response, associated with the 

phagocytic and bactericidal activities of macrophages, plays a critical role in host defense 

[29]. To effectively apply MNP/AMF hyperthermia as an anti-biofilm therapy, it should 
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therefore be evaluated whether this therapy aids or detracts from host innate immune 

response. In view of this, we evaluated the impact of MNP/AMF hyperthermia on the 

bactericidal activity of macrophages, a critical host defense mechanism against infectious 

challenges [30,31]. We first assessed the cytotoxicity of MNP/AMF hyperthermia on RAW 

264.7 macrophages at the same thermal doses used in the biofilm experiments above. The 

application of MNP/AMF hyperthermia at a high thermal dose (at 3 mg/mL-MNP and 30 

kA/m-AMF) significantly decreased the viability of RAW 264.7 macrophages by ~70% 

(Figure 5(A)). However, cell viability for other conditions of MNPs concentration and AMF 

intensity was not significantly altered, compared to untreated control. The capacity of RAW 

264.7 macrophages to kill intracellular bacteria was assessed by using an antibiotic 

protection assay, which enables the quantification of the number of surviving bacteria within 

macrophages [32]. The number of viable intracellular S. aureus was significantly decreased 

by 85% at 1 mg/mL MNPs compared to untreated control, and it was further decreased with 

increasing concentration of MNPs to 2 mg/mL at the fixed AMF intensity of 30 kA/m 

(Figure 5(B)). However, there was no significant difference in bactericidal activity between 

macrophages with and without AMF application at the same MNP dose (Figure 5(B)), 

suggesting that exposure of MNPs to the RAW 264.7 macrophages was sufficient enough to 

exhibit a bactericidal activity against intracellular S. aureus. Since iron oxide magnetic 

nanoparticles can trigger the generation of ROS [33–35], and ROS can exhibit an 

antimicrobial activity [36], we next examined whether the improved bactericidal activity of 

macrophages with MNPs alone or MNP/AMF hyperthermia was associated with increased 

ROS generation. The generation of intracellular ROS in the RAW 264.7 cells was 

significantly increased with increasing concentration of MNPs (Figure 5(C)). Interestingly, 

the application of AMF further increased ROS generation in RAW 264.7 macrophages, 

suggesting that, in addition to MNP-triggered ROS generation, heat stress induced by 

MNP/AMF hyperthermia might contribute to ROS generation.

Discussion

Recently, several reports including ours have demonstrated that MNP/AMF hyperthermia 

therapy can be an effective approach to reduce the viability of bacterial pathogens 

[9,28,37,38]. However, despite its therapeutic potential, the use of MNP/AMF hyperthermia 

alone for the purpose of treating infection has been limited due to a potential risk for off-

target thermal damage to the host tissue [39], associated with a high thermal dose necessary 

to attain sufficient bacterial clearance. The major finding of this study is that the effective 

application of MNP/AMF hyperthermia within a safe thermal dose threshold is feasible to 

use against S. aureus biofilm when combined with conventional antibiotics. Additionally, 

MNP/AMF hyperthermia at the safe thermal dose can aid host innate immune response for 

the clearance of intracellular bacteria (Figure 6).

The effect of heat shock on the susceptibility of bacterial biofilms to antibiotics has been 

studied in experimental systems that induce uniformly increased temperature to culture 

media [6,13]. For example, the application of heat shock at a ΔT of 13 °C for 30 min or a ΔT 

of 23 °C for 5 min exhibited synergistic effects in eradicating P. aeruginosa biofilm when 

combined with antibiotics including ciprofloxacin or tobramycin [28]. A similar 

phenomenon of synergism between heat shock and antibiotics was observed in bacterial 
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biofilms formed by gram positive Staphylococcus epidermis, and to a somewhat lesser 

extent in S. aureus, under heat shock conditions at a ΔT of 8 °C for 120 min [14]. However, 

in each of these conditions, the estimated CEM43 values would be much higher than the 

reported threshold for thermal damage for skin tissue [18,21]. It has been shown that heat 

treatment could induce acute damage to skin function at a CEM43 of 41 min [21], immediate 

superficial burns at CEM43 of between 480 and 960 min [40], and necrosis of human skin at 

CEM43 of between 288 and 1.5 × 104 min [21].

Our results demonstrate that mild MNP/AMF hyperthermia is an effective strategy that can 

render drug-resistant biofilm bacteria to become susceptible to conventional antibiotics. This 

appears to be associated with the capacity of MNP/AMF to generate localized heat shock 

inside and/or in the vicinity of the bacterial cells. The treatment of antibiotics, CIP or VAN, 

at a bactericidal dose for planktonic S. aureus (16 µg/mL, Figure 3(A)), had little to no effect 

on the viability of S. aureus biofilm. However, a bactericidal effect was observed when the 

biofilms were pre-exposed to MNP/AMF hyperthermia at a thermal dose below the CEM43 

threshold for skin tissue, suggesting a synergistic efficacy between MNP/AMF hyperthermia 

and antibiotics. Since the treatment of bacterial biofilms requires a high dose of antibiotics 

with sustained administration [41], which can lead to overdose side effects, the combined 

treatment of MNP/AMF hyperthermia with antibiotics can be an effective strategy at 

reduced antibiotic doses.

Although a detailed mechanism for the synergism between MNP/AMF hyperthermia and 

antibiotics remains to be elucidated, our results suggest that this is associated with the 

enhanced uptake of antibiotics by bacterial cells, with little effect by the penetration of 

antibiotics through the biofilm matrix. This is in line with several recent studies suggesting 

that decreased antibiotic penetration through the biofilm matrix may not be the main cause 

of antibiotic resistance of bacterial biofilms [42,43]. One possible explanation for the 

observed synergism is that an increase of localized temperature by MNP/AMF might result 

in an increased metabolic activity in bacterial cells, which in turn, facilitate the uptake of 

antibiotics by biofilm bacteria. This may be supported by the findings of transcriptomic and 

metabolic data of S. aureus in response to an exposure of a sub-lethal (43 °C) temperature, 

which demonstrated that heat stress exposure could significantly increase metabolic 

activities including ATP-generating pathways [44]. Additionally, the stimulation of central 

metabolic pathway in drug-resistant bacteria was shown to significantly increase the uptake 

of antibiotics [45]. However, the detailed mechanism by which MNP/AMF hyperthermia 

facilitates antibiotic uptake remains to be elucidated.

Apart from its efficacy in sensitizing biofilm bacteria to an antimicrobial treatment, 

MNP/AMF hyperthermia may be beneficial in a macrophage-mediated innate immune 

response for bacterial clearance. Although the application of MNP/AMF at high thermal 

dose was detrimental to macrophage viability, suitable parameters for MNP concentration 

and AMF strength were found to cooperate with macrophage-mediated bacterial clearance. 

The improved bactericidal activity of macrophages in response to MNP/AMF hyperthermia 

was associated with increased generation of ROS by MNPs internalized by macrophages. 

Iron ions can impact the intracellular redox signaling for the generation of ROS inside cells 

via a Fenton reaction [46], essential components of the innate immune response against 
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intracellular bacteria [36]. The presence of MNPs within macrophages may have similarly 

triggered an increase in ROS production by increasing the levels of intracellular iron 

(Supplementary Figure S4). It was shown that cellular ROS generation could be enhanced 

when cells with internalized MNPs were exposed to an AMF [47]. Consistent with this 

finding, the application of AMF in the presence of MNP could further increase ROS 

generation in RAW 264.7 macrophages compared to the cells without an AMF treatment. 

This, however, was not sufficient enough to result in improved bactericidal activity, 

suggesting that the beneficial effect of MNP/AMF hyperthermia on the host innate immune 

response is largely due to the ROS generated by internalized MNPs.

In summary, in response to a clear and present need for an effective antimicrobial therapy for 

biofilm infections, our findings demonstrate the feasibility of mild MNP/AMF hyperthermia 

as a minimally invasive strategy to treat biofilm infection, which has the potential to work 

synergistically with standard-of-care antibiotic treatment and the innate immune response to 

accelerate the resolution of biofilm infections.
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Figure 1. 
Effects of MNP/AMF hyperthermia on the CEM43 thermal dose for varying conditions of 

MNPs concentration and AMF intensity. (A) A schematic diagram on the experimental 

procedure for the application of MNP/AMF hyperthermia to the biofilm bacteria in vitro. (B) 

Increase in temperature (ΔT) during the application of MNP/AMF as a function of MNP 

concentration (1–3 mg/mL) and AMF intensity (18, 24, and 30 kA/m). N = 3 per group. (C) 

Estimation of CEM43 values in response to MNP/AMF hyperthermia as a function of MNP 

concentration (1–3 mg/mL) and AMF intensity (18, 24, and 30 kA/m). The dotted red line 

indicates the reported threshold of the safe thermal dose for the application of hyperthermia 

to skin tissue [20]. N = 3 per group.
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Figure 2. 
Efficacy of MNP/AMF hyperthermia alone on the killing of S. aureus biofilm bacteria. (A) 

The viable CFU numbers of S. aureus in the biofilm following MNP/AMF application as a 

function of MNPs concentration (1–3 mg/mL) and AMF intensity (18, 22, and 30 kA/m). N 
= 5–8 per group. N.S: Not Significant (p > .05). #: p < .01. (B) Representative SYTO9/PI 

fluorescence images following the application of MNP/AMF for varying concentrations of 

MNPs at 30 kA/m of AMF (green/SYTO9 live cells; red/PI = dead cells). Representative of 

three independent experiments. (C) Representative flow cytometric plots of forward and side 

scattering from S. aureus biofilm incubated with varying concentrations of MNPs (0–1 

mg/mL) for 2 h. Representative of three independent experiments. (D) The atomic 

absorption spectroscopy analysis to quantify levels of intracellular iron in the S. aureus 
bacteria incubated with MNPs (1 mg/mL). N = 3 per group. *p < .05.
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Figure 3. 
Efficacy of MNP/AMF hyperthermia on the susceptibility of S. aureus biofilm to antibiotics. 

(A) The susceptibility of planktonic (PLK) and biofilm (BIO) phase of S. aureus to 

ciprofloxacin (CIP) and vancomycin (VAN). N = 4 per group. (B) A schematic diagram for 

the experimental protocol to quantify the effect of MNP/AMF on the susceptibility of S. 
aureus biofilm to antibiotics. (C) The effect of MNP/AMF hyperthermia on the susceptibility 

of S. aureus biofilm to CIP and VAN for varying conditions of MNP concentration (1, 2, 3 

mg/mL) and AMF intensity (18, 24, 30 kA/m). N = 5–9 per group. *p < .05 and #p < .01 vs 

No antibiotics group.
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Figure 4. 
Effects of MNP/AMF hyperthermia on the uptake of antibiotics by S. aureus biofilm. (A) 

The uptake of FL-VAN by planktonic and biofilm phase of S. aureus, quantified by 

fluorescence emitted from FL-VAN in the bacterial cells. N = 6 per group. #p < .01 vs PLK 

group. (B) The effect of MNP/AMF hyperthermia on the uptake of FL-VAN by S. aureus 
biofilm. The fluorescence emitted from FL-VAN in the S. aureus collected from biofilm 

culture for varying concentrations of MNPs (0–2 mg/mL) in the absence and presence of 

AMF application (30 kA/m). N = 6 per group. #p < .01 vs No MNP/AMF group. *p < .01. 

(C) The penetration of CIP (16, 32, 64, and 128 µg/mL) through the S. aureus biofilm in the 

absence or presence of MNP/AMF application (pre-exposure at 2 mg/mL-MNPs and 30 

kA/m-AMF for 6 min) assessed by disk diffusion method. Left: Representative photographic 

images of TSA plate showing the zone of growth inhibition by CIP. Right: Quantification for 

the diameter of the zone of growth inhibition by CIP. N = 3 per group. N.S: Not Significant 

(p > .05).
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Figure 5. 
Effects of MNP/AMF hyperthermia on the viability, bactericidal activity, and ROS 

generation of RAW 264.7 macrophages. (A) The viability of RAW 264.7 macrophages for 

varying concentrations of MNPs (0–3 mg/mL) in the absence or presence of AMF 

application at the intensity of 30 kA/m, assessed by MTT viability assay. N = 4 per group. 

(B) The effect of varying concentrations of MNPs (0–2 mg/mL) on the bactericidal activity 

of RAW 264.7 cells in the absence and presence of AMF application (30 kA/m), assessed by 

antibiotic protection assay. N = 10–15 per group. (C) The effect of varying concentrations of 

MNPs (0–2 mg/mL) on the ROS generation in RAW 264.7 cells in the absence and presence 

of AMF application (30 kA/m). N = 4–6 per group. N.S: Not Significant (p > .05). *p < .05 

vs untreated control (without MNP/AMF). #p < .05 vs without AMF group at a given MNP 

concentration.
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Figure 6. 
A schematic depicting the therapeutic potential of mild MNP/AMF hyperthermia against 

biofilm infections. The application of mild MNP/AMF hyperthermia can enhance the 

susceptibility of S. aureus biofilm to antibiotics by facilitating their uptake to biofilm 

bacteria. Additionally, when applied to macrophages at lower thermal doses, the treatment of 

MNP/AMF can promote a macrophage-mediated host response for the clearance of 

intracellular bacteria via MNP-dependent generation of ROS.
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